
Model Predictive Control Toolbox™
User's Guide

Alberto Bemporad
N. Lawrence Ricker
Manfred Morari

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ User's Guide
© COPYRIGHT 2005–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.1.1 (Release 2012b)
March 2013 Online only Revised for Version 4.1.2 (Release R2013a)
September 2013 Online only Revised for Version 4.1.3 (Release R2013b)
March 2014 Online only Revised for Version 4.2 (Release R2014a)
October 2014 Online only Revised for Version 5.0 (Release R2014b)
March 2015 Online only Revised for Version 5.0.1 (Release 2015a)
September 2015 Online only Revised for Version 5.1 (Release 2015b)
March 2016 Online only Revised for Version 5.2 (Release 2016a)
September 2016 Online only Revised for Version 5.2.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2.2 (Release 2017a)
September 2017 Online only Revised for Version 6.0 (Release 2017b)
March 2018 Online only Revised for Version 6.1 (Release 2018a)
September 2018 Online only Revised for Version 6.2 (Release 2018b)

Controller Creation
1

Choose Sample Time and Horizons . 1-2
Sample Time . 1-2
Prediction Horizon . 1-3
Control Horizon . 1-4
Defining Sample Time and Horizons . 1-4

Specify Constraints . 1-6
Input and Output Constraints . 1-6
Constraint Softening . 1-8

DC Servomotor with Constraint on Unmeasured Output 1-12

Specify Scale Factors . 1-18
Overview . 1-18
Defining Scale Factors . 1-18

Using Scale Factors to Facilitate Weight Tuning 1-22

Tune Weights . 1-33
Initial Tuning . 1-33
Testing and Refinement . 1-35
Robustness . 1-36

Designing Model Predictive Controller at Equilibrium
Operating Point . 1-38

Design MPC Controller for Plant with Delays 1-44

Design MPC Controller for Nonsquare Plant 1-52
More Outputs Than Manipulated Variables 1-52
More Manipulated Variables Than Outputs 1-54

v

Contents

Design MPC Controller for Identified Plant Model 1-57
Design Controller for Identified Plant Using Apps 1-57
Design Controller for Identified Plant at the

Command Line . 1-75
Configure Noise Channels as Unmeasured Disturbances 1-80

Generate MATLAB Code from MPC Designer 1-87

Design MPC Controller for Position Servomechanism 1-89

Design MPC Controller for Paper Machine Process 1-111

Control of an Inverted Pendulum on a Cart 1-137

Thermo-Mechanical Pulping Process with Multiple Control
Objectives . 1-147

Aircraft with Unstable Poles . 1-156

Model Predictive Control Basics
2

Controller State Estimation . 2-2
Controller State Variables . 2-2
State Observer . 2-3
State Estimation . 2-4
Built-in Steady-State Kalman Gains Calculation 2-6
Output Variable Prediction . 2-7

Optimization Problem . 2-9
Overview . 2-9
Standard Cost Function . 2-9
Alternative Cost Function . 2-12
Constraints . 2-13
QP Matrices . 2-14
Unconstrained Model Predictive Control 2-20

QP Solver . 2-22
Suboptimal QP Solution . 2-23
Custom QP Application . 2-24

vi Contents

Custom QP Solver . 2-24

Controller Refinement
3

Setting Targets for Manipulated Variables 3-2

Time-Varying Weights and Constraints 3-6
Time-Varying Weights . 3-6
Time-Varying Constraints . 3-7

Constraints on Linear Combinations of Inputs and
Outputs . 3-10

Using Custom Input and Output Constraints 3-12

Use Custom Constraints in Blending Process 3-16

Nonlinear Blending Process with Custom Constraints 3-26

Terminal Weights and Constraints . 3-36

Provide LQR Performance Using Terminal Penalty Weights . 3-39
Design MPC Controller Equivalent to LQR Controller 3-39

Designing Model Predictive Controller Equivalent to Infinite-
Horizon LQR . 3-45

Adjust Disturbance and Noise Models 3-50
Overview . 3-50
Output Disturbance Model . 3-50
Measurement Noise Model . 3-52
Input Disturbance Model . 3-54
Restrictions . 3-56
Disturbance Rejection Tuning . 3-57

Custom State Estimation . 3-59

Using Custom State Estimation . 3-60

vii

Manipulated Variable Blocking . 3-65

Specifying Alternative Cost Function with Off-Diagonal Weight
Matrices . 3-68

Controller Analysis
4

Review Model Predictive Controller for Stability and
Robustness Issues . 4-2

Test Controller Robustness . 4-22

Compute Steady-State Gain . 4-34

Extract Controller . 4-36

Compare Multiple Controller Responses Using MPC
Designer . 4-39

Adjusting Input and Output Weights Based on Sensitivity
Analysis . 4-52

Understanding Control Behavior by Examining Optimal
Control Sequence . 4-57

Controller Simulation
5

Simulate Controller with Nonlinear Plant 5-2
Nonlinear CSTR Application . 5-2
Example Code for Successive Linearization 5-2
CSTR Results and Discussion . 5-4

Test an Existing Controller . 5-9

Generate Simulink Model from MPC Designer 5-13

viii Contents

Signal Previewing . 5-15

Improving Control Performance with Look-Ahead
(Previewing) . 5-17

Simulating Model Predictive Controller with Plant Model
Mismatch . 5-26

Update Constraints at Run Time . 5-30
Update Bounds on Input and Output Signals at Run Time . . . 5-30
Update Mixed Input/Output Constraints at Run Time 5-31

Vary Input and Output Bounds at Run Time 5-33

Tune Weights at Run Time . 5-40

Tuning Controller Weights . 5-42

Bumpless Transfer Between Manual and Automatic
Operations . 5-50

Open Simulink Model . 5-50
Define Plant and MPC Controller . 5-51
Configure MPC Block Settings . 5-52
Examine Switching Between Manual and Automatic

Operation . 5-53
Turn off Manipulated Variable Feedback 5-55

Switching Controller Online and Offline with Bumpless
Transfer . 5-58

Switching Controllers Based on Optimal Costs 5-65

Monitoring Optimization Status to Detect Controller
Failures . 5-73

Simulate MPC Controller with a Custom QP Solver 5-78

Use Suboptimal Solution in Fast MPC Applications 5-89

Design and Cosimulate Control of High-Fidelity Distillation
Tower with Aspen Plus Dynamics . 5-98

ix

Adaptive MPC Design
6

Adaptive MPC . 6-2
When to Use Adaptive MPC . 6-2
Plant Model . 6-2
Nominal Operating Point . 6-3
State Estimation . 6-4

Model Updating Strategy . 6-6
Overview . 6-6
Other Considerations . 6-6

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Successive Linearization . 6-8

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Online Model Estimation . 6-21

Adaptive MPC Control of Nonlinear Chemical Reactor Using
Linear Parameter Varying System . 6-34

Obstacle Avoidance Using Adaptive Model Predictive
Control . 6-48

Time-Varying MPC . 6-61
When to Use Time-Varying MPC . 6-61
Time-Varying Prediction Models . 6-61
Time-Varying Nominal Conditions . 6-63
State Estimation . 6-64

Time-Varying MPC Control of a Time-Varying Plant 6-65

Time-Varying MPC Control of an Inverted Pendulum on a
Cart . 6-72

x Contents

Explicit MPC Design
7

Explicit MPC . 7-2

Design Workflow for Explicit MPC . 7-4
Traditional (Implicit) MPC Design . 7-4
Explicit MPC Generation . 7-5
Explicit MPC Simplification . 7-5
Implementation . 7-6
Simulation . 7-7

Explicit MPC Control of a Single-Input-Single-Output
Plant . 7-8

Explicit MPC Control of an Aircraft with Unstable Poles 7-20

Explicit MPC Control of DC Servomotor with Constraint on
Unmeasured Output . 7-30

Explicit MPC Control of an Inverted Pendulum on a Cart . . . 7-41

Gain Scheduling MPC Design
8

Gain-Scheduled MPC . 8-2
Design Workflow . 8-2

Schedule Controllers at Multiple Operating Points 8-5

Gain-Scheduled MPC Control of Nonlinear Chemical
Reactor . 8-26

Gain Scheduled Implicit and Explicit MPC Control of Mass-
Spring System . 8-48

Gain-Scheduled MPC Control of an Inverted Pendulum on a
Cart . 8-66

xi

Code Generation
9

Generate Code and Deploy Controller to Real-Time Targets . . 9-2
Code Generation in Simulink . 9-2
Code Generation in MATLAB . 9-3
Sampling Rate in Real-Time Environment 9-3
QP Problem Construction for Generated C Code 9-4
Code Generation for Custom QP Solvers 9-6

Simulation and Code Generation Using Simulink Coder 9-8

Simulation and Structured Text Generation Using PLC
Coder . 9-18

Using MPC Controller Block Inside Function-Call and
Triggered Subsystems . 9-24

Generate Code To Compute Optimal MPC Moves in
MATLAB . 9-39

Solve Custom MPC Quadratic Programming Problem and
Generate Code . 9-47

Simulate and Generate Code for MPC Controller with Custom
QP Solver . 9-61

Real-Time Control with OPC Toolbox . 9-71

Nonlinear MPC
10

Nonlinear MPC . 10-2

Specify Prediction Model for Nonlinear MPC 10-4
State Function . 10-4
Output Function . 10-8
Specify Optional Model Parameters 10-12

xii Contents

Augment Prediction Model with Unmeasured
Disturbances . 10-12

Specify Cost Function for Nonlinear MPC 10-14
Custom Cost Function . 10-14
Cost Function Jacobian . 10-19

Specify Constraints for Nonlinear MPC 10-23
Standard Linear Constraints . 10-23
Custom Constraints . 10-24
Custom Constraint Jacobians . 10-30

Configure Optimization Solver for Nonlinear MPC 10-34
Solver Decision Variables . 10-34
Specify Initial Guesses . 10-34
Configure fmincon Options . 10-35
Specify Custom Solver . 10-35

Trajectory Optimization and Control of Flying Robot Using
Nonlinear MPC . 10-40

Swing-up Control of a Pendulum Using Nonlinear Model
Predictive Control . 10-54

Nonlinear Model Predictive Control of an Exothermic Chemical
Reactor . 10-67

Optimizing Tuberculosis Treatment Using Nonlinear MPC with
a Custom Solver . 10-75

Nonlinear and Gain-Scheduled MPC Control of an Ethylene
Oxidation Plant . 10-85

Lane Following Using Nonlinear Model Predictive
Control . 10-95

Economic MPC . 10-104

Economic MPC Control of Ethylene Oxide Production 10-106

xiii

Automated Driving Applications
11

Automated Driving Using Model Predictive Control 11-2
Simulation in Simulink . 11-3
Controller Customization . 11-4
Integration with Automated Driving System Toolbox 11-4

Adaptive Cruise Control System Using Model Predictive
Control . 11-6

Adaptive Cruise Control with Sensor Fusion 11-13

Lane Keeping Assist System Using Model Predictive
Control . 11-35

Lane Keeping Assist with Lane Detection 11-41

Lane Following Control with Sensor Fusion and Lane
Detection . 11-57

Lane-Following Control with Monocular Camera
Perception . 11-72

xiv Contents

Controller Creation

• “Choose Sample Time and Horizons” on page 1-2
• “Specify Constraints” on page 1-6
• “DC Servomotor with Constraint on Unmeasured Output” on page 1-12
• “Specify Scale Factors” on page 1-18
• “Using Scale Factors to Facilitate Weight Tuning” on page 1-22
• “Tune Weights” on page 1-33
• “Designing Model Predictive Controller at Equilibrium Operating Point” on page 1-38
• “Design MPC Controller for Plant with Delays” on page 1-44
• “Design MPC Controller for Nonsquare Plant” on page 1-52
• “Design MPC Controller for Identified Plant Model” on page 1-57
• “Generate MATLAB Code from MPC Designer” on page 1-87
• “Design MPC Controller for Position Servomechanism” on page 1-89
• “Design MPC Controller for Paper Machine Process” on page 1-111
• “Control of an Inverted Pendulum on a Cart” on page 1-137
• “Thermo-Mechanical Pulping Process with Multiple Control Objectives” on page 1-147
• “Aircraft with Unstable Poles” on page 1-156

1

Choose Sample Time and Horizons

Sample Time
Duration

Recommended practice is to choose the control interval duration (controller property Ts)
initially, and then hold it constant as you tune other controller parameters. If it becomes
obvious that the original choice was poor, you can revise Ts. If you do so, you might then
need to retune other settings.

Qualitatively, as Ts decreases, rejection of unknown disturbance usually improves and
then plateaus. The Ts value at which performance plateaus depends on the plant dynamic
characteristics.

However, as Ts becomes small, the computational effort increases dramatically. Thus, the
optimal choice is a balance of performance and computational effort.

In Model Predictive Control, the prediction horizon, p is also an important consideration.
If one chooses to hold the prediction horizon duration (the product p*Ts) constant, p must
vary inversely with Ts. Many array sizes are proportional to p. Thus, as p increases, the
controller memory requirements and QP solution time increase.

Consider the following when choosing Ts:

• As a rough guideline, set Ts between 10% and 25% of your minimum desired closed-
loop response time.

• Run at least one simulation to see whether unmeasured disturbance rejection
improves significantly when Ts is halved. If so, consider revising Ts.

• For process control, Ts >> 1 s is common, especially when MPC supervises lower-level
single-loop controllers. Other applications, such as automotive or aerospace), can
require Ts < 1 s. If the time needed for solving the QP in real time exceeds the desired
control interval, consider the Explicit MPC on page 7-2 option.

• For plants with delays, the number of state variables needed for modeling delays is
inversely proportional to Ts.

• For open-loop unstable plants, if p*Ts is too large, such that the plant step responses
become infinite during this amount of time, key parameters needed for MPC
calculations become undefined, generating an error message.

1 Controller Creation

1-2

Units

The controller inherits its time unit from the plant model. Specifically, the controller uses
the TimeUnit property of the plant model LTI object. This property defaults to seconds.

Prediction Horizon
Suppose that the current control interval is k. The prediction horizon, p, is the number of
future control intervals the MPC controller must evaluate by prediction when optimizing
its MVs at control interval k.

Tips

• Recommended practice is to choose p early in the controller design and then hold it
constant while tuning other controller settings, such as the cost function weights. In
other words, do not use p adjustments for controller tuning. Rather, the value of p
should be such that the controller is internally stable and anticipates constraint
violations early enough to allow corrective action.

• If the desired closed-loop response time is T and the control interval is Ts, try p such
that T ≈ pTs.

• Plant delays impose a lower bound on the possible closed-loop response times. Choose
p accordingly. To check for a violation of this condition, use the review command.

• Recommended practice is to increase p until further increases have a minor impact on
performance. If the plant is open-loop unstable, the maximum p is the number of
control intervals required for the open-loop step response of the plant to become
infinite. p > 50 is rarely necessary unless Ts is too small.

• Unfavorable plant characteristics combined with a small p can generate an internally
unstable controller. To check for this condition, use the review command, and
increase p if possible. If p is already large, consider the following:

• Increase Ts.
• Increase the cost function weights on MV increments.
• Modify the control horizon or use MV blocking (see “Manipulated Variable

Blocking” on page 3-65).
• Use a small p with terminal weighting to approximate LQR behavior (See “Terminal

Weights and Constraints” on page 3-36).

 Choose Sample Time and Horizons

1-3

Control Horizon
The control horizon, m, is the number of MV moves to be optimized at control interval k.
The control horizon falls between 1 and the prediction horizon p. The default is m = 2.
Regardless of your choice for m, when the controller operates, the optimized MV move at
the beginning of the horizon is used and any others are discarded.

Tips

Reasons to keep m << p are as follows:

• Small m means fewer variables to compute in the QP solved at each control interval,
which promotes faster computations.

• If the plant includes delays, m < p is essential. Otherwise, some MV moves might not
affect any of the plant outputs before the end of the prediction horizon, leading to a
singular QP Hessian matrix. To check for a violation of this condition, use the review
command.

• Small m promotes (but does not guarantee) an internally stable controller.

Defining Sample Time and Horizons
You can define the sample time, prediction horizon, and control horizon when creating an
mpc controller at the command line. After creating a controller, mpcObj, you can modify
the sample time and horizons by setting the following controller properties:

• Sample time — mpcObj.Ts
• Prediction horizon — mpcObj.p
• Control horizon — mpcObj.m

Also, when designing an MPC controller using the MPC Designer app, in the Tuning
tab, in the Horizon section, you can modify the sample time and horizons.

1 Controller Creation

1-4

See Also
MPC Designer | mpc

More About
• “Specify Constraints” on page 1-6

 See Also

1-5

Specify Constraints

Input and Output Constraints
By default, when you create a controller object using the mpc command, no constraints
exist. To include a constraint, set the appropriate controller property. The following table
summarizes the controller properties used to define most MPC constraints. (MV = plant
manipulated variable; OV = plant output variable; MV increment = u(k) – u(k – 1).

To include this constraint Set this controller
property

Soften constraint by
setting

Lower bound on ith MV MV(i).Min > -Inf MV(i).MinECR > 0
Upper bound on ith MV MV(i).Max < Inf MV(i).MaxECR > 0
Lower bound on ith OV OV(i).Min > -Inf OV(i).MinECR > 0
Upper bound on ith OV OV(i).Max < Inf OV(i).MaxECR > 0
Lower bound on ith MV
increment

MV(i).RateMin > -Inf MV(i).RateMinECR > 0

Upper bound on ith MV
increment

MV(i).RateMax < Inf MV(i).RateMaxECR > 0

To set the controller constraint properties using the MPC Designer app, in the Tuning

tab, click Constraints . In the Constraints dialog box, specify the constraint values.

See “Constraints” on page 2-13 for the equations describing the corresponding
constraints.

1 Controller Creation

1-6

Tips

For MV bounds:

• Include known physical limits on the plant MVs as hard MV bounds.
• Include MV increment bounds when there is a known physical limit on the rate of

change, or your application requires you to prevent large increments for some other
reason.

• Do not include both hard MV bounds and hard MV increment bounds on the same MV,
as they can conflict. If both types of bounds are important, soften one.

For OV bounds:

 Specify Constraints

1-7

• Do not include OV bounds unless they are essential to your application. As an
alternative to setting an OV bound, you can define an OV reference and set its cost
function weight to keep the OV close to its setpoint.

• All OV constraints should be softened.
• Consider leaving the OV unconstrained for some prediction horizon steps. See “Time-

Varying Weights and Constraints” on page 3-6.
• Consider a time-varying OV constraint that is easy to satisfy early in the horizon,

gradually tapering to a more strict constraint. See “Time-Varying Weights and
Constraints” on page 3-6.

• Do not include OV constraints that are impossible to satisfy. Even if soft, such
constraints can cause unexpected controller behavior. For example, consider a SISO
plant with five sampling periods of delay. An OV constraint before the sixth prediction
horizon step is, in general, impossible to satisfy. You can use the review command to
check for such impossible constraints, and use a time-varying OV bound instead. See
“Time-Varying Weights and Constraints” on page 3-6.

Constraint Softening
Hard constraints are constraints that the quadratic programming (QP) solution must
satisfy. If it is mathematically impossible to satisfy a hard constraint at a given control
interval, k, the QP is infeasible. In this case, the controller returns an error status, and
sets the manipulated variables (MVs) to u(k) = u(k–1), that is, no change. If the condition
leading to infeasibility is not resolved, infeasibility can continue indefinitely, leading to a
loss of control.

Disturbances and prediction errors are inevitable in practice. Therefore, a constraint
violation could occur in the plant even though the controller predicts otherwise. A
feasible QP solution does not guarantee that all hard constraints will be satisfied when
the optimal MV is used in the plant.

If the only constraints in your application are bounds on MVs, the MV bounds can be hard
constraints, as they are by default. MV bounds alone cannot cause infeasibility. The same
is true when the only constraints are on MV increments.

However, a hard MV bound with a hard MV increment constraint can lead to infeasibility.
For example, an upset or operation under manual control could cause the actual MV used
in the plant to exceed the specified bound during interval k–1. If the controller is in
automatic during interval k, it must return the MV to a value within the hard bound. If the

1 Controller Creation

1-8

MV exceeds the bound by too much, the hard increment constraint can make correcting
the bound violation in the next interval impossible.

When there are hard constraints on plant outputs, or hard custom constraints (on linear
combinations of plant inputs and outputs, and the plant is subject to disturbances, QP
infeasibility is a distinct possibility.

All Model Predictive Control Toolbox constraints (except slack variable nonnegativity) can
be soft. When a constraint is soft, the controller can deem an MV optimal even though it
predicts a violation of that constraint. If all plant output, MV increment, and custom
constraints are soft (as they are by default), QP infeasibility does not occur. However,
controller performance can be substandard.

To soften a constraint, set the corresponding ECR value to a positive value (zero implies a
hard constraint). The larger the ECR value, the more likely the controller will deem it
optimal to violate the constraint in order to satisfy your other performance goals. The
Model Predictive Control Toolbox software provides default ECR values but, as for the
cost function weights, you might need to tune the ECR values in order to achieve
acceptable performance.

To understand how constraint softening works, suppose that your cost function uses

w wi j
u

i j
u

, ,= =
D

0 , giving both the MV and MV increments zero weight in the cost function.
Only the output reference tracking and constraint violation terms are nonzero. In this
case, the cost function is:

J z
w

s
r k i k y k i kk

j

n

i

p
i j
y

j
y j j

y

()
,

= +() - +()È
Î

˘
˚

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂= =
ÂÂ

1 1

| |

22

2+ r ee k .

Suppose that you have also specified hard MV bounds with V ij min
u
, () = 0 and

V ij max
u
, () = 0 . Then these constraints simplify to:

u i

s

u k i k

s

u i

s
i p j n

j min

j
u

j

j
u

j max

j
u

, ,
, : , :

()
£

+ -()
£

()
= =

1
1 1

|
uu.

 Specify Constraints

1-9

Thus, the slack variable, εk, no longer appears in the above equations. You have also

specified soft constraints on plant outputs with V i
j min
y
, () > 0 and V i

j max
y
,

() > 0 .

y i

s
V i

y k i k

s

y i

s
V

j min

j
y k j min

y j

j
y

j max

j
y k j m

,
,

,
,

()
- () £

+()
£

()
+e e

|
aax

y
yi i p j n() = =, : , : .1 1

Now, suppose that a disturbance has pushed a plant output above its specified upper
bound, but the QP with hard output constraints would be feasible, that is, all constraint
violations could be avoided in the QP solution. The QP involves a trade-off between output
reference tracking and constraint violation. The slack variable, εk, must be nonnegative.
Its appearance in the cost function discourages, but does not prevent, an optimal εk > 0.
A larger ρε weight, however, increases the likelihood that the optimal εk will be small or
zero.

If the optimal εk > 0, at least one of the bound inequalities must be active (at equality). A

relatively large V i
j max
y
,

() makes it easier to satisfy the constraint with a small εk. In that
case,

y k i k

s

j

j
y

+()|

can be larger, without exceeding

y i

s
V i

j max

j
y k j max

y,

,
().

()
+ e

Notice that V i
j max
y
,

() does not set an upper limit on the constraint violation. Rather, it is a
tuning factor determining whether a soft constraint is easy or difficult to satisfy.

Tips

• Use of dimensionless variables simplifies constraint tuning. Define appropriate scale
factors for each plant input and output variable. See “Specify Scale Factors” on page
1-18.

1 Controller Creation

1-10

• To indicate the relative magnitude of a tolerable violation, use the ECR parameter
associated with each constraint. Rough guidelines are as follows:

• 0 — No violation allowed (hard constraint)
• 0.05 — Very small violation allowed (nearly hard)
• 0.2 — Small violation allowed (quite hard)
• 1 — average softness
• 5 — greater-than-average violation allowed (quite soft)
• 20 — large violation allowed (very soft)

• Use the overall constraint softening parameter of the controller (controller object
property: Weights.ECR) to penalize a tolerable soft constraint violation relative to the
other cost function terms. Set the Weights.ECR property such that the corresponding
penalty is 1–2 orders of magnitude greater than the typical sum of the other three cost
function terms. If constraint violations seem too large during simulation tests, try
increasing Weights.ECR by a factor of 2–5.

Be aware, however, that an excessively large Weights.ECR distorts MV optimization,
leading to inappropriate MV adjustments when constraint violations occur. To check
for this, display the cost function value during simulations. If its magnitude increases
by more than 2 orders of magnitude when a constraint violation occurs, consider
decreasing Weights.ECR.

• Disturbances and prediction errors can lead to unexpected constraint violations in a
real system. Attempting to prevent these violations by making constraints harder often
degrades controller performance.

See Also
review

More About
• “Time-Varying Weights and Constraints” on page 3-6
• “Terminal Weights and Constraints” on page 3-36
• “Optimization Problem” on page 2-9
• “DC Servomotor with Constraint on Unmeasured Output” on page 1-12

 See Also

1-11

DC Servomotor with Constraint on Unmeasured Output
This example shows how to design a model predictive controller for a DC
servomechanism under voltage and shaft torque constraints.

Reference

[1] A. Bemporad and E. Mosca, ''Fulfilling hard constraints in uncertain linear systems by
reference managing,'' Automatica, vol. 34, no. 4, pp. 451-461, 1998.

See also EMPCMOTOR.

Define DC-Servo Motor Model

The linear open-loop dynamic model is defined in "plant". Variable "tau" is the maximum
admissible torque to be used as an output constraint.

[plant, tau] = mpcmotormodel;

Design MPC Controller

Specify input and output signal types for the MPC controller. The second output, torque,
is unmeasurable.

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

MV Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs and
outputs are of different orders of magnitude, you also use scale factors to facilitate MPC
tuning. Typical choices of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

OV Constraints

Torque constraints are only imposed during the first three prediction steps.

OV = struct('Min',{-Inf, [-tau;-tau;-tau;-Inf]},'Max',{Inf, [tau;tau;tau;Inf]},'ScaleFactor',{2*pi, 2*tau});

Weights

1 Controller Creation

1-12

The control task is to get zero tracking offset for the angular position. Since you only have
one manipulated variable, the shaft torque is allowed to float within its constraint by
setting its weight to zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Construct MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.1; % Sampling time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate Using SIM Command

Use sim command to simulate the closed-loop control of the linear plant model in
MATLAB.

disp('Now simulating nominal closed-loop behavior');
Tstop = 8; % seconds
Tf = round(Tstop/Ts); % simulation iterations
r = [pi*ones(Tf,1) zeros(Tf,1)];% reference signal
[y1,t1,u1] = sim(mpcobj,Tf,r);

Now simulating nominal closed-loop behavior

Plot results.

subplot(311)
stairs(t1,y1(:,1));
hold on
stairs(t1,r(:,1));
hold off
title('Angular Position')
subplot(312)
stairs(t1,y1(:,2));
title('Torque')
subplot(313)
stairs(t1,u1);
title('Voltage')

 DC Servomotor with Constraint on Unmeasured Output

1-13

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.

mdl = 'mpc_motor';
open_system(mdl)
sim(mdl)

1 Controller Creation

1-14

 DC Servomotor with Constraint on Unmeasured Output

1-15

The closed-loop response is identical to the simulation result in MATLAB.

1 Controller Creation

1-16

bdclose(mdl)

See Also

More About
• “Specify Constraints” on page 1-6

 See Also

1-17

Specify Scale Factors
Overview
Recommended practice includes specification of scale factors for each plant input and
output variable, which is especially important when certain variables have much larger or
smaller magnitudes than others.

The scale factor should equal (or approximate) the span of the variable. Span is the
difference between its maximum and minimum value in engineering units, that is, the unit
of measure specified in the plant model. Internally, MPC divides each plant input and
output signal by its scale factor to generate dimensionless signals.

The potential benefits of scaling are as follows:

• Default MPC tuning weights work best when all signals are of order unity. Appropriate
scale factors make the default weights a good starting point for controller tuning and
refinement.

• When choosing cost function weights, you can focus on the relative priority of each
term rather than a combination of priority and signal scale.

• Improved numerical conditioning. When values are scaled, round-off errors have less
impact on calculations.

Once you have tuned the controller, changing a scale factor is likely to affect performance
and the controller may need retuning. Best practice is to establish scale factors at the
beginning of controller design and hold them constant thereafter.

Defining Scale Factors
To identify scale factors, estimate the span of each plant input and output variable in
engineering units.

• If the signal has known bounds, use the difference between the upper and lower limit.
• If you do not know the signal bounds, consider running open-loop plant model

simulations. You can vary the inputs over their likely ranges, and record output signal
spans.

• If you have no idea, use the default scale factor (=1).

You can define scale factors at the command line and using the MPC Designer app.

1 Controller Creation

1-18

Once you have set the scale factors and have begun to tune the controller performance,
hold the scale factors constant.

Using Commands

After you create the MPC controller object using the mpc command, set the scale factor
property for each plant input and output variable.

For example, the following commands create a random plant, specify the signal types, and
define a scale factor for each signal.

% Random plant for illustrative purposes: 5 inputs, 3 outputs
Plant = drss(4,3,5);
Plant.InputName = {'MV1','UD1','MV2','UD2','MD'};
Plant.OutputName = {'UO','MO1','MO2'};

% Example signal spans
Uspan = [2, 20, 0.1, 5, 2000];
Yspan = [0.01, 400, 75];

% Example signal type specifications
iMV = [1 3];
iMD = 5;
iUD = [2 4];
iDV = [iMD,iUD];
Plant = setmpcsignals(Plant,'MV',iMV,'MD',iMD,'UD',iUD, ...
 'MO',[2 3],'UO',1);
Plant.D(:,iMV) = 0; % MPC requires zero direct MV feed-through

% Controller object creation. Ts = 0.3 for illustration.
MPCobj = mpc(Plant,0.3);

% Override default scale factors using specified spans
for i = 1:2
 MPCobj.MV(i).ScaleFactor = Uspan(iMV(i));
end

% NOTE: DV sequence is MD followed by UD
for i = 1:3
 MPCobj.DV(i).ScaleFactor = Uspan(iDV(i));
end
for i = 1:3
 MPCobj.OV(i).ScaleFactor = Yspan(i);
end

 Specify Scale Factors

1-19

Using MPC Designer App

After opening MPC Designer and defining the initial MPC structure, on the MPC

Designer tab, click I/O Attributes .

In the Input and Output Channel Specifications dialog box, specify a Scale Factor for
each input and output signal.

To update the controller settings, click OK.

See Also
MPC Designer | mpc

1 Controller Creation

1-20

More About
• “Choose Sample Time and Horizons” on page 1-2
• “Using Scale Factors to Facilitate Weight Tuning” on page 1-22

 See Also

1-21

Using Scale Factors to Facilitate Weight Tuning
This example shows how to specify scale factors in MPC controller to make weight tuning
easier.

Define Plant Model

The discrete-time, linear, state-space plant model has 10 states, 5 inputs, and 3 outputs.

[plant,Ts] = mpcscalefactor_model;
[ny,nu] = size(plant.D);

The plant inputs include manipulated variable (MV), measured disturbance (MD) and
unmeasured disturbance (UD). The plant outputs include measured outputs (MO) and
unmeasured outputs (UO).

mvindex = [1, 3, 5];
mdindex = 4;
udindex = 2;
moindex = [1 3];
uoindex = 2;
plant = setmpcsignals(plant,'MV',mvindex,'MD',mdindex,'UD',udindex,'MO',moindex,'UO',uoindex);

The nominal values and operating ranges of plant model are as follows:

• Input 1: nominal value is 100, range is [50 150]
• Input 2: nominal value is 10, range is [5 15]
• Input 3: nominal value is 0.01, range is [0.005 0.015]
• Input 4: nominal value is 0.1, range is [0.05 0.15]
• Input 5: nominal value is 1, range is [0.5 1.5]
• Output 1: nominal value is 0.01, range is [0.005 0.015]
• Output 2: nominal value is 1, range is [0.5 1.5]
• Output 3: nominal value is 100, range is [50 150]

Use lsim command to run an open loop linear simulation to verify that plant outputs are
within the range and their average are close to the nominal values when input signals
vary randomly around their nominal values.

Unominal = [100;10;0.01;0.1;1];
Ynominal = [0.01;1;100];

1 Controller Creation

1-22

Uspan = Unominal;
Yspan = Ynominal;
t = (0:1000)'*Ts;
nt = length(t);
Uol = (rand(nt,nu)-0.5).*(ones(nt,1)*Uspan'); % design input signal
Yol = lsim(plant,Uol,t); % compute plant output
fprintf('The difference between average output values and the nominal values are %.2f%%, %.2f%%, %.2f%% respectively.\n',...
 abs(mean(Yol(:,1)))/Ynominal(1)*100,abs(mean(Yol(:,2)))/Ynominal(2)*100,abs(mean(Yol(:,3)))/Ynominal(3)*100);

The difference between average output values and the nominal values are 2.25%, 3.53%, 2.47% respectively.

Evaluate MPC with Default MPC Weights

When plant input and output signals have different orders of magnitude, default MPC
weight settings often give poor performance.

Create an MPC controller with default weights:

• Weight.MV = 0
• Weight.MVRate = 0.1
• Weight.OV = 1

C = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Xnominal = zeros(10,1);
Unominal(udindex) = 0; % Nominal values for unmeasured disturbance must be 0
C.Model.Nominal = struct('X',Xnominal,'DX',Xnominal,'Y',Ynominal,'U',Unominal);

First, test a sequence of step setpoint changes in three reference signals.

nStepLen = 15;
T1 = nStepLen*ny;
r1 = ones(T1,1)*Ynominal(:)';
ii = 1;
for i = 1:ny
 r1(ii:end,i) = r1(ii:end,i) + Ynominal(i);
 ii = ii + nStepLen;
end
sim(C,T1,r1)

 Using Scale Factors to Facilitate Weight Tuning

1-23

-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-24

The tracking response of the first output is poor. The reason is that its range is small
compared to the other outputs. If the default controller tuning weights are used, the MPC
controller does not pay much attention to regulating this output because the associated
penalty is so small compared to the other outputs in the objective function.

Second, test the unmeasured disturbance rejection.

SimOpt = mpcsimopt;
SimOpt.UnmeasuredDisturbance = Uspan(udindex)';
T2 = 100;
r2 = ones(T2,1)*Ynominal(:)';
sim(C,T2,r2,[],SimOpt)

 Using Scale Factors to Facilitate Weight Tuning

1-25

1 Controller Creation

1-26

The disturbance rejection response is also poor. None of the outputs return to their
setpoints.

Evaluate MPC with Default MPC Weights After Specifying Scale Factors

Specifying input and output scale factors for the MPC controller:

• Improves the numerical quality of the optimization and state estimation calculations.
• Makes it more likely that the default tuning weights will achieve good controller

performance.

Copy the MPC controller with default weights.

C2 = C;

 Using Scale Factors to Facilitate Weight Tuning

1-27

To specify scale factors, it is good practice to use the expected operating range of each
input and output.

for i = 1:length(mvindex)
 C2.MV(i).ScaleFactor = Uspan(mvindex(i));
end
nmd = length(mdindex);
for i = 1:nmd
 C2.D(i).ScaleFactor = Uspan(mdindex(i));
end
for i = 1:length(udindex)
 C2.D(i+nmd).ScaleFactor = Uspan(udindex(i));
end
for i = 1:ny
 C2.OV(i).ScaleFactor = Yspan(i);
end

Repeat the first test, which is a sequence of step setpoint changes in three reference
signals.

sim(C2,T1,r1)

-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-28

 Using Scale Factors to Facilitate Weight Tuning

1-29

Repeat the second test, which is an unmeasured disturbance.

sim(C2,T2,r2,[],SimOpt)

1 Controller Creation

1-30

 Using Scale Factors to Facilitate Weight Tuning

1-31

Both setpoint tracking and disturbance rejection responses are good even without tuning
MPC weights.

See Also
MPC Designer | mpc

More About
• “Specify Scale Factors” on page 1-18

1 Controller Creation

1-32

Tune Weights
A model predictive controller design usually requires some tuning of the cost function
weights. This topic provides tuning tips. See “Optimization Problem” on page 2-9 for
details on the cost function equations.

Initial Tuning
• Before tuning the cost function weights, specify scale factors for each plant input and

output variable. Hold these scale factors constant as you tune the controller. See
“Specify Scale Factors” on page 1-18 for more information.

• During tuning, use the sensitivity and review commands to obtain diagnostic
feedback. The sensitivity command is intended to help with cost function weight
selection.

• Change a weight by setting the appropriate controller property, as follows:

To change this weight Set this controller
property

Array size

OV reference tracking
(wy)

Weights.OV p-by-ny

MV reference tracking
(wu)

Weights.MV p-by-nu

MV increment
suppression (wΔu)

Weights.MVRate p-by-nu

Here, MV is a plant manipulated variable, and nu is the number of MVs. OV is a plant
output variable, and ny is the number of OVs. Finally,p is the number of steps in the
prediction horizon.

If a weight array contains n < p rows, the controller duplicates the last row to obtain a
full array of p rows. The default (n = 1) minimizes the number of parameters to be tuned,
and is therefore recommended. See “Time-Varying Weights and Constraints” on page 3-
6 for an alternative.

Tips for Setting OV Weights

• Considering the ny OVs, suppose that nyc must be held at or near a reference value
(setpoint). If the ith OV is not in this group, set Weights.OV(:,i) = 0.

 Tune Weights

1-33

• If nu ≥ nyc, it is usually possible to achieve zero OV tracking error at steady state, if at
least nyc MVs are not constrained. The default Weights.OV = ones(1,ny) is a good
starting point in this case.

If nu > nyc, however, you have excess degrees of freedom. Unless you take preventive
measures, therefore, the MVs may drift even when the OVs are near their reference
values.

• The most common preventive measure is to define reference values (targets) for
the number of excess MVs you have, nu – nyc. Such targets can represent
economically or technically desirable steady-state values.

• An alternative measure is to set w∆u > 0 for at least nu – nyc MVs to discourage the
controller from changing them.

• If nu < nyc, you do not have enough degrees of freedom to keep all required OVs at a
setpoint. In this case, consider prioritizing reference tracking. To do so, set
Weights.OV(:,i) > 0 to specify the priority for the ith OV. Rough guidelines for
this are as follows:

• 0.05 — Low priority: Large tracking error acceptable
• 0.2 — Below-average priority
• 1 — Average priority – the default. Use this value if nyc = 1.
• 5 — Above average priority
• 20 — High priority: Small tracking error desired

Tips for Setting MV Weights

By default, Weights.MV = zeros(1,nu). If some MVs have targets, the corresponding
MV reference tracking weights must be nonzero. Otherwise, the targets are ignored. If
the number of MV targets is less than (nu – nyc), try using the same weight for each. A
suggested value is 0.2, the same as below-average OV tracking. This value allows the MVs
to move away from their targets temporarily to improve OV tracking.

Otherwise, the MV and OV reference tracking goals are likely to conflict. Prioritize by
setting the Weights.MV(:,i) values in a manner similar to that suggested for
Weights.OV (see above). Typical practice sets the average MV tracking priority lower
than the average OV tracking priority (e.g., 0.2 < 1).

If the ith MV does not have a target, set Weights.MV(:,i) = 0 (the default).

1 Controller Creation

1-34

Tips for Setting MVRate Weights

• By default, Weights.MVRate = 0.1*ones(1,nu). The reasons for this default
include:

• If the plant is open-loop stable, large increments are unnecessary and probably
undesirable. For example, when model predictions are imperfect, as is always the
case in practice, more conservative increments usually provide more robust
controller performance, but poorer reference tracking.

• These values force the QP Hessian matrix to be positive-definite, such that the QP
has a unique solution if no constraints are active.

To encourage the controller to use even smaller increments for the ith MV, increase
the Weights.MVRate(:,i) value.

• If the plant is open-loop unstable, you might need to decrease the average
Weight.MVRate value to allow sufficiently rapid response to upsets.

Tips for Setting ECR Weights

See “Constraint Softening” on page 1-8 for tips regarding the Weights.ECR property.

Testing and Refinement
To focus on tuning individual cost function weights, perform closed-loop simulation tests
under the following conditions:

• No constraints.
• No prediction error. The controller prediction model should be identical to the plant

model. Both the MPC Designer app and the sim function provide the option to
simulate under these conditions.

Use changes in the reference and measured disturbance signals (if any) to force a
dynamic response. Based on the results of each test, consider changing the magnitudes of
selected weights.

One suggested approach is to use constant Weights.OV(:,i) = 1 to signify “average
OV tracking priority,” and adjust all other weights to be relative to this value. Use the
sensitivity command for guidance. Use the review command to check for typical
tuning issues, such as lack of closed-loop stability.

 Tune Weights

1-35

See “Adjust Disturbance and Noise Models” on page 3-50 for tests focusing on the
disturbance rejection ability of the controller.

Robustness
Once you have weights that work well under the above conditions, check for sensitivity to
prediction error. There are several ways to do so:

• If you have a nonlinear plant model of your system, such as a Simulink® model,
simulate the closed-loop performance at operating points other than that for which the
LTI prediction model applies.

• Alternatively, run closed-loop simulations in which the LTI model representing the
plant differs (such as in structure or parameter values) from that used at the MPC
prediction model. Both the MPC Designer app and the sim function provide the
option to simulate under these conditions. For an example, see “Test Controller
Robustness” on page 4-22.

If controller performance seems to degrade significantly in comparison to tests with no
prediction error, for an open-loop stable plant, consider making the controller less
aggressive.

In MPC Designer, on the Tuning tab, you can do so using the Closed-Loop
Performance slider.

Moving towards more robust control decreases OV/MV weights and increases MV Rate
weights, which leads to relaxed control of outputs and more conservative control moves.

At the command line, you can make the following changes to decrease controller
aggressiveness:

• Increase all Weight.MVRate values by a multiplicative factor of order 2.

1 Controller Creation

1-36

• Decrease all Weight.OV and Weight.MV values by dividing by the same factor.

After adjusting the weights, reevaluate performance both with and without prediction
error.

• If both are now acceptable, stop tuning the weights.
• If there is improvement but still too much degradation with model error, increase the

controller robustness further.
• If the change does not noticeably improve performance, restore the original weights

and focus on state estimator tuning (see “Adjust Disturbance and Noise Models” on
page 3-50).

Finally, if tuning changes do not provide adequate robustness, consider one of the
following options:

• Adaptive MPC control on page 6-2
• Gain-scheduled MPC control on page 8-2

See Also

More About
• “Optimization Problem” on page 2-9
• “Specify Constraints” on page 1-6
• “Adjust Disturbance and Noise Models” on page 3-50
• “Tuning Controller Weights”
• “Setting Targets for Manipulated Variables” on page 3-2

 See Also

1-37

Designing Model Predictive Controller at Equilibrium
Operating Point

This example shows how to design a model predictive controller with non-zero nominal
values.

The plant model is obtained by linearization of a nonlinear plant in Simulink® at a non-
zero steady state operating point.

Linearize Nonlinear Plant Model

To run this example, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design(R) is required to run this example.')
 return
end

The nonlinear plant is implemented in Simulink® model "mpc_nloffsets" and linearized at
the default operating condition using the "linearize" command from Simulink Control
Design®.

Create operating point specification.

plant_mdl = 'mpc_nloffsets';
op = operspec(plant_mdl);
% Compute initial condition.
[op_point, op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = op_report.Outputs.y;
u0 = op_report.Inputs.u;
% Obtain linear plant at the initial condition.
plant = linearize(plant_mdl, op_point);

 Operating point search report:

1 Controller Creation

1-38

 Operating point search report for the Model mpc_nloffsets.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_nloffsets/Integrator
 x: 0.575 dx: -1.82e-14 (0)
(2.) mpc_nloffsets/Integrator2
 x: 2.15 dx: -8.38e-12 (0)

Inputs:

(1.) mpc_nloffsets/In1
 u: -1.25 [-Inf Inf]

Outputs:

(1.) mpc_nloffsets/Out1
 y: -0.529 [-Inf Inf]

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1; % Sampling time
p = 20;
m = 3;
mpcobj = mpc(plant,Ts,p,m);

Set nominal values in the controller.

mpcobj.Model.Nominal = struct('X', x0, 'U', u0, 'Y', y0);

Set output measurement noise model (white noise, zero mean, variance=0.01)

mpcobj.Model.Noise = 0.1;

Set MV constraint.

mpcobj.MV.Max = 0.2;

Simulate Using Simulink®

Reference signal for output vector

 Designing Model Predictive Controller at Equilibrium Operating Point

1-39

r0 = 1.5*y0;
% Simulate
mdl = 'mpc_offsets';
open_system(mdl) % Open Simulink(R) Model
sim(mdl); % Start Simulation

1 Controller Creation

1-40

 Designing Model Predictive Controller at Equilibrium Operating Point

1-41

Simulate Using SIM Command

Simulate

Tf = round(10/Ts);
r = r0*ones(Tf,1);
[y1,t1,u1,x1,xmpc1] = sim(mpcobj,Tf,r);

Plot and compare results.

subplot(121)
plot(y.time,y.signals.values,t1,y1,t1,r)
legend('Nonlinear','Linearized','Reference')
title('output')
grid
subplot(122)
plot(u.time,u.signals.values,t1,u1)
legend('Nonlinear','Linearized')
title('input')
grid

1 Controller Creation

1-42

bdclose(plant_mdl);
bdclose(mdl);

See Also
MPC Controller | mpc

 See Also

1-43

Design MPC Controller for Plant with Delays
This example shows how to design an MPC controller for a plant with delays using MPC
Designer.

Plant Model

An example of a plant with delays is the distillation column model:

y

y

e

s

e

s

e

s

s s s

1

2

3 8 1
12 8

16 7 1

18 9

21 0 1

3 8

14 9 1

6

È

Î
Í

˘

˚
˙ =

+

-

+ +

- - -
.

.

.

.

.

.

.

..

.

.

.

.

.

.
6

10 9 1

19 4

14 4 1

4 9

13 2 1

7 3 3 4
e

s

e

s

e

s

s s s- - -

+

-

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

u

u

u

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Outputs y1 and y2 represent measured product purities. The model consists of six transfer
functions, one for each input/output pair. Each transfer function is a first-order system
with a delay. The longest delay in the model is 8.1 minutes.

Specify the individual transfer functions for each input/output pair. For example, g12 is
the transfer function from input u2 to output y1.

g11 = tf(12.8,[16.7 1],'IOdelay',1.0,'TimeUnit','minutes');
g12 = tf(-18.9,[21.0 1],'IOdelay',3.0,'TimeUnit','minutes');
g13 = tf(3.8,[14.9 1],'IOdelay',8.1,'TimeUnit','minutes');
g21 = tf(6.6,[10.9 1],'IOdelay',7.0,'TimeUnit','minutes');
g22 = tf(-19.4,[14.4 1],'IOdelay',3.0,'TimeUnit','minutes');
g23 = tf(4.9,[13.2 1],'IOdelay',3.4,'TimeUnit','minutes');
DC = [g11 g12 g13;
 g21 g22 g23];

Configure Input and Output Signals

Define the input and output signal names.

DC.InputName = {'Reflux Rate','Steam Rate','Feed Rate'};
DC.OutputName = {'Distillate Purity','Bottoms Purity'};

Alternatively, you can specify the signal names in MPC Designer, on the MPC Designer
tab, by clicking I/O Attributes.

Specify the third input, the feed rate, as a measured disturbance (MD).

1 Controller Creation

1-44

DC = setmpcsignals(DC,'MD',3);

Since they are not explicitly specified in setmpcsignals, all other input signals are
configured as manipulated variables (MV), and all output signals are configured as
measured outputs (MO) by default.

Open MPC Designer

Open MPC Designer importing the plant model.

mpcDesigner(DC)

When launched with a continuous-time plant model, such as DC, the default controller
sample time is 1 in the time units of the plant. If the plant is discrete time, the controller
sample time is the same as the plant sample time.

 Design MPC Controller for Plant with Delays

1-45

MPC Designer imports the specified plant to the Data Browser. The following are also
added to the Data Browser:

• mpc1 — Default MPC controller created using DC as its internal model.
• scenario1 — Default simulation scenario.

The app runs the simulation scenario and generates input and output response plots.

Specify Prediction and Control Horizons

For a plant with delays, it is good practice to specify the prediction and control horizons
such that

P M t td max- D? , /

where,

• P is the prediction horizon.
• M is the control horizon.
• td,max is the maximum delay, which is 8.1 minutes for the DC model.
• Δt is the controller Sample time, which is 1 minute by default.

On the Tuning tab, in the Horizon section, specify a Prediction horizon of 30 and a
Control horizon of 5.

After you change the horizons, the Input Response and Output Response plots for the
default simulation scenario are automatically updated.

1 Controller Creation

1-46

Simulate Controller Step Responses

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1.
Alternatively, in the Data Browser, right-click scenario1 and select Edit.

In the Simulation Scenario dialog box, specify a Simulation duration of 50 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for both
outputs to simulate step changes in their setpoints.

Specify a step Time of 0 for reference r(1), the distillate purity, and a step time of 25 for
r(2), the bottoms purity.

Click OK.

The app runs the simulation with the new scenario settings and updates the input and
output response plots.

 Design MPC Controller for Plant with Delays

1-47

The Input Response plots show the optimal control moves generated by the controller.
The controller reacts immediately in response to the setpoint changes, changing both
manipulated variables. However, due to the plant delays, the effects of these changes are
not immediately reflected in the Output Response plots. The Distillate Purity output
responds after 1 minute, which corresponds to the minimum delay from g11 and g12.
Similarly, the Bottoms Purity output responds 3 minutes after the step change, which
corresponds to the minimum delay from g21 and g22. After the initial delays, both signals
reach their setpoints and settle quickly. Changing either output setpoint disturbs the
response of the other output. However, the magnitudes of these interactions are less than
10% of the step size.

Additionally, there are periodic pulses in the manipulated variable control actions as the
controller attempts to counteract the delayed effects of each input on the two outputs.

1 Controller Creation

1-48

Improve Performance Using Manipulated Variable Blocking

Use manipulated variable blocking to divide the prediction horizon into blocks, during
which manipulated variable moves are constant. This technique produces smoother
manipulated variable adjustments with less oscillation and smaller move sizes.

To use manipulated variable blocking, on the Tuning tab, specify the Control horizon as
a vector of block sizes, [5 5 5 5 10].

The initial manipulated variable moves are much smaller and the moves are less
oscillatory. The trade-off is a slower output response, with larger interactions between the
outputs.

 Design MPC Controller for Plant with Delays

1-49

Improve Performance By Tuning Controller Weights

Alternatively, you can produce smooth manipulated variable moves by adjusting the
tuning weights of the controller.

Set the Control horizon back to the previous value of 5.

In the Performance Tuning section, drag the Closed-Loop Performance slider to the
left towards the Robust setting.

1 Controller Creation

1-50

As you move the slider to the left, the manipulated variable moves become smoother and
the output response becomes slower.

References
[1] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

See Also
MPC Designer

More About
• “Manipulated Variable Blocking” on page 3-65
• “Design Controller Using MPC Designer”
• “Specify Multi-Input Multi-Output Plants”

 See Also

1-51

Design MPC Controller for Nonsquare Plant
This topic shows how to configure an MPC controller for a nonsquare plant with unequal
numbers of manipulated variables and outputs. Model Predictive Control Toolbox
software supports plants with an excess of manipulated variables or plant with an excess
of outputs.

More Outputs Than Manipulated Variables
When there are excess outputs, you cannot hold each at a setpoint. In this case, you have
two options:

• Specify that certain outputs do not need to be held at setpoints by setting their tuning
weights to zero.

The controller does not enforce setpoints on outputs with zero weight, and the outputs
are free to vary. If the plant has Ne more outputs than manipulated variables, setting
Ne output weights to zero enables the controller to hold the remaining outputs at their
setpoints. If any manipulated variables are constrained, one or more output responses
can still exhibit steady-state error, depending on the magnitudes of reference and
disturbance signals.

Outputs with zero tuning weights can still be useful. If measured, the controller can
use the outputs to help estimate the state of the plant. The outputs can also be used as
performance indicators or held within an operating region defined by output
constraints.

• Enforce setpoints on all outputs by specifying nonzero tuning weights for all of them.

The controller tries to hold all outputs at their respective setpoints. However, due to
the limited number of manipulated variables, all output responses exhibit some degree
of steady-state error.

You can change the error magnitudes by adjusting the relative values of the output
weights. Increasing an output weight decreases the steady-state error in that output at
the expense of increased error in the other outputs.

You can configure the output tuning weights at the command line by setting the
Weights.OutputVariables property of the controller.

To configure output tuning weights in MPC Designer, on the Tuning tab, in the Design
section, click Weights to open the Weights dialog box.

1 Controller Creation

1-52

In the Output Weights section, specify the Weight for each output variable. For
example, if your plant has two manipulated variables and three outputs, you can:

• Set one of the output weights to zero.

• Set all the weights to nonzero values. Outputs with higher weights exhibit less steady-
state error.

 Design MPC Controller for Nonsquare Plant

1-53

More Manipulated Variables Than Outputs
When there are excessive manipulated variables, the default MPC controller settings
allow for error-free output setpoint tracking. However, the manipulated variables values
can drift. You can prevent this drift by setting manipulated variable setpoints. If there are
Ne excess manipulated variables, and you hold Ne of them at target values for economic
or operational reasons, the remaining manipulated variables attain the values required to
eliminate output steady-state error.

To configure a manipulated variable setpoint at the command line, use the
ManipulatedVariables.Target controller property. Then specify an input tuning
weight using the controller Weights.ManipulatedVariables property.

1 Controller Creation

1-54

To define a manipulated variable setpoint in MPC Designer, on the Tuning tab, in the
Design section, click Weights.

In the Weights dialog box, in the Input Weights section, specify a nonzero Weight value
for the manipulated variable.

Specify a Target value for the manipulated variable.

By default, the manipulated variable Target is nominal, which means that it tracks the
nominal value specified in the controller properties.

 Design MPC Controller for Nonsquare Plant

1-55

Note Since nominal values apply to all controllers in an MPC Designer session,
changing a Nominal Value updates all controllers in the app. The Target value, however,
is specific to each individual controller.

The magnitude of the manipulated variable weight indicates how much the input can
deviate from its setpoint. However, there is a trade-off between manipulated variable
target tracking and output reference tracking. If you want to have better output setpoint
tracking performance, use a relatively small input weight. If you want the manipulated
variable to stay close to its target value, increase its input weight relative to the output
weight.

You can also avoid drift by constraining one or more manipulated variables to a narrow
operating region using hard constraints. To define constraints in MPC Designer, on the
Tuning tab, in the Design section, click Constraints to open the Constraints dialog box.

In the Input Constraints section, specify Max and Min constraints values.

See Also
Apps
MPC Designer

Functions
mpc

More About
• “Tune Weights” on page 1-33
• “Specify Multi-Input Multi-Output Plants”
• “Setting Targets for Manipulated Variables” on page 3-2

1 Controller Creation

1-56

Design MPC Controller for Identified Plant Model
You can define the internal plant model of your model predictive controller using a linear
model identified while using System Identification Toolbox software. You can identify the
plant model and design the MPC controller interactively using apps or programmatically
at the command line. For more information on identifying plant models, see “Identify
Plant from Data”.

Design Controller for Identified Plant Using Apps
This example shows how to interactively design a model predictive controller using an
identified plant model. First, estimate the plant model from data using the System
Identification app. Then design an MPC controller by importing the identified plant into
MPC Designer.

Load Input/Output Data

Load the input and output data for identification.

 load(fullfile(matlabroot,'examples','mpc','plantIO'))

This command imports the plant input signal, u, output signal, y, and sample time, Ts, to
the MATLAB® workspace.

Open the System Identification app.

systemIdentification

In the System Identification app, under Import data, select Time domain data.

 Design MPC Controller for Identified Plant Model

1-57

In the Import Data dialog box, specify the Input, Output, and Sample time using the
data from the MATLAB workspace.

Also, specify the Data name as ioData and Starting time as 0.

1 Controller Creation

1-58

Click Import. The app imports the data, creates an iddata object with the specified
name and signal properties, and adds this object to the Data Views area.

 Design MPC Controller for Identified Plant Model

1-59

Preprocess Data

Typically, you must preprocess identification I/O data before estimating a model. For this
example, remove the offsets from the input and output signals by detrending the data. In
the System Identification app, under Preprocess, select Remove trends.

1 Controller Creation

1-60

The app creates a data object, ioDatad, using the preprocessed data, and adds this
object to the Data Views area.

For more information on preprocessing identification data, see “Preprocess Data” (System
Identification Toolbox).

Estimate Linear Model

To use the detrended data, ioDatad, for model estimation, first drag the corresponding
data object from the Data Views area to Working Data.

 Design MPC Controller for Identified Plant Model

1-61

To estimate a state-space model, under Estimate, select State Space Models.

1 Controller Creation

1-62

In the State Space Models dialog box, specify the properties of the estimated model and
the estimation options. For this example, estimate a second-order, discrete-time model,
leaving the other estimation options at their default values.

 Design MPC Controller for Identified Plant Model

1-63

For more information on estimating state-space models, see “State-Space Models”
(System Identification Toolbox).

Click Estimate. The app estimates a state-space model, ss1, and adds the model to the
Model Views area.

1 Controller Creation

1-64

The estimated model has one measured input and one unmeasured noise component.

Import Identified Plant to MPC Designer

To use ss1 for MPC control design, first export the model to the MATLAB workspace.

Drag ss1 from the Model Views area to To Workspace.

 Design MPC Controller for Identified Plant Model

1-65

Open MPC Designer. At the MATLAB command line, type:

mpcDesigner

To import the identified model, in MPC Designer, click MPC Structure. In the Define
MPC Structure By Importing dialog box, select ss1 from the table.

1 Controller Creation

1-66

 Design MPC Controller for Identified Plant Model

1-67

Click Define and Import.

Tip You can also import the identified model when opening MPC Designer.

mpcDesigner(ss1)

The app converts the identified plant to a discrete-time, state-space model, if necessary,
and creates a default MPC controller, mpc1, in which the:

• Measured input of the identified plant is a manipulated variable.
• Output of the identified plant is a measured output.

1 Controller Creation

1-68

By default, the MPC controller discards the unmeasured noise component from your
identified model. To configure noise channels as unmeasured disturbances, you must first
create an augmented state-space model from your identified model. For more information,
see “Configure Noise Channels as Unmeasured Disturbances” on page 1-80.

Note You can also import an identified linear model into an existing MPC Designer
session. In MPC Designer, click Import Plant. In the Import Plant Model dialog box,
select an identified model from the table.

Only identified models with an I/O configuration that is compatible with the current MPC
structure are displayed in the Import Plant Model dialog box. If the current MPC
structure includes unmeasured disturbances, any noise channels from the identified
model are converted to unmeasured disturbances. Otherwise, the noise channels are
discarded.

Specify I/O Attributes

To improve controller performance and simplify controller tuning, specify the following
attributes for each input and output signal:

• Scale Factor — Scale each signal by a factor that approximates its span, which is the
difference between its maximum and minimum values. Scaling simplifies controller

 Design MPC Controller for Identified Plant Model

1-69

weight tuning and improves the numerical conditioning of the controller. For more
information, see “Specify Scale Factors” on page 1-18.

• Nominal Value — Apply an offset to each signal that corresponds to the nominal
operating conditions under which you collected the identification data; that is the
offsets removed by detrending the data. Specifying nominal values places the
controller at the same operating point as the plant, which is important when the plant
is a nonlinear system.

In MPC Designer, on the MPC Designer tab, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, specify the Nominal Value
and Scale Factor for the input and output signals.

Click OK.

1 Controller Creation

1-70

The default controller tracks the output reference value well, however the initial
controller response is aggressive.

Tip You can specify the Nominal Value or Scale Factor using expressions such as
mean(u) or max(y) - min(y) respectively, where u and y are the I/O signals from the
MATLAB workspace.

 Design MPC Controller for Identified Plant Model

1-71

Configure Simulation Scenario

In MPC Designer, on the Tuning tab, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 5 seconds.

In the Reference Signals section, keep the default step signal.

1 Controller Creation

1-72

Click OK.

Tune Controller

Before tuning your controller, it is good practice to specify the controller sample time,
prediction horizon, and control horizon. Since you identified a discrete-time plant model,
the controller automatically derives its sample time from the identified model. For this
example, use the default prediction and control horizons. For more information, see
“Choose Sample Time and Horizons” on page 1-2.

To make the controller less aggressive, on the Tuning tab, drag the Closed-Loop
Performance slider to the left. Doing so increases the cost function weight on the
manipulated variable rate of change, and decreases the weight on the output variable.

 Design MPC Controller for Identified Plant Model

1-73

The input response is now more conservative. The trade-offs are an increased overshoot
and longer settling time.

For more information on tuning controller weights, see “Tune Weights” on page 1-33.

Note If your plant has known physical or safety constraints that limit the output range,
input range, or input signal rate of change, you can specify these constraints in the MPC

1 Controller Creation

1-74

controller. If so, define the constraints before tuning your controller weights. For more
information, see “Specify Constraints” on page 1-6.

Design Controller for Identified Plant at the Command Line
This example shows how to design a model predictive controller at the command line
using an identified plant model.

Load the input/output data.

load plantIO

This command imports the plant input signal, u, plant output signal, y, and sample time,
Ts, to the MATLAB® workspace.

Create an iddata object from the input and output data.

mydata = iddata(y,u,Ts);

Preprocess the I/O data by removing offsets (mean values) from the input and output
signals.

mydatad = detrend(mydata);

You can also remove offsets by creating an ssestOptions object and specifying the
InputOffset and OutputOffset options.

Estimate a second order, linear state-space model using the I/O data. Estimate a discrete-
time model by specifying the sample time as Ts.

ss1 = ssest(mydatad,2,'Ts',Ts);

The estimated model has one measured input and one unmeasured noise component.

Create a default model predictive controller for the identified model, ss1.

mpcObj = mpc(ss1);

-->Converting linear model from System Identification Toolbox to state-space.
-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 Design MPC Controller for Identified Plant Model

1-75

By default the controller discards the unmeasured noise component from your identified
model.

To simplify the tuning process, specify input and output signal scaling factors.

mpcObj.MV(1).ScaleFactor = max(u) - min(u);
mpcObj.OV(1).ScaleFactor = max(y) - min(y);

Specify the nominal values for the input and output signals. Use the offsets that you
previously removed from the I/O data.

nominalInput = mean(u);
nominalOutput = mean(y);
mpcObj.Model.Nominal.u = nominalInput;
mpcObj.Model.Nominal.y = nominalOutput;

Configure the simulation reference signal. Specify a reference signal with a five-second
duration and a unit step at a time of one second. The initial value of the reference signal
is the nominal value of the output signal.

outputRef = [nominalOutput*ones(1/Ts,1);
 (nominalOutput+1)*ones(4/Ts+1,1)];

Before tuning the controller, simulate the initial controller performance.

sim(mpcObj,[],outputRef)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1 Controller Creation

1-76

 Design MPC Controller for Identified Plant Model

1-77

The default controller tracks the output reference value well, however the initial
controller response is aggressive.

To make the controller less aggressive, simultaneously increase the tuning weight for the
manipulated variable rate of change and decrease the tuning weight for the output
variable.

beta = 0.37;
mpcObj.Weights.MVRate = mpcObj.Weights.MVRate/beta;
mpcObj.Weights.OV = mpcObj.Weights.OV*beta;

Simulate the tuned controller response

sim(mpcObj,[],outputRef)

1 Controller Creation

1-78

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Design MPC Controller for Identified Plant Model

1-79

The input response is now more conservative. The trade-offs are an increased overshoot
and longer settling time.

Configure Noise Channels as Unmeasured Disturbances
When you create an MPC controller using an identified model, the software discards any
noise channels from the model by default. You can configure the noise channels as
unmeasured disturbances by augmenting the identified model.

1 Controller Creation

1-80

Augment Identified Model with Noise Channels

To convert noise channels to unmeasured disturbances, first convert the identified model,
ss1, to a state-space model using the 'augmented' option. At the MATLAB command
line, type:

ss2 = ss(ss1,'augmented');

This option creates a state-space model, ss2, with the following input groups:

• Measured — The input channels from the identified model.
• Noise — The noise channels from the identified model. The number of noise channels

matches the number of outputs channels.

Note The System Identification Toolbox software assumes that the inputs to the
Noise channels are unit-variance Gaussian noise. Therefore, the augmented model
encapsulates any noise dynamics from the identified model, such as integration at the
disturbance source.

You can then create an MPC controller using the augmented state-space model.

mpcObj = mpc(ss2);

The software configures the Measured inputs as manipulated variables and the Noise
inputs as unmeasured disturbances.

You can also import the augmented model into MPC Designer.

mpcDesigner(ss2)

To view the MPC signal configuration, in MPC Designer, on the MPC Designer tab,
click MPC Structure.

 Design MPC Controller for Identified Plant Model

1-81

The View MPC Structure dialog box shows the noise channels as unmeasured
disturbances.

Configure Input Disturbance Model

When you convert an identified model to an augmented state-space model, the System
Identification Toolbox software assumes that noise sources are unit-variance Gaussian

1 Controller Creation

1-82

noise. However, by default, MPC controllers model unmeasured input disturbances as
integrated Gaussian noise. When designing your controller, you can:

• Remove the integrators from the input disturbance model, which simplifies the
controller. Use this option if the experimental identification data was collected under
conditions that closely match the expected plant operating conditions. In this case, the
augmented state-space model encapsulates any noise dynamics from the identified
system.

• Keep the default integrated white noise input disturbance model, which leads to more
aggressive disturbance rejection. Use this option if the experimental identification
data was collected under controlled conditions that may not match the expected plant
operating conditions. In this case, the controller compensates for noise dynamics that
the augmented model does not encapsulate.

Note When using MPC Designer, you can tune your controller disturbance rejection
properties by adjusting the State Estimation slider. For more information, see
“Disturbance Rejection Tuning” on page 3-57.

To remove an integrator from an input disturbance model channel, configure that channel
as a static unit gain. For example, to remove the integrators from all input disturbance
model channels, set the input disturbance model to a static gain identity matrix. At the
MATLAB command line, type:

setindist(mpcObj,ss(eye(Nd)));

where Nd is the number of unmeasured disturbances.

To set the disturbance model for an unmeasured disturbance channel to a static unit gain
using MPC Designer:

1 On the Tuning tab, select Estimation Models > Input Disturbance Model.
2 In the Input Disturbance Model dialog box, in the Update the model drop-down list,

select specifying a custom model channel by channel.
3 In the Specifications table, in the Disturbance drop-down list, select White

Noise.
4 Specify a Magnitude of 1.

 Design MPC Controller for Identified Plant Model

1-83

5 Repeat steps 3 and 4 for each unmeasured disturbance.
6 To apply the changes and update the input disturbance model, click OK or Apply.

For more information about changing the input disturbance model, see “Adjust
Disturbance and Noise Models” on page 3-50.

1 Controller Creation

1-84

Configure Simulation Scenario

You can simulate your MPC controller using unit-variance Gaussian noise unmeasured
disturbance signals, as assumed by the System Identification Toolbox software. This
scenario emulates the experimental conditions under which the data was collected for
identification.

To configure unmeasured disturbance signals, create an MPC simulation option set for
your controller using mpcsimopt. At the MATLAB command line, type:

opt = mpcsimopt(mpcObj);

Configure the UnmeasuredDisturbance option using randn.

opt.UnmeasuredDisturbance = randn(T,Nd);

where T is the number of simulation steps and Nd is the number of unmeasured
disturbances.

Simulate the controller using this option set and an output reference signal, outputRef.

y = sim(mpcObj,T,outputRef,opt);

To configure your simulation in MPC Designer:

1 On the Tuning tab, under Edit Scenario select the simulation scenario you want to
edit.

2 In the Simulation Scenario dialog box, in the Unmeasured Disturbances section,
under Signal, select Gaussian.

3 Specify a Size of 1, which corresponds to a unit variance.
4 To apply the disturbance from the start of the simulation, specify a Time of 0.

 Design MPC Controller for Identified Plant Model

1-85

5 Repeat steps 2–4 for each unmeasured disturbance channel.
6 To apply the changes and update the MPC Designer response plots, click OK or

Apply.

See Also
Apps
MPC Designer | System Identification

Functions
mpc | sim | ss | ssest

More About
• “About Identified Linear Models” (System Identification Toolbox)
• “Identify Plant from Data”
• “Design Controller Using MPC Designer”
• “Design MPC Controller at the Command Line”

1 Controller Creation

1-86

Generate MATLAB Code from MPC Designer
This topic shows how to generate MATLAB code for creating and simulating model
predictive controllers designed in the MPC Designer app. Generated MATLAB scripts
are useful when you want to programmatically reproduce designs that you obtained
interactively.

To create a MATLAB script:

1 In the MPC Designer app, interactively design and tune your model predictive
controller.

2 On the Tuning tab, in the Analysis section, click the Export Controller arrow .

Alternatively, on the MPC Designer tab, in the Result, click Export Controller.

Note If you opened MPC Designer from Simulink, click the Update and Simulate
arrow .

3
Under Export Controller or Update and Simulate, click Generate Script .

4 In the Generate MATLAB Script dialog box, select one or more simulation scenarios
to include in the generated script.

 Generate MATLAB Code from MPC Designer

1-87

5 Click Generate Script to create the MATLAB script for creating the current MPC
controller and running the selected simulation scenarios. The generated script opens
in the MATLAB Editor.

In addition to generating a script, the app exports the following to the MATLAB
workspace:

• A copy of the plant used to create the controller, that is the controller internal
plant model

• Copies of the plants used in any simulation scenarios that do not use the default
internal plant model

• The reference and disturbance signals specified for each simulation scenario

See Also
mpc

More About
• “Generate Simulink Model from MPC Designer” on page 5-13

1 Controller Creation

1-88

Design MPC Controller for Position Servomechanism
This example shows how to design a model predictive controller for a position
servomechanism using MPC Designer.

System Model

A position servomechanism consists of a DC motor, gearbox, elastic shaft, and load.

The differential equations representing this system are

&

&

w q
q
r

b
w

w
w b w

L
T

L
L

M L

L
L

M
M

M

M M M M

M

k

J J

k

J

V k

R J

k

= - -Ê

Ë
Á

ˆ

¯
˜ -

=
-Ê

Ë
Á

ˆ
¯
˜ - + TT

M
L

M

Jr
q

q
r

-Ê

Ë
Á

ˆ

¯
˜

where,

• V is the applied voltage.
• T is the torque acting on the load.
•

w q
L L

= & is the load angular velocity.
•

w q
M M

= & is the motor shaft angular velocity.

 Design MPC Controller for Position Servomechanism

1-89

The remaining terms are constant parameters.

Constant Parameters for Servomechanism Model

Symbol Value (SI Units) Definition
kT 1280.2 Torsional rigidity
kM 10 Motor constant
JM 0.5 Motor inertia
JL 50JM Load inertia
ρ 20 Gear ratio
βM 0.1 Motor viscous friction coefficient
βL 25 Load viscous friction coefficient
R 20 Armature resistance

If you define the state variables as

xp L L M M
T

= []q w q w ,

then you can model the servomechanism as an LTI state-space system.

&x

k

J J

k

J

k

J

k

J

k

R

J

p

T

L

L

L

T

L

T

M

T

M

M
M

M

=

- -

- -
+

È

Î

Í
Í
Í
Í
Í

0 1 0 0

0

0 0 0 1

0
2

2

b
r

r r

b
ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

+

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

= []

=

x

k

RJ

V

x

T k

p

M

M

L p

0

0

0

1 0 0 0q

TT
T

p

k
x0 0-

È

Î
Í

˘

˚
˙r

The controller must set the angular position of the load, θL, at a desired value by
adjusting the applied voltage, V.

1 Controller Creation

1-90

However, since the elastic shaft has a finite shear strength, the torque, T, must stay
within the range |T| ≤ 78.5 Nm. Also, the voltage source physically limits the applied
voltage to the range |V| ≤ 220 V.

Construct Plant Model

Specify the model constants.

Kt = 1280.2; % Torsional rigidity
Km = 10; % Motor constant
Jm = 0.5; % Motor inertia
Jl = 50*Jm; % Load inertia
N = 20; % Gear ratio
Bm = 0.1; % Rotor viscous friction
Bl = 25; % Load viscous friction
R = 20; % Armature resistance

Define the state-space matrices derived from the model equations.

A = [0 1 0 0;
 -Kt/Jl -Bl/Jl Kt/(N*Jl) 0;
 0 0 0 1;
 Kt/(Jm*N) 0 -Kt/(Jm*N^2) -(Bm+Km^2/R)/Jm];
B = [0; 0; 0; Km/(R*Jm)];
C = [1 0 0 0;
 Kt 0 -Kt/N 0];
D = [0; 0];

Create a state-space model.

plant = ss(A,B,C,D);

Open MPC Designer App

mpcDesigner

Import Plant and Define Signal Configuration

In MPC Designer, on the MPC Designer tab, select MPC Structure.

In the Define MPC Structure By Importing dialog box, select the plant plant model, and
assign the plant I/O channels to the following signal types:

• Manipulated variable — Voltage, V

 Design MPC Controller for Position Servomechanism

1-91

• Measured output — Load angular position, θL

• Unmeasured output — Torque, T

1 Controller Creation

1-92

 Design MPC Controller for Position Servomechanism

1-93

Click Define and Import.

MPC Designer imports the specified plant to the Data Browser. The following are also
added to the Data Browser:

• mpc1 — Default MPC controller created using plant as its internal model.
• scenario1 — Default simulation scenario. The results of this simulation are displayed

in the Input Response and Output Response plots.

Define Input and Output Channel Attributes

On the MPC Designer tab, in the Structure section, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, for each input and output
channel:

• Specify a meaningful Name and Unit.
• Keep the Nominal Value at its default value of 0.
• Specify a Scale Factor for normalizing the signal. Select a value that approximates

the predicted operating range of the signal:

Channel Name Minimum Value Maximum Value Scale Factor
Voltage –220 V 220 V 440
Theta –π radians π radians 6.28
Torque –78.5 Nm 78.5 Nm 157

1 Controller Creation

1-94

Click OK to update the channel attributes and close the dialog box.

Modify Scenario To Simulate Angular Position Step Response

In the Scenario section, Edit Scenario drop-down list, select scenario1 to modify the
default simulation scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 10 seconds.

In the Reference Signals table, keep the default configuration for the first channel.
These settings create a Step change of 1 radian in the angular position setpoint at a
Time of 1 second.

For the second output, in the Signal drop-down list, select Constant to keep the torque
setpoint at its nominal value.

 Design MPC Controller for Position Servomechanism

1-95

Click OK.

The app runs the simulation with the new scenario settings and updates the Input
Response and Output Response plots.

1 Controller Creation

1-96

Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, specify a Sample time of 0.1 seconds.

For the specified sample time, Ts, and a desired response time of Tr = 2 seconds, select a
prediction horizon, p, such that:

T pTr sª .

Therefore, specify a Prediction horizon of 20.

Specify a Control horizon of 5.

 Design MPC Controller for Position Servomechanism

1-97

As you update the sample time and horizon values, the Input Response and Output
Response plots update automatically. Both the input voltage and torque values exceed
the constraints defined in the system model specifications.

Specify Constraints

In the Design section, select Constraints.

In the Constraints dialog box, in the Input Constraints section, specify the Min and
Max voltage values for the manipulated variable (MV).

In the Output Constraints section, specify Min and Max torque values for the
unmeasured output (UO).

1 Controller Creation

1-98

There are no additional constraints, that is the other constraints remain at their default
maximum and minimum values, —Inf and Inf respectively

Click OK.

 Design MPC Controller for Position Servomechanism

1-99

The response plots update to reflect the new constraints. In the Input Response plot,
there are undesirable large changes in the input voltage.

Specify Tuning Weights

In the Design section, select Weights.

In the Weights dialog box, in the Input Weights table, increase the manipulated variable
Rate Weight.

1 Controller Creation

1-100

The tuning Weight for the manipulated variable (MV) is 0. This weight indicates that the
controller can allow the input voltage to vary within its constrained range. The increased
Rate Weight limits the size of manipulated variable changes.

Since the control objective is for the angular position of the load to track its setpoint, the
tuning Weight on the measured output is 1. There is no setpoint for the applied torque,
so the controller can allow the second output to vary within its constraints. Therefore, the
Weight on the unmeasured output (UO) is 0, which enables the controller to ignore the
torque setpoint.

Click OK.

 Design MPC Controller for Position Servomechanism

1-101

The response plots update to reflect the increased rate weight. The Input Response is
smoother with smaller voltage changes.

Examine Output Response

In the Output Response plot, right-click the Theta plot area, and select
Characteristics > Peak Response.

1 Controller Creation

1-102

The peak output response occurs at time of 3 seconds with a maximum overshoot of 3%.
Since the reference signal step change is at 1 second, the controller has a peak time of 2
seconds.

Improve Controller Response Time

Click and drag the Closed-Loop Performance slider to the right to produce a more
Aggressive response. The further you drag the slider to the right, the faster the

 Design MPC Controller for Position Servomechanism

1-103

controller responds. Select a slider position such that the peak response occurs at 2.7
seconds.

The final controller peak time is 1.7 seconds. Reducing the response time further results
in overly-aggressive input voltage changes.

Generate and Run MATLAB Script

In the Analysis section, click the Export Controller arrow .

Under Export Controller, click Generate Script.

In the Generate MATLAB Script dialog box, check the box next to scenario1.

Click Generate Script.

1 Controller Creation

1-104

The app exports a copy of the plant model, plant_C, to the MATLAB workspace, along
with simulation input and reference signals.

Additionally, the app generates the following code in the MATLAB Editor.

%% create MPC controller object with sample time
mpc1 = mpc(plant_C, 0.1);
%% specify prediction horizon
mpc1.PredictionHorizon = 20;
%% specify control horizon
mpc1.ControlHorizon = 5;
%% specify nominal values for inputs and outputs
mpc1.Model.Nominal.U = 0;
mpc1.Model.Nominal.Y = [0;0];
%% specify scale factors for inputs and outputs
mpc1.MV(1).ScaleFactor = 440;
mpc1.OV(1).ScaleFactor = 6.28;
mpc1.OV(2).ScaleFactor = 157;
%% specify constraints for MV and MV Rate
mpc1.MV(1).Min = -220;
mpc1.MV(1).Max = 220;
%% specify constraints for OV
mpc1.OV(2).Min = -78.5;
mpc1.OV(2).Max = 78.5;
%% specify overall adjustment factor applied to weights
beta = 1.2712;
%% specify weights
mpc1.Weights.MV = 0*beta;
mpc1.Weights.MVRate = 0.4/beta;
mpc1.Weights.OV = [1 0]*beta;
mpc1.Weights.ECR = 100000;
%% specify simulation options
options = mpcsimopt();
options.RefLookAhead = 'off';
options.MDLookAhead = 'off';
options.Constraints = 'on';
options.OpenLoop = 'off';
%% run simulation
sim(mpc1, 101, mpc1_RefSignal, mpc1_MDSignal, options);

In the MATLAB Window, in the Editor tab, select Save.

Complete the Save dialog box and then click Save.

In the Editor tab, click Run.

 Design MPC Controller for Position Servomechanism

1-105

1 Controller Creation

1-106

The script creates the controller, mpc1, and runs the simulation scenario. The input and
output responses match the simulation results from the app.

Validate Controller Performance In Simulink

If you have a Simulink model of your system, you can simulate your controller and
validate its performance. Simulink functionality is not supported in MATLAB Online™.

Open the model.

open_system('mpc_motor')

 Design MPC Controller for Position Servomechanism

1-107

This model uses an MPC Controller block to control a servomechanism plant. The
Servomechanism Model block is already configured to use the plant model from the
MATLAB workspace.

The Angle reference source block creates a sinusoidal reference signal with a frequency
of 0.4 rad/sec and an amplitude of π.

Double-click the MPC Controller block.

In the MPC Controller Block Parameters dialog box, specify an MPC Controller from the
MATLAB workspace. Use the mpc1 controller created using the generated script.

1 Controller Creation

1-108

Click OK.

At the MATLAB command line, specify a torque magnitude constraint variable.

tau = 78.5;

The model uses this value to plot the constraint limits on the torque output scope.

In the Simulink model window, click Run to simulate the model.

 Design MPC Controller for Position Servomechanism

1-109

In the Angle scope, the output response, yellow, tracks the angular position setpoint,
blue, closely.

See Also
MPC Controller | MPC Designer | mpc

More About
• “Design Controller Using MPC Designer”
• “Design MPC Controller at the Command Line”

1 Controller Creation

1-110

Design MPC Controller for Paper Machine Process
This example shows how to design a model predictive controller for a nonlinear paper
machine process using MPC Designer.

Plant Model

Ying et al. studied the control of consistency (percentage of pulp fibers in aqueous
suspension) and liquid level in a paper machine headbox.

The process is nonlinear and has three outputs, two manipulated inputs, and two
disturbance inputs, one of which is measured for feedforward control.

The process model is a set of ordinary differential equations (ODEs) in bilinear form. The
states are

x H H N N
T

= []1 2 1 2

• H1 — Feed tank liquid level
• H2 — Headbox liquid level
• N1 — Feed tank consistency
• N2 — Headbox consistency

The primary control objective is to hold H2 and N2 at their setpoints by adjusting the
manipulated variables:

• Gp — Flow rate of stock entering the feed tank
• Gw — Flow rate of recycled white water

The consistency of stock entering the feed tank, Np, is a measured disturbance, and the
white water consistency, Nw, is an unmeasured disturbance.

 Design MPC Controller for Paper Machine Process

1-111

All signals are normalized with zero nominal steady-state values and comparable
numerical ranges. The process is open-loop stable.

The measured outputs are H2, N1, and N2.

The Simulink S-function, mpc_pmmodel implements the nonlinear model equations. To
view this S-function, enter the following.

edit mpc_pmmodel

To design a controller for a nonlinear plant using MPC Designer, you must first obtain a
linear model of the plant. The paper machine headbox model can be linearized
analytically.

At the MATLAB command line, enter the state-space matrices for the linearized model.

A = [-1.9300 0 0 0
 0.3940 -0.4260 0 0
 0 0 -0.6300 0
 0.8200 -0.7840 0.4130 -0.4260];
B = [1.2740 1.2740 0 0
 0 0 0 0
 1.3400 -0.6500 0.2030 0.4060
 0 0 0 0];
C = [0 1.0000 0 0
 0 0 1.0000 0
 0 0 0 1.0000];
D = zeros(3,4);

Create a continuous-time LTI state-space model.

PaperMach = ss(A,B,C,D);

Specify the names of the input and output channels of the model.

PaperMach.InputName = {'G_p','G_w','N_p','N_w'};
PaperMach.OutputName = {'H_2','N_1','N_2'};

Specify the model time units.

PaperMach.TimeUnit = 'minutes';

Examine the open-loop response of the plant.

step(PaperMach)

1 Controller Creation

1-112

The step response shows that:

• Both manipulated variables, Gp and Gw, affect all three outputs.
• The manipulated variables have nearly identical effects on H2.
• The response from Gw to N2 is an inverse response.

These features make it difficult to achieve accurate, independent control of H2 and N2.

Import Plant Model and Define Signal Configuration

Open the MPC Designer app.

 Design MPC Controller for Paper Machine Process

1-113

mpcDesigner

In MPC Designer, on the MPC Designer tab, in the Structure section, click MPC
Structure.

In the Define MPC Structure By Importing dialog box, select the PaperMach plant model
and assign the plant I/O channels to the following signal types:

• Manipulated variables — Gp and Gw

• Measured disturbance — Np

• Unmeasured disturbance — Nw

• Measured outputs — H2, N2, and H2

1 Controller Creation

1-114

 Design MPC Controller for Paper Machine Process

1-115

Tip To find the correct channel indices, click the PaperMach model Name to view
additional model details.

Click Define and Import.

The app imports the plant to the Data Browser and creates a default MPC controller
using the imported plant.

Define Input and Output Channel Attributes

In the Structure section, select I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Unit column, define the
units for each channel. Since all the signals are normalized with zero nominal steady-state
values, keep the Nominal Value and Scale Factor for each channel at their default
values.

Click OK to update the channel attributes and close the dialog box.

1 Controller Creation

1-116

Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, keep the Sample time, Prediction Horizon,
and Control Horizon at their default values.

Specify Manipulated Variable Constraints

In the Design section, click Constraints.

In the Constraints dialog box, in the Input Constraints section, specify value
constraints, Min and Max, for both manipulated variables.

Click OK.

Specify Initial Tuning Weights

In the Design section, click Weights.

In the Weights dialog box, in the Input Weights section, increase the Rate Weight to
0.4 for both manipulated variables.

In the Output Weights section, specify a Weight of 0 for the second output, N1, and a
Weight of 1 for the other outputs.

 Design MPC Controller for Paper Machine Process

1-117

Increasing the rate weight for manipulated variables prevents overly-aggressive control
actions resulting in a more conservative controller response.

Since there are two manipulated variables, the controller cannot control all three outputs
completely. A weight of zero indicates that there is no setpoint for N1. As a result, the
controller can hold H2 and N2 at their respective setpoints.

Simulate H2 Setpoint Step Response

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for the first
output. Keep the step Size at 1 and specify a step Time of 0.

1 Controller Creation

1-118

In the Signal drop-down lists for the other output reference signals, select Constant to
hold the values at their respective nominal values. The controller ignores the setpoint for
the second output since the corresponding tuning weight is zero.

Click OK.

The app runs the simulation with the new scenario settings and updates the Input
Response and Output Response plots.

 Design MPC Controller for Paper Machine Process

1-119

The initial design uses a conservative control effort to produce a robust controller. The
response time for output H2 is about 7 minutes. To reduce this response time, you can
decrease the sample time, reduce the manipulated variable rate weights, or reduce the
manipulated variable rate constraints.

Since the tuning weight for output N1 is zero, its output response shows a steady-state
error of about –0.25.

Adjust Weights to Emphasize Feed Tank Consistency Control

On the Tuning tab, in the Design section, select Weights.

In the Weights dialog box, in the Output Weights section, specify a Weight of 0.2 for
the first output, H2.

1 Controller Creation

1-120

The controller places more emphasis on eliminating errors in feed tank consistency, N2,
which significantly decreases the peak absolute error. The trade-off is a longer response
time of about 17 minutes for the feed tank level, H2.

Test Controller Feedforward Response to Measured Disturbances

On the MPC Designer tab, in the Scenario section, click Plot Scenario > New
Scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Measured Disturbances table, specify a step change in measured disturbance,
Np, with a Size of 1 and a step Time of 1. Keep all output setpoints constant at their
nominal values.

 Design MPC Controller for Paper Machine Process

1-121

Click OK to run the simulation and display the input and output response plots.

1 Controller Creation

1-122

As shown in the NewScenario: Output plot, both H2 and N2 deviate little from their
setpoints.

Experiment with Signal Previewing

In the Data Browser, in the Scenarios section, right-click NewScenario, and select
Edit.

In the Simulation Scenario dialog box, in the Simulation Settings section, check the
Preview measured disturbances option.

Click Apply.

 Design MPC Controller for Paper Machine Process

1-123

The manipulated variables begin changing before the measured disturbance occurs
because the controller uses the known future disturbance value when computing its
control action. The output disturbance values also begin changing before the disturbance
occurs, which reduces the magnitude of the output errors. However, there is no
significant improvement over the previous simulation result.

In the Simulation Scenario dialog box, clear the Preview measured disturbances
option.

Click OK.

1 Controller Creation

1-124

Rename Scenarios

With multiple scenarios, it is helpful to provide them with meaningful names. In the Data
Browser, in the Scenarios section, double-click each scenario to rename them as shown:

Test Controller Feedback Response to Unmeasured Disturbances

In the Data Browser, in the Scenarios section, right-click Feedforward,and select
Copy.

Double-click the new scenario, and rename it Feedback.

Right-click the Feedback scenario, and select Edit.

In the Simulation Scenario dialog box, in the Measured Disturbances table, in the
Signal drop-down list, select Constant to remove the measured disturbance.

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step to
simulate a sudden, sustained unmeasured input disturbance.

Set the step Size to 1 and the step Time to 1.

 Design MPC Controller for Paper Machine Process

1-125

Click OK to update the scenario settings, and run the simulation.

In the Data Browser, in the Scenarios section, right-click Feedback, and select Plot.

1 Controller Creation

1-126

The controlled outputs, H2 and N2, both exhibit relatively small deviations from their
setpoints. The settling time is longer than for the original servo response, which is typical.

On the Tuning tab, in the Analysis section, click Review Design to check the controller
for potential run-time stability or numerical problems.

The review report opens in a new window.

 Design MPC Controller for Paper Machine Process

1-127

The review flags two warnings about the controller design. Click the warning names to
determine whether they indicate problems with the controller design.

The Closed-Loop Steady-State Gains warning indicates that the plant has more
controlled outputs than manipulated variables. This input/output imbalance means that
the controller cannot eliminate steady-state error for all of the outputs simultaneously. To
meet the control objective of tracking the setpoints of H2 and N2, you previously set the
output weight for N1 to zero. This setting causes the QP Hessian Matrix Validity
warning, which indicates that one of the output weights is zero.

Since the input/output imbalance is a known feature of the paper machine plant model,
and you intentionally set one of the output weights to zero to correct for the imbalance,
neither warning indicates an issue with the controller design.

Export Controller to MATLAB Workspace

On the MPC Designer tab, in the Result section, click Export Controller .

1 Controller Creation

1-128

In the Export Controller dialog box, check the box in the Select column.

In the Export As column, specify MPC1 as the controller name.

Click Export to save a copy of the controller to the MATLAB workspace.

Open and Simulate Simulink Model

If you have a Simulink model of your system, you can simulate your controller and
validate its performance. Simulink functionality is not supported in MATLAB Online.

Open the model.

open_system('mpc_papermachine')

 Design MPC Controller for Paper Machine Process

1-129

The MPC Controller block controls the nonlinear paper machine plant model, which is
defined using the S-Function mpc_pmmodel.

The model is configured to simulate a sustained unmeasured disturbance of size 1.

Double-click the MPC Controller block.

1 Controller Creation

1-130

 Design MPC Controller for Paper Machine Process

1-131

The MPC Controller block is already configured to use the MPC1 controller that was
previously exported to the MATLAB workspace.

Also, the Measured disturbance option is selected to add the md inport to the controller
block.

Simulate the model.

In the Outputs plot, the responses are almost identical to the responses from the
corresponding simulation in MPC Designer. The yellow curve is H2, the blue is N1, and
the red is N2.

1 Controller Creation

1-132

Similarly, in the MVs scope, the manipulated variable moves are almost identical to the
moves from corresponding simulation in MPC Designer. The yellow curve is Gp and the
blue is Gw.

These results show that there are no significant prediction errors due to the mismatch
between the linear prediction model of the controller and the nonlinear plant. Even
increasing the unmeasured disturbance magnitude by a factor of four produces similarly
shaped response curves. However, as the disturbance size increases further, the effects of
nonlinearities become more pronounced.

 Design MPC Controller for Paper Machine Process

1-133

Increase Unmeasured Disturbance Magnitude

In the Simulink model window, double-click the Unmeasured Disturbance block.

In the Unmeasured Disturbance properties dialog box, specify a Constant value of 6.5.

Click OK.

Simulate the model.

1 Controller Creation

1-134

The mismatch between the prediction model and the plant now produces output
responses with significant differences. Increasing the disturbance magnitude further
results in large setpoint deviations and saturated manipulated variables.

References
[1] Ying, Y., M. Rao, and Y. Sun “Bilinear control strategy for paper making process,”

Chemical Engineering Communications (1992), Vol. 111, pp. 13–28.

 Design MPC Controller for Paper Machine Process

1-135

See Also
MPC Controller | MPC Designer

More About
• “Design Controller Using MPC Designer”

1 Controller Creation

1-136

Control of an Inverted Pendulum on a Cart
This example uses a model predictive controller (MPC) to control an inverted pendulum
on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.

 Control of an Inverted Pendulum on a Cart

1-137

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';
load_system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'],'force')

1 Controller Creation

1-138

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -10 and 10 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart
should return to its original position with a maximum displacement of 1. The

 Control of an Inverted Pendulum on a Cart

1-139

pendulum should also return to the upright position with a peak angle displacement of
15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartImplicitMPC';
open_system(mdlMPC)

Although cart velocity x_dot and pendulum angular velocity theta_dot are available from
the plant model, to make the design case more realistic, they are excluded as MPC
measurements.

1 Controller Creation

1-140

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction,
linearize the Simulink plant model at the initial operating point.

Specify linearization input and output points.

io(1) = linio([mdlPlant '/dF'],1,'openinput');
io(2) = linio([mdlPlant '/F'],1,'openinput');
io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create operating point specifications for the plant initial conditions.

opspec = operspec(mdlPlant);

The first state is cart position x, which has a known initial state of 0.

opspec.States(1).Known = true;
opspec.States(1).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;
opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);
op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);
plant.InputName = {'dF';'F'};
plant.OutputName = {'x';'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =

 Control of an Inverted Pendulum on a Cart

1-141

 0
 -11.9115
 -3.2138
 5.1253

The plant has an integrator and an unstable pole.

bdclose(mdlPlant)

MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is
specified as an unmeasured disturbance used by the MPC controller for better
disturbance rejection. Set the plant signal types.

plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;
PredictionHorizon = 50;
ControlHorizon = 5;
mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

There is a limitation on how much force can be applied to the cart, which is specified as
hard constraints on manipulated variable F.

mpcobj.MV.Min = -200;
mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

1 Controller Creation

1-142

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by
multiplying the default disturbance model gains by a factor of 10.

Update the input disturbance model.

disturbance_model = getindist(mpcobj);
setindist(mpcobj,'model',disturbance_model*10);

Update the output disturbance model.

disturbance_model = getoutdist(mpcobj);
setoutdist(mpcobj,'model',disturbance_model*10);

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)

 Control of an Inverted Pendulum on a Cart

1-143

1 Controller Creation

1-144

In the nonlinear simulation, all the control objectives are successfully achieved.

Discussion

It is important to point out that the designed MPC controller has its limitations. For
example, if you increase the step setpoint change to 15, the pendulum fails to recover its
upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the
prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.

 Control of an Inverted Pendulum on a Cart

1-145

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate
models at different angle to improve prediction. Another example “Gain-Scheduled MPC
Control of an Inverted Pendulum on a Cart” shows how to use gain scheduling MPC to
achieve the longer distances.

Remove the example file folder from the MATLAB path, and close the Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdlMPC)

See Also

More About
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 7-41
• “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-66

1 Controller Creation

1-146

Thermo-Mechanical Pulping Process with Multiple
Control Objectives

This example shows how to control a thermo-mechanical pulping (TMP) plant with a
model predictive controller.

Plant Description

The following diagram shows a typical process arrangement for a two stage TMP
operation. Two pressured refiners operate in sequence to produce a mechanical pulp
suitable for making newsprint.

The primary objective of controlling the TMP plant is to regulate the energy applied to the
pulp by the electric motors which drive each refiner to derive pulp with good physical
properties without incurring excess energy costs.

The secondary control objective is to regulate the ratio of dry mass flow rate to overall
mass flow rate (known as consistency) measured at the outlet of each refiner.

In practice, these objectives amount to regulating the primary and secondary refiner
motor loads, and the primary and secondary refiner constancies, subject to the following
output constraints:

(1) Maintain the power on each refiner below the maximum rated values.

(2) Maintain the vibration level on the two refiners below a critical level to prevent refiner
plate clash.

(3) Limit the measured consistency to prevent blow line plugging and fiber damage.

The manipulated variables for this plant include:

• Gap controller setpoints for regulating the distance between the refiner plates
• Dilution flow rates to the two refiners
• RPM of the screw feeder

Physical limits are also imposed on each of these inputs.

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-147

Modeling of the TMP Plant in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

1 Controller Creation

1-148

The following Simulink® model represents a TMP plant and an MPC Controller designed
for the control objectives described above. The model is opened and plant data is
initialized:

open_system('mpc_tmpdemo')
mpctmpinit;

The MPC controller is represented by an MPC object in the workspace. It is loaded from a
previously saved design:

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-149

load mpc_tmpdemodata;
mpcobj

MPC object (created on 30-Mar-2004 17:20:31):

Sampling time: 0.5 (seconds)
Prediction Horizon: 20
Control Horizon: 5

Plant Model:

 5 manipulated variable(s) -->| 7 states |
 | |--> 6 measured output(s)
 0 measured disturbance(s) -->| 5 inputs |
 | |--> 0 unmeasured output(s)
 0 unmeasured disturbance(s) -->| 6 outputs |

Disturbance and Noise Models:
 Output disturbance model: user specified (type "getoutdist(mpcobj)" for details)
 Measurement noise model: user specified (type "mpcobj.Model.Noise" for details)

Weights:
 ManipulatedVariables: [0 0 0 0 0]
 ManipulatedVariablesRate: [0.1000 10 0.1000 10 0.1000]
 OutputVariables: [0 10 0 1 10 1]
 ECR: 1000000

State Estimation: Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
 0 <= Feed rpm <= 35, -10 <= Feed rpm/rate <= Inf, -Inf <= Pri. vibration <= 1
 0 <= Pri. gap set point <= 1, -10 <= Pri. gap set point/rate <= Inf, -Inf <= Pri. consistency <= 0.45
 70 <= Pri. dil. flow set point <= 250, -10 <= Pri. dil. flow set point/rate <= Inf, -Inf <= Sec. vibration <= 1

 70 <= Sec. dil flow set point <= 250, -10 <= Sec. dil flow set point/rate <= Inf, -Inf <= Sec. motor load <= 9

The controller was designed using the MPC Designer app.

Tuning the Controller Using the MPC Designer App

Click the "Design" button in the MPC Controller block dialog to launch the MPC Designer
app.

1 Controller Creation

1-150

In the Tuning tab, click Weights to open the Weights dialog box. To put more emphasis on
regulating primary and secondary refiner motor loads and constancies, specify the input
and output weights as follows:

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-151

In the MPC Designer tab, click Edit Scenario to open the Simulation Scenario dialog box.
To simulate a primary refiner motor load setpoint change from 8 to 9 MW without a model
mismatch, specify the simulation scenario settings as follows:

1 Controller Creation

1-152

The effect of design changes can be observed immediately in the response plots.

 Thermo-Mechanical Pulping Process with Multiple Control Objectives

1-153

Simulating the Design in Simulink®

The controller can be tested on the non-linear plant by running the simulation in
Simulink®. In the Tuning tab, in the Update and Simulate drop-down list, select Update
Block and Run Simulation to export the current controller design to the MATLAB
workspace and run the simulation in Simulink.

The output of the 3 scopes show the response to initial setpoints with:

• Primary consistency of 0.4
• Secondary motor load of 6 MW
• Secondary consistency of 0.3

1 Controller Creation

1-154

bdclose('mpc_tmpdemo')

See Also
MPC Controller | MPC Designer | mpc

More About
• “Design MPC Controller in Simulink”

 See Also

1-155

Aircraft with Unstable Poles
This example shows how to control an unstable aircraft with saturating actuators.

For an example that controls the same plant using an explicit MPC controller, see
“Explicit MPC Control of an Aircraft with Unstable Poles”.

Define Aircraft Model

The linear open-loop dynamic model of the aircraft has the following state-space matrices:

A = [-0.0151 -60.5651 0 -32.174;
 -0.0001 -1.3411 0.9929 0;
 0.00018 43.2541 -0.86939 0;
 0 0 1 0];
B = [-2.516 -13.136;
 -0.1689 -0.2514;
 -17.251 -1.5766;
 0 0];
C = [0 1 0 0;
 0 0 0 1];
D = [0 0;
 0 0];

Create the plant, and specify the initial states as zero.

plant = ss(A,B,C,D);
x0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles. The attack and pitch
angles are measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

ans =

 -7.6636 + 0.0000i
 5.4530 + 0.0000i
 -0.0075 + 0.0556i
 -0.0075 - 0.0556i

1 Controller Creation

1-156

Specify Controller Constraints

Both manipulated variables are constrained between +/- 25 degrees. Since the plant
inputs and outputs are of different orders of magnitude, you also use scale factors to
facilitate MPC tuning. Typical choices of scale factor are the upper/lower limit or the
operating range.

MV = struct('Min',{-25,-25},'Max',{25,25},'ScaleFactor',{50,50});

Both plant outputs have constraints to limit undershoots at the first prediction horizon.
You also specify scale factors for outputs.

OV = struct('Min',{[-0.5;-Inf],[-100;-Inf]},'Max',{[0.5;Inf],[100;Inf]},'ScaleFactor',{1,200});

Specify Controller Tuning Weights

The control task is to get zero offset for piecewise-constant references, while avoiding
instability due to input saturation. Because both MV and OV variables are already scaled
in MPC controller, MPC weights are dimensionless and applied to the scaled MV and OV
values. In this example, you penalize the two outputs equally with the same OV weights.

Weights = struct('MV',[0 0],'MVRate',[0.1 0.1],'OV',[10 10]);

Create MPC Controller

Create an MPC controller with the specified plant model, sample time, and horizons.

Ts = 0.05; % Sample time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. To do so, for the MPC
Controller block, set the MPC Controller property to mpcobj.

 Aircraft with Unstable Poles

1-157

mdl = 'mpc_aircraft';
open_system(mdl)
sim(mdl)

1 Controller Creation

1-158

 Aircraft with Unstable Poles

1-159

The closed-loop response shows good setpoint tracking performance.

References

[1] P. Kapasouris, M. Athans, and G. Stein, "Design of feedback control systems for
unstable plants with saturating actuators", Proc. IFAC Symp. on Nonlinear Control
System Design, Pergamon Press, pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear
systems via predictive reference management", IEEE® Trans. Automatic Control, vol.
AC-42, no. 3, pp. 340-349, 1997.

bdclose(mdl)

See Also
MPC Controller | mpc

1 Controller Creation

1-160

More About
• “Design MPC Controller at the Command Line”

 See Also

1-161

Model Predictive Control Basics

• “Controller State Estimation” on page 2-2
• “Optimization Problem” on page 2-9
• “QP Solver” on page 2-22

2

Controller State Estimation

Controller State Variables
As the controller operates, it uses its current state, xc, as the basis for predictions. By
definition, the state vector is the following:

x k x k x k x k x kc
T

p
T

id
T

od
T

n
T() = È

Î
˘
˚

() () () () .

Here,

• xc is the controller state, comprising nxp + nxid + nxod + nxn state variables.
• xp is the plant model state vector, of length nxp.
• xid is the input disturbance model state vector, of length nxid.
• xod is the output disturbance model state vector, of length nxod.
• xn is the measurement noise model state vector, of length nxn.

Thus, the variables comprising xc represent the models appearing in the following
diagram of the MPC system.

2 Model Predictive Control Basics

2-2

Some of the state vectors may be empty. If not, they appear in the sequence defined
within each model.

By default, the controller updates its state automatically using the latest plant
measurements. See “State Estimation” on page 2-4 for details. Alternatively, the
custom state estimation feature allows you to update the controller state using an
external procedure, and then supply these values to the controller. See “Custom State
Estimation” on page 3-59 for details.

State Observer
Combination of the models shown in the diagram yields the state observer:

x k Ax k Bu k

y k Cx k Du k

c c o

c o

+() = () + ()

() = () + ()

1

.

MPC controller uses the state observer in the following ways:

• To estimate values of unmeasured states needed as the basis for predictions (see
“State Estimation” on page 2-4).

 Controller State Estimation

2-3

• To predict how the controller’s proposed manipulated variable (MV) adjustments will
affect future plant output values (see “Output Variable Prediction” on page 2-7).

The observer’s input signals are the dimensionless plant manipulated and measured
disturbance inputs, and the white noise inputs to the disturbance and noise models:

u k u k v k w k w k w ko
T T T

id
T

od
T

n
T() = () () () () ()È

Î
˘
˚
.

The observer’s outputs are the ny dimensionless plant outputs.

In terms of the parameters defining the four models shown in the diagram, the observer’s
parameters are:

A

A B C

A

A

A

B

B B B Dp pd id

id

od

n

pu pv pd id

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

0 0

0 0 0

0 0 0

0 0 0

,

00 0

0 0 0 0

0 0 0 0

0 0 0 0

0

B

B

B

C C D C C
C

id

od

n

p pd id od
n

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
È

Î
Í

˘

˚
˙̇

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙, .

,

D D D D D
D

pv pd id od
n

0
0

Here, the plant and output disturbance models are resequenced so that the measured
outputs precede the unmeasured outputs.

State Estimation
In general, the controller states are unmeasured and must be estimated. By default, the
controller uses a steady-state Kalman filter that derives from the state observer. (See
“State Observer” on page 2-3.)

At the beginning of the kth control interval, the controller state is estimated with the
following steps:

1 Obtain the following data:

• xc(k|k–1) — Controller state estimate from previous control interval, k–1
• uact(k–1) — Manipulated variable (MV) actually used in the plant from k–1 to k

(assumed constant)

2 Model Predictive Control Basics

2-4

• uopt(k–1) — Optimal MV recommended by MPC and assumed to be used in the
plant from k–1 to k

• v(k) — Current measured disturbances
• ym(k) — Current measured plant outputs
• Bu, Bv — Columns of observer parameter B corresponding to u(k) and v(k) inputs
• Cm — Rows of observer parameter C corresponding to measured plant outputs
• Dmv — Rows and columns of observer parameter D corresponding to measured

plant outputs and measured disturbance inputs
• L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in
calculations.

2 Revise xc(k|k–1) when uact(k–1) and uopt(k–1) are different:

x k k x k k B u k u kc
rev

c u
act opt| |-() = -() + -() - -()È

Î
˘
˚

1 1 1 1 .

3 Compute the innovation:

e k y k C x k k D v km m c
rev

mv() = () - -() + ()È
Î

˘
˚

| 1 .

4 Update the controller state estimate to account for the latest measurements.

x k k x k k Me kc c
rev| |() = -() + ()1 .

Then, the software uses the current state estimate xc(k|k) to solve the quadratic
program at interval k. The solution is uopt(k), the MPC-recommended manipulated-
variable value to be used between control intervals k and k+1.

Finally, the software prepares for the next control interval assuming that the
unknown inputs, wid(k), wod(k), and wn(k) assume their mean value (zero) between
times k and k+1. The software predicts the impact of the known inputs and the
innovation as follows:

x k k Ax k k B u k B v k Le kc c
rev

u
opt

v+() = -() + () + () + ()1 1| | .

 Controller State Estimation

2-5

Built-in Steady-State Kalman Gains Calculation
Model Predictive Control Toolbox software uses the kalman command to calculate
Kalman estimator gains L and M. The following assumptions apply:

• State observer parameters A, B, C, D are time-invariant.
• Controller states, xc, are detectable. (If not, or if the observer is numerically close to

undetectability, the Kalman gain calculation fails, generating an error message.)
• Stochastic inputs wid(k), wod(k), and wn(k) are independent white noise, each with zero

mean and identity covariance.
• Additional white noise wu(k) and wv(k) with the same characteristics adds to the

dimensionless u(k) and v(k) inputs respectively. This improves estimator performance
in certain cases, such as when the plant model is open-loop unstable.

Without loss of generality, set the u(k) and v(k) inputs to zero. The effect of the stochastic
inputs on the controller states and measured plant outputs is:

x k Ax k Bw k

y k C x k D w k

c c

m m c m

+() = () + ()

() = () + ()

1

.

Here,

w k w k w k w k w k w k
T

u
T

v
T

id
T

od
T

n
T() = () () () () ()È

Î
˘
˚
.

Inputs to the kalman command are the state observer parameters A, Cm, and the
following covariance matrices:

Q E Bww B BB

R E D ww D D D

N E Bww D BD

T T T

m
T

m
T

m m
T

T
m
T

m
T

= { } =

= { } =

= { } = .

Here, E{...} denotes the expectation.

2 Model Predictive Control Basics

2-6

Output Variable Prediction
Model Predictive Control requires prediction of noise-free future plant outputs used in
optimization. This is a key application of the state observer (see “State Observer” on page
2-3).

In control interval k, the required data are as follows:

• p — Prediction horizon (number of control intervals, which is greater than or equal to
1)

• xc(k|k) — Controller state estimates (see “State Estimation” on page 2-4)
• v(k) — Current measured disturbance inputs (MDs)
• v(k+i|k) — Projected future MDs, where i=1:p–1. If you are not using MD previewing,

then v(k+i|k) = v(k).
• A, Bu, Bv, C, Dv — State observer constants, where Bu, Bv, and Dv denote columns of

the B and D matrices corresponding to inputs u and v. Du is a zero matrix because of
no direct feedthrough

Predictions assume that unknown white noise inputs are zero (their expectation). Also,
the predicted plant outputs are to be noise-free. Thus, all terms involving the
measurement noise states disappear from the state observer equations. This is equivalent
to zeroing the last nxn elements of xc(k|k).

Given the above data and simplifications, for the first step the state observer predicts:

x k k Ax k k B u k k B v kc c u v+() = () + () + ()1| | | .

Continuing for successive steps, i = 2:p, the state observer predicts:

x k i k Ax k i k B u k i k B v k i kc c u v+() = + -() + + -() + + -()| | | |1 1 1 .

At any step, i = 1:p, the predicted noise-free plant outputs are:

y k i k Cx k i k D v k i kc v+() = +() + +()| | | .

All of these equations employ dimensionless plant input and output variables. See
“Specify Scale Factors” on page 1-18. The equations also assume zero offsets. Inclusion of
nonzero offsets is straightforward.

 Controller State Estimation

2-7

For faster computations, the MPC controller uses an alternative form of the above
equations in which constant terms are computed and stored during controller
initialization. See “QP Matrices” on page 2-14.

See Also
kalman

More About
• “MPC Modeling”
• “Optimization Problem” on page 2-9
• “Custom State Estimation” on page 3-59

2 Model Predictive Control Basics

2-8

Optimization Problem
Overview
Model predictive control solves an optimization problem – specifically, a quadratic
program (QP) – at each control interval. The solution determines the manipulated
variables (MVs) to be used in the plant until the next control interval.

This QP problem includes the following features:

• The objective, or "cost", function — A scalar, nonnegative measure of controller
performance to be minimized.

• Constraints — Conditions the solution must satisfy, such as physical bounds on MVs
and plant output variables.

• Decision — The MV adjustments that minimize the cost function while satisfying the
constraints.

The following sections describe these features in more detail.

Standard Cost Function
The standard cost function is the sum of four terms, each focusing on a particular aspect
of controller performance, as follows:

J z J z J z J z J zk y k u k u k k() = () + () + () + ()D e .

Here, zk is the QP decision. As described below, each term includes weights that help you
balance competing objectives. While the MPC controller provides default weights, you
will usually need to adjust them to tune the controller for your application.

Output Reference Tracking

In most applications, the controller must keep selected plant outputs at or near specified
reference values. An MPC controller uses the following scalar performance measure for
output reference tracking:

J z
w

s
r k i k y k i ky k

j

n

i

p
i j
y

j
y j j

y

() = +() - +()È
Î

˘
˚

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

˛= =
Â Â

1 1

,
| |

ÔÔ

2

.

 Optimization Problem

2-9

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• ny — Number of plant output variables.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L e

• yj(k+i|k) — Predicted value of jth plant output at ith prediction horizon step, in
engineering units.

• rj(k+i|k) — Reference value for jth plant output at ith prediction horizon step, in
engineering units.

•
s

j
y — Scale factor for jth plant output, in engineering units.

•
w

i j
y
,

 — Tuning weight for jth plant output at ith prediction horizon step
(dimensionless).

The values ny, p, s
j
y , and w

i j
y
,

 are constant controller specifications. The controller
receives reference values, rj(k+i|k), for the entire prediction horizon. The controller uses
the state observer to predict the plant outputs, yj(k+i|k), which depend on manipulated
variable adjustments (zk), measured disturbances (MD), and state estimates. At interval k,
the controller state estimates and MD values are available. Therefore, Jy is a function of zk
only.

Manipulated Variable Tracking

In some applications, such as when there are more manipulated variables than plant
outputs, the controller must keep selected manipulated variables (MVs) at or near
specified target values. An MPC controller uses the following scalar performance measure
for manipulated variable tracking:

J z
w

s
u k i k u k i ku k

j

n

i

p
i j
u

j
u j j target

u

()
,

,= +() - +()ÈÎ ˘̊
= =

-

Â Â
1 0

1

| |
ÏÏ
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

2

.

2 Model Predictive Control Basics

2-10

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• nu — Number of manipulated variables.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L e

• uj,target(k+i|k) — Target value for jth MV at ith prediction horizon step, in engineering
units.

•
s j
u — Scale factor for jth MV, in engineering units.

•
wi j

u
,

 — Tuning weight for jth MV at ith prediction horizon step (dimensionless).

The values nu, p, s j
u , and wi j

u
,

 are constant controller specifications. The controller
receives uj,target(k+i|k) values for the entire horizon. The controller uses the state observer
to predict the plant outputs. Thus, Ju is a function of zk only.

Manipulated Variable Move Suppression

Most applications prefer small MV adjustments (moves). An MPC constant uses the
following scalar performance measure for manipulated variable move suppression:

J z
w

s
u k i k u k i ku k

j

n

i

p
i j

u

j
u j j

u

D

D

()
,= +() - + -()ÈÎ ˘̊

Ï
Ì
Ô

= =

-

Â Â
1 0

1

1| |

ÓÓÔ

¸
˝
Ô

Ǫ̂

2

.

Here,

• k — Current control interval.
• p — Prediction horizon (number of intervals).
• nu — Number of manipulated variables.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L e

 Optimization Problem

2-11

•
s j
u — Scale factor for jth MV, in engineering units.

•
wi j

u
,

D — Tuning weight for jth MV movement at ith prediction horizon step
(dimensionless).

The values nu, p, s j
u , and wi j

u
,

D are constant controller specifications. u(k–1|k) = u(k–1),
which are the known MVs from the previous control interval. JΔu is a function of zk only.

In addition, a control horizon m < p (or MV blocking) constrains certain MV moves to be
zero.

Constraint Violation

In practice, constraint violations might be unavoidable. Soft constraints allow a feasible
QP solution under such conditions. An MPC controller employs a dimensionless,
nonnegative slack variable, εk, which quantifies the worst-case constraint violation. (See
“Constraints” on page 2-13) The corresponding performance measure is:

J zk ke er e() = 2
.

Here,

• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L e

• εk — Slack variable at control interval k (dimensionless).
• ρε — Constraint violation penalty weight (dimensionless).

Alternative Cost Function
You can elect to use the following alternative to the standard cost function:

J z e k i Qe k i e k i R e k i uk

i

p

y
T

y u
T

u u() = +() +()È
Î

˘
˚

+ +() +()È
Î

˘
˚

+
=

-

Â
0

1

D TT
u kk i R u k i+() +()È

Î
˘
˚{ } +D D r eò

2
.

Here, Q (ny-by-ny), Ru, and RΔu (nu-by-nu) are positive-semi-definite weight matrices, and:

2 Model Predictive Control Basics

2-12

e i k S r k i k y k i k

e i k S u k

y y

u u target

+() = + +() - + +ÈÎ ˘̊

+() = +

-

-

1

1

1 1| (|)

ii k u k i k

u k i S u k i k u k i ku

|

|

() - +ÈÎ ˘̊

+() = +() - + -ÈÎ ˘̊-

(|)

(|) .D 1 1

Also,

• Sy — Diagonal matrix of plant output variable scale factors, in engineering units.
• Su — Diagonal matrix of MV scale factors in engineering units.
• r(k+1|k) — ny plant output reference values at the ith prediction horizon step, in

engineering units.
• y(k+1|k) — ny plant outputs at the ith prediction horizon step, in engineering units.
• zk — QP decision, given by:

z u k k u k k u k p kk
T T T T

k= + + -È
Î

˘
˚

(|) (|) (|) .1 1L e

• utarget(k+i|k) — nu MV target values corresponding to u(k+i|k), in engineering units.

Output predictions use the state observer, as in the standard cost function.

The alternative cost function allows off-diagonal weighting, but requires the weights to be
identical at each prediction horizon step.

The alternative and standard cost functions are identical if the following conditions hold:

•
The standard cost functions employs weights w

i j
y
,

, wi j
u
,

, and wi j
u

,

D that are constant
with respect to the index, i = 1:p.

• The matrices Q, Ru, and RΔu are diagonal with the squares of those weights as the
diagonal elements.

Constraints
Certain constraints are implicit. For example, a control horizon m < p (or MV blocking)
forces some MV increments to be zero, and the state observer used for plant output
prediction is a set of implicit equality constraints. Explicit constraints that you can
configure are described below.

 Optimization Problem

2-13

Bounds on Plant Outputs, MVs, and MV Increments

The most common MPC constraints are bounds, as follows.

y i

s
V i

y k i k

s

y i

s
V

j min

j
y k j min

y j

j
y

j max

j
y k j m

,
,

,
,

()
- () £

+()
£

()
+e e

|
aax

y
y

j min

j
u k j min

u j

i i p j n

u i

s
V i

u k i

(), : , :

()
,

,

= =

()
- £

+ -

1 1

e
11

1 1
|k

s

u i

s
V i i p j n

u

j
u

j max

j
u k j max

u
u

j

()
£

()
+ = =

,
,

,

(), : , :e

D mmin

j
u k j min

u j

j
u

j max

j
u k

i

s
V i

u k i k

s

u i

s
V

()
- £

+ -()
£

()
+e e,

,
()D

D D1|
jj max

u
ui i p j n, (), : , : .D

= =1 1

Here, the V parameters (ECR values) are dimensionless controller constants analogous to
the cost function weights but used for constraint softening (see “Constraint Softening” on
page 1-8). Also,

• εk — Scalar QP slack variable (dimensionless) used for constraint softening.
•

s
j
y — Scale factor for jth plant output, in engineering units.

•
s j
u — Scale factor for jth MV, in engineering units.

• yj,min(i), yj,max(i) — lower and upper bounds for jth plant output at ith prediction horizon
step, in engineering units.

• uj,min(i), uj,max(i) — lower and upper bounds for jth MV at ith prediction horizon step, in
engineering units.

• Δuj,min(i), Δuj,max(i) — lower and upper bounds for jth MV increment at ith prediction
horizon step, in engineering units.

Except for the slack variable non-negativity condition, all of the above constraints are
optional and are inactive by default (i.e., initialized with infinite limiting values). To
include a bound constraint, you must specify a finite limit when you design the controller.

QP Matrices
This section describes the matrices associated with the model predictive control
optimization problem described in “Optimization Problem” on page 2-9.

2 Model Predictive Control Basics

2-14

Prediction

Assume that the disturbance models described in “Input Disturbance Model” are unit
gains; that is, d(k) = nd(k) is white Gaussian noise. You can denote this problem as

x
x

x
A

A B C

A
B

B
B

Bv
B

B

d

d
u

u
v d

d¨
È

Î
Í

˘

˚
˙ ¨

È

Î
Í

˘

˚
˙ ¨

È

Î
Í

˘

˚
˙ ¨

È

Î
Í

˘

˚
˙ ¨, , , ,

0 0 0

DD

B
C C D Cd

È

Î
Í

˘

˚
˙ ¨ ÈÎ ˘̊,

Then, the prediction model is:

x(k+1) = Ax(k) +Buu(k) +Bvv(k)+Bdnd(k)

y(k) = Cx(k) +Dvv(k) +Ddnd(k)

Next, consider the problem of predicting the future trajectories of the model performed at
time k=0. Set nd(i)=0 for all prediction instants i, and obtain

y i C A x A B u u j B v hi i
u

j

h

v(|) () () () ()0 0 11

0

= + - +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

+
Ê

Ë
Á
Á

ˆ

¯

-

=
Â D ˜̃

˜

È

Î

Í
Í

˘

˚

˙
˙

+
=

-

Â
h

i

vD v i

0

1

()

This equation gives the solution

y

y p

S x S u S

u

u p

x u u

()

()

() ()

()

()

1

0 1

0

1

1L L

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= + - +

-

È

Î

Í
Í
Í

˘

˚

D

D

˙̇
˙
˙

+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

H

v

v p

v

()

()

0

L

where

 Optimization Problem

2-15

S

CA

CA

CA

S

CB

CB CAB

CA B

x

p

u

u

u u

h
u

h

pn ny x=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+

Œ¬ ¥

=

2

1
L

L,

00

1

0 0

0

p

u

u

u u u

pn ny u

S

CB

CB CAB CB

-

Â

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

=

+

Œ¬ ¥

L

L

L L L L

CCA B CA B CB

pn pn

H

h
u

h

p
h

u
h

p

u

v

y u

=

-

=

-

Â Â

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

¥
Œ ¬

0

1

0

2

L

==

È

Î

Í
Í
Í
Í
Í

˘

- - -

CB D

CAB CB D

CA B CA B CA B D

v v

v v v

p
v

p
v

p
v v

0 0

0

1 2 3

L

L

L L L L L

L ˚̊

˙
˙
˙
˙
˙

¥ +
Œ ¬pn p ny v()

.
1

Optimization Variables

Let m be the number of free control moves, and let z= [z0; ...; zm–1]. Then,

D

D

u

u p

J

z

z

M

m

()

()

0

1

0

1

L L

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙-

where JM depends on the choice of blocking moves. Together with the slack variable ɛ,
vectors z0, ..., zm–1 constitute the free optimization variables of the optimization problem.
In the case of systems with a single manipulated variables, z0, ..., zm–1 are scalars.

Consider the blocking moves depicted in the following graph.

2 Model Predictive Control Basics

2-16

Blocking Moves: Inputs and Input Increments for moves = [2 3 2]

This graph corresponds to the choice moves=[2 3 2], or, equivalently, u(0)=u(1),
u(2)=u(3)=u(4), u(5)=u(6), Δ u(0)=z0, Δ u(2)=z1, Δ u(5)=z2, Δ u(1)=Δ u(3)=Δ u(4)=Δ
u(6)=0.

Then, the corresponding matrix JM is

 Optimization Problem

2-17

J

I

I

I

M
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

0 0

0 0 0

0 0

0 0 0

0 0 0

0 0

0 0 0

Cost Function
Standard Form

The function to be optimized is

J z

u

u p

u

u p

target

target

(,)

()

()

()

()

e =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
-

È

Î

Í
Í
Í

˘0

1

0

1

L L

˚̊

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜ -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

T

u

target

targe

W

u

u p

u

u

2

0

1

0()

()

()

L L

tt

T

u

p

u

u p

W

u

()

()

()-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙1

0

1

2

D

D

D

DL

(()

()

()

()

()

0

1

1 1

L

L

Du p

y

y p

r

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- LL L L

r p

W

y

y p

r

r p

T

y

()

()

()

()

(

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-2

1 1

))

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

+ r ee
2

where

Wu w w w w w wu u
n

u
p
u

p
u

pu
=

- - -
diag

0 1 0 2 0 1 1 1 2 1, , , , ,
, ,..., ,..., , ,...,

,,

, , , ,
, ,..., ,..., ,

n
u

u u
n
u

p
u

p

u

W u w w w w w
u

()
=

- -D
D D D Ddiag
0 1 0 2 0 11 1,, ,

, , , ,

,...,

, ,..., ,...,

2 1

1 1 1 2 1

D Du
p n
u

y y
n

y
p

w

w w w w

u

Wy
y

-()
= diag

11 2
y

p
y

p n
yw w

y
, ,...,

, ,()
 (2-1)

Finally, after substituting u(k), Δu(k), y(k), J(z) can be rewritten as

J z z K z

r

r p

K

v

v p

T
u

T

r(,)

()

()

()

()

e r ee= + +
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘
2

2

1 0

D L L

˚̊

˙
˙
˙

+ - +
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

T

v
T

u

target

target

T

utK u K

u

u p

K x()

()

()

(1

0

1

L 00)
T

x

y
T

y y u
T

u u

K z

c W c c W c

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

+ + (2-2)

2 Model Predictive Control Basics

2-18

where

c S x S u H

v

v p

r

r p

y x u v= + - +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

È

Î

Í
Í
Í

˘

˚

˙
() ()

()

()

()

()

0 1

0 1

1 L L ˙̇
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- -

-

È

Î

Í
Í
Í

˘

˚

˙
c

I

I

u

u

u p

u

p

target

target

1

1

0

1

L L()

()

()

˙̇
˙

Here, I1 = … = Ip are identity matrices of size nu.

Note You may want the QP problem to remain strictly convex. If the condition number of
the Hessian matrix KΔU is larger than 1012, add the quantity 10*sqrt(eps) on each
diagonal term. You can use this solution only when all input rates are unpenalized
(WΔu=0) (see “Weights”).

Alternative Cost Function

If you are using the alternative cost function shown in “Alternative Cost Function” on
page 2-12, “Equation 2-2”, then “Equation 2-1” is replaced by the following:

W R R

W R R

W Q

u u u

u u u

y

= ()

= ()

=

blkdiag

blkdiag

blkdiag

,...,

,...,

, .

D D D

...,Q() (2-3)

In this case, the block-diagonal matrices repeat p times, for example, once for each step
in the prediction horizon.

You also have the option to use a combination of the standard and alternative forms. For
more information, see “Weights”.

Constraints

Next, consider the limits on inputs, input increments, and outputs along with the
constraint ɛ≥ 0.

 Optimization Problem

2-19

y V

y p V p

u V

u

y

y

u

min min

min min

min min

min

() ()

() ()

() ()

(

1 1

0 0

-

-

-

e

e

e

L

L

pp V p

u V

u p V p

u

u

u

- - -

-

- - -

1 1

0 0

1

) ()

() ()

() (

min

min min

min min

e

e

e

D

D

D

D

L

11

1

0

1

)

()

()

()

()

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

£

-

y

y p

u

u p

u

L

L

D (()

()

() ()max max

0

1

1 1

L

Du p

y V y

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

£

+e

LL

L

y p V p

u V

u p V p

y

u

u

max max

max max

max max

() ()

() ()

() ()

+

+

- + -

e

e

e

0 0

1 1

DD

D

D

D

u V

u p V p

u

u

max max

max max

() ()

() ()

0 0

1 1

+

- + -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

e

e

LÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

Note To reduce computational effort, the controller automatically eliminates extraneous
constraints, such as infinite bounds. Thus, the constraint set used in real time may be
much smaller than that suggested in this section.

Similar to what you did for the cost function, you can substitute u(k), Δu(k), y(k), and
obtain

M z M M M

v

v p

M u M xz v u x+ £ +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ - +ee lim

()

()

() ()

0

1 0L

 (2-4)

In this case, matrices Mz, Mɛ, Mlim, Mv, Mu, and Mx are obtained from the upper and lower
bounds and ECR values.

Unconstrained Model Predictive Control
The optimal solution is computed analytically

z K

r

r p

K

v

v p

K uu

T

r v*

()

()

()

()

(= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ --
D

1

1 0

1L L))

()

()

()
T

u

target

target

T

ut
T

xK

u

u p

K x K+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

Ê

Ë

Á
Á
ÁÁ

ˆ0

1

0L

¯̄

˜
˜
˜̃

T

2 Model Predictive Control Basics

2-20

and the model predictive controller sets Δu(k)=z*0, u(k)=u(k–1)+Δu(k).

See Also

More About
• “Adjust Disturbance and Noise Models” on page 3-50
• “Time-Varying Weights and Constraints” on page 3-6
• “Terminal Weights and Constraints” on page 3-36

 See Also

2-21

QP Solver
The model predictive controller QP solver converts an MPC optimization problem to the
general form QP problem

Min fx Hx x
x

()
1

2

œ œ

+

subject to the linear inequality constraints

Ax b≥

where

• x is the solution vector.
• H is the Hessian matrix. This matrix is constant when using implicit MPC without

online weight changes.
• A is a matrix of linear constraint coefficients. This matrix is constant when using

implicit MPC.
• b and f are vectors.

At the beginning of each control interval, the controller computes H, f, A, and b or, if they
are constant, retrieves their precomputed values.

The toolbox uses the KWIK algorithm [1] to solve the QP problem, which requires the
Hessian to be positive definite. In the first control step, KWIK uses a cold start, in which
the initial guess is the unconstrained solution described in “Unconstrained Model
Predictive Control” on page 2-20. If x satisfies the constraints, it is the optimal QP
solution, x*, and the algorithm terminates. Otherwise, at least one of the linear inequality
constraints must be satisfied as an equality. In this case, KWIK uses an efficient,
numerically robust strategy to determine the active constraint set satisfying the standard
optimization conditions. In the following control steps, KWIK uses a warm start. In this
case, the active constraint set determined at the previous control step becomes the initial
guess for the next.

Although KWIK is robust, consider the following:

• One or more linear constraints can be violated slightly due to numerical round-off
errors. The toolbox employs a nonadjustable relative tolerance. This tolerance allows

2 Model Predictive Control Basics

2-22

constraint violations of 10-6 times the magnitude of each term. Such violations are
considered normal and do not generate warning messages.

• The toolbox also uses a nonadjustable tolerance when testing for an optimal solution.
• The search for the active constraint set is an iterative process. If the iterations reach a

problem-dependent maximum, the algorithm terminates. For some controller
configurations, the default maximum iterations can be very large, which can make the
QP solver appear to stop responding (see “Optimizer”).

• If your problem includes hard constraints, these constraints can be infeasible
(impossible to satisfy). If the algorithm detects infeasibility, it terminates immediately.

In the last two situations, with an abnormal outcome to the search, the controller retains
the last successful control output. For more information, see, the mpcmove command. You
can detect an abnormal outcome and override the default behavior as you see fit.

Suboptimal QP Solution
For a given MPC application with constraints, there is no way to predict how many QP
solver iterations are required to find an optimal solution. Also, in real-time applications
the number of iterations can change dramatically from one control interval to the next. In
such cases, the worst-case execution time can exceed the limit that is allowed on the
hardware platform and determined by controller sample time.

You can guarantee the worst-case execution time for your MPC controller by applying a
suboptimal solution after the number of optimization iterations exceeds a specified
maximum value. To set the worst-case execution time, first determine the time needed for
a single optimization iteration by experimenting with your controller under nominal
conditions. Then, set an upper bound on the number of iterations per control interval. For
example, if it takes around 1 ms to compute each iteration on the hardware and the
controller sample time is 10 ms, set the maximum number of iterations to be no greater
than 10.

MPCobj.Optimizer.MaxIter = 10;

By default, an MPC controller object has a lower bound of 120 on the maximum number
of iterations.

By default, when the solver reaches the maximum number of solver iterations without an
optimal solution, the controller holds the manipulated variables at their previous values.
To use the suboptimal solution reached after the final iteration, set the
UseSuboptimalSolution option to true.

 QP Solver

2-23

MPCobj.Optimizer.UseSuboptimalSolution = true;

While the solution is not optimal, when applied, it satisfies all your specified constraints.

There is no guarantee that the suboptimal solution performs better than holding the
controller output constant. You can simulate your system using both approaches, and
select the configuration that provides better controller performance.

For an example, see “Use Suboptimal Solution in Fast MPC Applications” on page 5-89.

Custom QP Application
To access the built-in KWIK solver for applications that require solving online QP
problems, use the mpcqpsolver command. This option is useful for:

• Advanced MPC applications that are beyond the scope of Model Predictive Control
Toolbox software.

• Custom QP applications, including applications that require code generation.

Custom QP Solver
Model Predictive Control Toolbox software lets you specify a custom QP solver for your
MPC controller. This solver is called in place of the built-in qpkwik solver at each control
interval. This option is useful for:

• Validating your simulation results or generating code with a third-party solver.
• Large MPC problems where the built-in KWIK solver runs slowly or fails to find a

feasible solution.

You can define a custom solver for simulation or for code generation. In either instance,
you define the custom solver using a custom function and configure your controller to use
this custom function.

2 Model Predictive Control Basics

2-24

 Custom Solver
Function

Affected MATLAB
Functions

Affected Simulink
Blocks

Simulation

Set
Optimizer.Custom
Solver to true.

Optimizer.Custom
SolverCodeGen is
ignored.

mpcCustomSolver.
m

Supports:

• MATLAB code
• MEX files

• sim
• mpcmove
• mpcmoveAdapti

ve
• mpcmoveMultip

le
• mpcmoveCodeGe

neration

• MPC Controller
• Adaptive MPC

Controller
• Multiple MPC

Controllers

Code Generation

Set
Optimizer.Custom
SolverCodeGen to
true.

Optimizer.Custom
Solver is ignored.

mpcCustomSolverC
odeGen.m

Supports:

• MATLAB code
suitable for code
generation

• C/C++ code

• mpcMoveCodeGe
neration

Implement Custom Solver for Simulation

To simulate an MPC controller with a custom QP solver:

1 Copy the solver template file to your working folder or anywhere on the MATLAB
path, and rename it mpcCustomSolver.m. To copy the solver template to your
current working folder, type the following at the MATLAB command line.

src = which('mpcCustomSolver.txt');
dest = fullfile(pwd,'mpcCustomSolver.m');
copyfile(src,dest,'f');

2 Modify mpcCustomSolver.m by adding your own custom solver. Your solver must be
able to run in MATLAB and be implemented in a MATLAB script or MEX-file.

3 Configure your MPC controller MPCobj to use the custom solver.

MPCobj.Optimizer.CustomSolver = true;

The software now uses your custom solver for simulation in place of the built-in QP
KWIK solver.

 QP Solver

2-25

4 Simulate your controller. For more information, see “Simulation”.

For an example, see “Simulate MPC Controller with a Custom QP Solver” on page 5-78.

Implement Custom Solver for Code Generation

You can generate code for MPC controllers that use a custom QP solver written in either
C/C++ code or MATLAB code suitable for code generation. Doing so:

• At the command line requires MATLAB Coder™ software.
• In Simulink requires Simulink Coder or Simulink PLC Coder™ software.

To generate code for MPC controllers that use a custom QP solver:

1 Copy the solver template file to your working folder or anywhere on the MATLAB
path, and rename it mpcCustomSolverCodeGen.m. To copy the MATLAB code
template to your current working folder, type the following at the MATLAB command
line.

src = which('mpcCustomSolverCodeGen_TemplateEML.txt');
dest = fullfile(pwd,'mpcCustomSolverCodeGen.m');
copyfile(src,dest,'f');

Alternatively, you can use the C template.

src = which('mpcCustomSolverCodeGen_TemplateC.txt');
dest = fullfile(pwd,'mpcCustomSolverCodeGen.m');
copyfile(src,dest,'f');

2 Modify mpcCustomSolverCodeGen.m by adding your own custom solver.
3 Configure your MPC controller MPCobj to use the custom solver.

MPCobj.Optimizer.CustomSolverCodeGen = true;

The software now uses your custom solver for code generation in place of the built-in
QP KWIK solver.

4 Generate code for the controller. For more information, see “Generate Code and
Deploy Controller to Real-Time Targets” on page 9-2.

For an example, see “Simulate and Generate Code for MPC Controller with Custom QP
Solver” on page 9-61.

2 Model Predictive Control Basics

2-26

Implement Custom Solver for Simulation and Code Generation

You can implement the same custom QP solver for both simulation and code generation.
To do so, you must:

• Set both Optimizer.CustomSolver and Optimizer.CustomSolverCodeGen to
true.

• Create both mpcCustomSolver.m and mpcCustomSolverCodeGen.m.

During simulation, your controller uses the mpcCustomSolver.m custom function. For
code generation, your controller uses the mpcCustomSolverCodeGen.m custom
function.

You can specify the same MATLAB code in both custom solver functions, provided the
code is suitable for code generation.

If you implement mpcCustomSolverCodeGen.m using C/C++ code, create a MEX file
using the code. You can then call this MEX file from mpcCustomSolver.m. For more
information on creating and using MEX files, see “C MEX File Applications” (MATLAB).

Custom Solver Argument Descriptions

When you implement a custom QP solver, your custom function must have one of the
following signatures:

• When using a custom solver for simulation:

function [x,status] = mpcCustomSolver(H,f,A,b,x0)
• When using a custom solver for code generation:

function [x,status] = mpcCustomSolverCodeGen(H,f,A,b,x0)

In both cases, your custom solver has the following input and output arguments:

• H is a Hessian matrix, specified as an n-by-n symmetric positive definite matrix, where
n is the number of optimization variables.

• f is the multiplier of objective function linear term, specified as a column vector of
length n.

• A is a matrix of linear inequality constraint coefficients, specified as an m-by-n matrix,
where m is the number of constraints.

• b is the right side of inequality constraint equation, specified as a column vector of
length m.

 QP Solver

2-27

• x0 is an initial guess for the solution, specified as a column vector of length n.
• x is the optimal solution, returned as a column vector of length n.
• status is a solution validity indicator, returned as an integer according to the

following:

Value Description
> 0 x is optimal. status represents the number of iterations performed

during optimization.
0 The maximum number of iterations was reached without finding an

optimal solution. The solution, x, may be suboptimal or infeasible.

If the Optimizer.UseSuboptimalSolution property of your controller
is true, the controller uses the suboptimal solution in x when status is
0.

-1 The problem appears to be infeasible, that is, the constraint Ax b≥

cannot be satisfied.
-2 An unrecoverable numerical error occurred.

References
[1] Schmid, C. and L.T. Biegler, "Quadratic programming methods for reduced Hessian

SQP," Computers & Chemical Engineering, Vol. 18, Number 9, 1994, pp. 817–832.

See Also
mpc | mpcmove | mpcqpsolver

More About
• “Optimization Problem” on page 2-9
• “Simulate MPC Controller with a Custom QP Solver” on page 5-78

2 Model Predictive Control Basics

2-28

Controller Refinement

• “Setting Targets for Manipulated Variables” on page 3-2
• “Time-Varying Weights and Constraints” on page 3-6
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
• “Using Custom Input and Output Constraints” on page 3-12
• “Use Custom Constraints in Blending Process” on page 3-16
• “Nonlinear Blending Process with Custom Constraints” on page 3-26
• “Terminal Weights and Constraints” on page 3-36
• “Provide LQR Performance Using Terminal Penalty Weights” on page 3-39
• “Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”

on page 3-45
• “Adjust Disturbance and Noise Models” on page 3-50
• “Custom State Estimation” on page 3-59
• “Using Custom State Estimation” on page 3-60
• “Manipulated Variable Blocking” on page 3-65
• “Specifying Alternative Cost Function with Off-Diagonal Weight Matrices”

on page 3-68

3

Setting Targets for Manipulated Variables
This example shows how to design a model predictive controller for a plant with two
inputs and one output with target setpoint for a manipulated variable.

Define Plant Model

The linear plant model has two inputs and two outputs.

N1 = [3 1];
D1 = [1 2*.3 1];
N2 = [2 1];
D2 = [1 2*.5 1];
plant = ss(tf({N1,N2},{D1,D2}));
A = plant.A;
B = plant.B;
C = plant.C;
D = plant.D;
x0 = [0 0 0 0]';

Design MPC Controller

Create MPC controller.

Ts = 0.4; % Sample time
mpcobj = mpc(plant,Ts,20,5);

Specify weights.

mpcobj.weights.manipulated = [0.3 0]; % weight difference MV#1 - Target#1
mpcobj.weights.manipulatedrate = [0 0];
mpcobj.weights.output = 1;

Define input specifications.

mpcobj.MV = struct('RateMin',{-0.5;-0.5},'RateMax',{0.5;0.5});

Specify target setpoint u = 2 for the first manipulated variable.

mpcobj.MV(1).Target=2;

Simulation Using Simulink®

To run this example, Simulink® is required.

3 Controller Refinement

3-2

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate.

mdl = 'mpc_utarget';
open_system(mdl) % Open Simulink(R) Model
sim(mdl); % Start Simulation

 Setting Targets for Manipulated Variables

3-3

3 Controller Refinement

3-4

bdclose(mdl)

See Also
MPC Controller | mpc

More About
• “Signal Types”

 See Also

3-5

Time-Varying Weights and Constraints

Time-Varying Weights
As explained in “Optimization Problem” on page 2-9, the wy, wu, and w∆u weights can
change from one step in the prediction horizon to the next. Such a time-varying weight is
an array containing p rows, where p is the prediction horizon, and either ny or nu columns
(number of OVs or MVs).

Using time-varying weights provides additional tuning possibilities. However, it
complicates tuning. Recommended practice is to use constant weights unless your
application includes unusual characteristics. For example, an application requiring
terminal weights must employ time-varying weights. See “Terminal Weights and
Constraints” on page 3-36.

You can specify time-varying weights in MPC Designer. In the Weights dialog box,
specify a time-varying weight as a vector. Each element of the vector corresponds to one
step in the prediction horizon. If the length of the vector is less than p, the last weight
value applies for the remainder of the prediction horizon.

3 Controller Refinement

3-6

Note For any given input channel, you can specify different vector lengths for Rate
Weight and Weight. However, if you specify a time-varying Weight for any input
channel, you must specify a time-varying Weight for all inputs using the same length
weight vectors. Similarly, all input Rate Weight values must use the same vector length.

Also, if you specify a time-varying Weight for any output channel, you must specify a
time-varying Weight for all output using the same length weight vectors.

Time-Varying Constraints
When bounding an MV, OV, or MV increment, you can use a different bound value at each
prediction-horizon step. To do so, specify the bound as a vector of up to p values, where p

 Time-Varying Weights and Constraints

3-7

is the prediction horizon length (number of control intervals). If you specify n < p values,
the nth value applies for the remaining p – n steps.

You can remove constraints at selected steps by specifying Inf (or -Inf).

If plant delays prevent the MVs from affecting an OV during the first d steps of the
prediction horizon and you must include bounds on that OV, leave the OV unconstrained
for the first d steps.

You can specify time-varying constraints in MPC Designer. In the Constraints dialog box,
specify a vector for each time-varying constraint.

3 Controller Refinement

3-8

See Also

More About
• “Optimization Problem” on page 2-9
• “Terminal Weights and Constraints” on page 3-36
• “Vary Input and Output Bounds at Run Time”

 See Also

3-9

Constraints on Linear Combinations of Inputs and
Outputs

You can constrain linear combinations of plant input and output variables. For example,
you can constrain a particular manipulated variable (MV) to be greater than a linear
combination of two other MVs. The general form of such constraints is the following:

Eu k i k Fy k i k Sv k i k G Vk+() + +() + + £ +| | (|) .e

• εk — QP slack variable used for constraint softening (See “Constraint Softening” on
page 1-8)

• u(k+i|k) — nu MV values, in engineering units
• y(k+i|k) — ny predicted plant outputs, in engineering units
• v(k+i|k) — nv measured plant disturbance inputs, in engineering units
• E, F, S, G, and V are constants

As with the QP cost function, output prediction using the state observer makes these
constraints a function of the QP decision.

Mixed input/output constraints are dimensional by default.

Run-time updating of mixed input/output constraints is supported at the command line
and in Simulink. For more information, see “Update Constraints at Run Time” on page 5-
30.

Note Using mixed input/output constraints is not supported in MPC Designer.

See Also
getconstraint | setconstraint

More About
• “Optimization Problem” on page 2-9
• “Update Constraints at Run Time” on page 5-30
• “Using Custom Input and Output Constraints”

3 Controller Refinement

3-10

• “Nonlinear Blending Process with Custom Constraints”

 See Also

3-11

Using Custom Input and Output Constraints
This example shows how to design model predictive controller with mixed input/output
constraints.

Design MPC Controller

The basic setup of the MPC controller includes:

• A double integrator as the prediction model

• Prediction horizon of 20

• Control horizon of 20

• Input constraints -1 <= u(t) <= 1

plant = tf(1,[1 0 0]); % Prediction model
Ts = .1; % Sampling time
p = 20; % Prediction horizon
m = 20; % Control horizon
mpcobj = mpc(plant,Ts,p,m); % MPC object
mpcobj.MV = struct('Min',-1,'Max',1); % Input saturation constraints

Define Mixed Input/Output (I/O) Constraint

The sum of the input u(t) and output y(t) must be nonnegative and smaller than 1.2:

 0 <= u(t) + y(t) <= 1.2

To impose this combined (mixed) I/O constraint, formulate it as a set of inequality
constraints involving u(t) and y(t):

 u(t) + y(t) <= 1.2
 -u(t) + -y(t) <= 0

setconstraint(mpcobj,[1;-1],[1;-1],[1.2;0]);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')

3 Controller Refinement

3-12

 return
end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.

mdl = 'mpc_mixedconstraints';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

 Using Custom Input and Output Constraints

3-13

3 Controller Refinement

3-14

As you can see, the MPC Controller always keeps the sum u+y between 0 and 1.2 while
tracking the reference signal r=1.

bdclose(mdl);

See Also
setconstraint

More About
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10

 See Also

3-15

Use Custom Constraints in Blending Process
This example shows how to design an MPC controller for a blending process using custom
input and output constraints.

Blending Process

A continuous blending process combines three feeds in a well-mixed container to produce
a blend having desired properties. The dimensionless governing equations are:

where

• is the mixture inventory (in the container).
• is the plow rate for the ith feed.
• is the rate at which the blend is being removed from inventory, that is the demand.
• is the concentration of constituent in feed .
• is the concentration of constituent in the blend.
• is time.

In this example, there are two important constituents, = 1 and 2.

The control objectives are targets for the two constituent concentrations in the blend, and
the mixture inventory. The challenge is that the demand, , and feed compositions, ,
vary. The inventory, blend compositions, and demand are measured, but the feed
compositions are unmeasured.

At the nominal operating condition:

• Feed 1, , (mostly constituent 1) is 80% of the total inflow.
• Feed 2, , (mostly constituent 2) is 20%.
• Feed 3, , (pure constituent 1) is not used.

3 Controller Refinement

3-16

The process design allows manipulation of the total feed entering the mixing chamber, ,
and the individual rates of feeds 2 and 3. In other words, the rate of feed 1 is:

Each feed has limited availability:

The equations are normalized such that, at the nominal steady state, the mean residence
time in the mixing container is .

The constraint is imposed by an upstream process, and the constraints
 are imposed by physical limits.

Define Linear Plant Model

The blending process is mildly nonlinear, however you can derive a linear model at the
nominal steady state. This approach is quite accurate unless the (unmeasured) feed
compositions change. If the change is sufficiently large, the steady-state gains of the
nonlinear process change sign and the closed-loop system can become unstable.

Specify the number of feeds, ni, and the number of constituents, nc.

ni = 3;
nc = 2;

Specify the nominal flow rates for the three input streams and the output stream, or
demand. At the nominal operating condition, the output flow rate is equal to the sum of
the input flow rates.

Fin_nom = [1.6,0.4,0];
F_nom = sum(Fin_nom);

Define the nominal constituent compositions for the input feeds, where cin_nom(i,j)
represents the composition of constituent i in feed j.

cin_nom = [0.7 0.2 0.8;0.3 0.8 0];

Define the nominal constituent compositions in the output feed.

cout_nom = cin_nom*Fin_nom'/F_nom;

 Use Custom Constraints in Blending Process

3-17

Normalize the linear model such that the target demand is 1 and the product composition
is 1.

fin_nom = Fin_nom/F_nom;
gij = [cin_nom(1,:)/cout_nom(1); cin_nom(2,:)/cout_nom(2)];

Create a state-space model with feed flows F1, F2, and F3 as MVs:

A = [zeros(1,nc+1); zeros(nc,1) -eye(nc)];
Bu = [ones(1,ni); gij-1];

Change the MV definition to [FT, F2, F3] where F1 = FT - F2 - F3

Bu = [Bu(:,1), Bu(:,2)-Bu(:,1), Bu(:,3)-Bu(:,1)];

Add the measured disturbance, blend demand, as the 4th model input.

Bv = [-1; zeros(nc,1)];
B = [Bu Bv];

Define all of the states as measurable. The states consist of the mixture inventory and the
constituent concentrations.

C = eye(nc+1);

Specify that there is no direct feed-through from the inputs to the outputs.

D = zeros(nc+1,ni+1);

Construct the linear plant model.

Model = ss(A,B,C,D);
Model.InputName = {'F_T','F_2','F_3','F'};
Model.InputGroup.MV = 1:3;
Model.InputGroup.MD = 4;
Model.OutputName = {'V','c_1','c_2'};

Create MPC Controller

Specify the sample time, prediction horizon, and control horizon.

Ts = 0.1;
p = 10;
m = 3;

Create the controller.

3 Controller Refinement

3-18

mpcobj = mpc(Model,Ts,p,m);

The outputs are the inventory, y(1), and the constituent concentrations, y(2) and y(3).
Specify nominal values of unity after normalization for all outputs.

mpcobj.Model.Nominal.Y = [1 1 1];

Specify the normalized nominal values the manipulated variables, u(1), u(2) and u(3),
and the measured disturbance, u(4).

mpcobj.Model.Nominal.U = [1 fin_nom(2) fin_nom(3) 1];

Specify output tuning weights. Larger weights are assigned to the first two outputs
because we want to pay more attention to controlling the inventory, and the composition
of the first constituent.

mpcobj.Weights.OV = [1 1 0.5];

Specify the hard bounds (physical limits) on the manipulated variables.

umin = [0 0 0];
umax = [2 0.6 0.6];
for i = 1:3
 mpcobj.MV(i).Min = umin(i);
 mpcobj.MV(i).Max = umax(i);
 mpcobj.MV(i).RateMin = -0.1;
 mpcobj.MV(i).RateMax = 0.1;
end

The total feed rate and the rates of feed 2 and feed 3 have upper bounds. Feed 1 also has
an upper bound, determined by the upstream unit supplying it.

Specify Custom Constraints

Given the specified upper bounds on the feed 2 and 3 rates (0.6), it is possible that their
sum could be as much as 1.2. Since the nominal total feed rate is 1.0, the controller can
request a physically impossible condition, where the sum of feeds 2 and 3 exceeds the
total feed rate, which implies a negative feed 1 rate.

The following constraint prevents the controller from requesting an unrealistic value.

Specify this constraint in the form .

 Use Custom Constraints in Blending Process

3-19

E = [-1 1 1; 1 -1 -1];
g = [0;0.8];

Since no outputs are specified in the mixed constraints, set their coefficients to zero.

F = zeros(2,3);

Specify that both constraints are hard (ECR = 0).

v = zeros(2,1);

Specify zero coefficients for the measured disturbance.

h = zeros(2,1);

Set the custom constraints in the MPC controller.

setconstraint(mpcobj,E,F,g,v,h)

Open and Simulate Model in Simulink

sys = 'mpc_blendingprocess';
open_system(sys)
sim(sys)

3 Controller Refinement

3-20

 Use Custom Constraints in Blending Process

3-21

3 Controller Refinement

3-22

The MPC controller controls the blending process. The block labeled Blending
incorporates the previously described model equations and includes an unmeasured step
disturbance in the constituent 1 feed composition.

The Demand, , is modeled as a measured disturbance. The operator can vary the demand
value, and the resulting signal goes to both the process and the controller.

The model simulates the following scenario:

• At , the process is operating at steady state.
• At , the Total Demand decreases from to .
• At , there is a large step increase in the concentration of constituent 1 in feed 1,

from 1.17 to 2.17.

The controller maintains the inventory very close to its setpoint, but the severe
disturbance in the feed composition causes a prediction error and a large disturbance in
the blend composition, especially for constituent 1, c_1. However, the controller recovers
and drives the blend composition back to its setpoint.

Verify Effect of Custom Constraints

Plot the feed rate signals.

figure
plot(MVs.time,[MVs.signals(1).values(:,2), ...
 (MVs.signals(2).values + MVs.signals(3).values), ...
 (MVs.signals(1).values(:,2)-MVs.signals(2).values-MVs.signals(3).values)])
grid
legend('FT','F2+F3','F1')

 Use Custom Constraints in Blending Process

3-23

The total feed rate, FT, and the sum of feed rates F2 and F3 coincide for . If
the custom input constraints had not been included, the controller would have requested
an impossible negative feed 1 rate, F1, during this period.

bdclose(sys)

See Also
setconstraint

3 Controller Refinement

3-24

More About
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
• “Nonlinear Blending Process with Custom Constraints”

 See Also

3-25

Nonlinear Blending Process with Custom Constraints
This example shows how to use constraints on a combination of inputs and outputs to
control a nonlinear blending process.

About the Blending Process

A continuous blending process combines three streams in a well-mixed vessel to produce
a blend with desired properties. These properties depend on concentrations of two key
constituents:

• Feed rates

• Inventory of materials in the blending vessel.

Let the feed rates be F1, F2, and F3, and the total FT = F1 + F2 + F3. The plant
configuration allows F2, F3, and FT to be controlled independently. Therefore, F1 = FT -
F2 - F3 is determined by difference.

The control objective is to adjust the feed rates in order to keep the concentrations in the
vessel near target values. The MPC controller must also control the total inventory of
material in the blending vessel.

The process operates under the following constraints:

• Physical limitations require 0 <= FT <= 2 and 0 <= F2, F3 <= 0.6.

• Each feed has limited availability. For F2 and F3, maximum availability equals the
physical limit 0.6. For F1, a maximum availability of 0.8 is imposed by an upstream
process.

During operation, it is important to prevent the controller from requesting FT < F2 +
F3, which implies F1 < 0 which is impossible. Similarly, FT > F2 + F3 + 0.8,
implying F1 > 0.8 should also be avoided. This can be accomplished using MPC
controller with a mixed constraint (constraints on input and output combinations).

System disturbances include the feed stream compositions and the demand for blended
material, F, defined as the rate at which material leaves the blending vessel. This is set by
a downstream process. From the point of view of the blending process, F is a measured
disturbance. Feed composition disturbances are unmeasured.

Measurements available for feedback control include the constituent concentrations in
the vessel and the blend inventory.

3 Controller Refinement

3-26

Define Linear Model for the Blending Process

Create a linear approximation -- a state-space model based on the nominal operating
point:

ni = 3; % number of feed streams
nc = 2; % number of components
Fin_nom = [1.6, 0.4, 0]; % Nominal flow rate for the ith feed stream
F_nom = sum(Fin_nom); % Nominal flow rate for the exit stream (demand)
cin_nom = [0.7 0.2 0.8 % Nominal composition for jth constituent in the ith feed flow
 0.3 0.8 0];
cout_nom = cin_nom*Fin_nom'/F_nom; % Nominal product composition

Normalize the linear model such that the target demand is 1 and the product composition
is 1:

fin_nom = Fin_nom/F_nom;
gij = [cin_nom(1,:)/cout_nom(1)
 cin_nom(2,:)/cout_nom(2)];

Create the state-space model with feed flows [F1, F2, F3] as MVs:

A = [zeros(1,nc+1)
 zeros(nc,1) -eye(nc)];
Bu = [ones(1,ni)
 gij-1];
% Change MV definition to [FT, F2, F3] where F1 = FT - F2 - F3
Bu = [Bu(:,1), Bu(:,2)-Bu(:,1), Bu(:,3)-Bu(:,1)];
% Add the blend demand as the 4th model input, a measured disturbance
Bv = [-1
 zeros(nc,1)];
B = [Bu Bv];
% All the states (inventory and compositions) are measurable
C = eye(nc+1);
% No direct feed-through term
D = zeros(nc+1,ni+1);
% Construct the plant model
Model = ss(A, B, C, D);
Model.InputName = {'F_T','F_2','F_3','F'};
Model.InputGroup.MV = 1:3;
Model.InputGroup.MD = 4;
Model.OutputName = {'V','c_1','c_2'};

 Nonlinear Blending Process with Custom Constraints

3-27

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1;
p = 10;
m = 3;
mpcobj = mpc(Model, Ts, p, m);

The outputs are the inventory y(1) and the constituent concentrations y(2) and y(3).
Specify nominal values of unity after normalization:

mpcobj.Model.Nominal.Y = [1 1 1];

The manipulated variables are u1 = FT, u2 = F2, u3 = F3. Specify nominal values
after normalization:

mpcobj.Model.Nominal.U = [1 fin_nom(2) fin_nom(3) 1];

Specify output tuning weights. Larger weights are assigned to the first two outputs
because we pay more attention to controlling the inventory and composition of the first
blending material:

mpcobj.Weights.OV = [1 1 0.5];

Specify the hard bounds (physical limits) on the manipulated variables:

umin = [0 0 0];
umax = [2 0.6 0.6];
for i = 1:3
 mpcobj.MV(i).Min = umin(i);
 mpcobj.MV(i).Max = umax(i);
 mpcobj.MV(i).RateMin = -0.1;
 mpcobj.MV(i).RateMax = 0.1;
end

Specify Mixed Constraints

Impose the following constraints on the control system:

• Physical constraint F1 = FT - F2 - F3 >= 0.

• Availability constraint, F1 <= 0.8.

Putting these in the standard form, you obtain:

3 Controller Refinement

3-28

-FT + F2 + F3 <= 0 FT - F2 - F3 <= 0.8

This defines the input constraint coefficient matrix:

E = [-1 1 1; 1 -1 -1];

No outputs are specified in the mixed constraints, so set their coefficients to zero:

F = zeros(2,3);

Specify vector g in E*u + F*y <= g:

g = [0; 0.8];

Specify that both constraints are hard (ECR = 0):

v = zeros(2,1);

Specify zero coefficients for the measured disturbance:

h = zeros(2,1);

Include the mixed constraints in the controller object:

setconstraint(mpcobj, E, F, g, v, h);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Open and simulate the Simulink® model. The model includes a nonlinear model of the
blending process. The time scale is normalized such that one time unit is the vessel's
nominal mean residence time.

mdl = 'mpc_blendingprocess';
open_system(mdl);
sim(mdl);

 Nonlinear Blending Process with Custom Constraints

3-29

3 Controller Refinement

3-30

 Nonlinear Blending Process with Custom Constraints

3-31

3 Controller Refinement

3-32

The simulation shows:

• At time 0, the plant is operating steadily at the nominal conditions.

• At time 1, the demand decreases 10% (from 1 to 0.9).

• At time 2, there is a large (unmeasured) increase in the concentration of constituent 1
contained in feed 1. This is a nonlinear effect but the linear MPC compensates well
(target values are 1 for the three controlled outputs).

Validate No Mixed Constraint Violations

Plot the input and output signals to check if the mixed constraint is violated during
simulation:

figure
plot(MVs.time,[MVs.signals(1).values(:,2), ...
 (MVs.signals(2).values + MVs.signals(3).values), ...
 (MVs.signals(1).values(:,2)-MVs.signals(2).values-MVs.signals(3).values)])
grid
legend('FT','F2+F3','F1')

 Nonlinear Blending Process with Custom Constraints

3-33

The plot shows:

• When demand drops, the composition disturbance requires F1 to be decreased. During
the transient, F1 becomes zero. If the mixed constraint had not been included, it
would have gone negative, i.e., the controller's requests for FT, F2, and F3 would have
been impossible to satisfy, causing a performance degradation. With the constraint
included, the controller does its best given the physical limits.

• The availability constraint F1 <= 0.8 is maintained at all times.

3 Controller Refinement

3-34

bdclose(mdl)

See Also
setconstraint

More About
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10

 See Also

3-35

Terminal Weights and Constraints
Terminal weights are the quadratic weights Wy on y(t+p) and Wu on u(t + p – 1). The
variable p is the prediction horizon. You apply the quadratic weights at time k +p only,
such as the prediction horizon’s final step. Using terminal weights, you can achieve
infinite horizon control that guarantees closed-loop stability. However, before using
terminal weights, you must distinguish between problems with and without constraints.

Terminal constraints are the constraints on y(t + p) and u(t + p – 1), where p is the
prediction horizon. You can use terminal constraints as an alternative way to achieve
closed-loop stability by defining a terminal region.

Note You can use terminal weights and constraints only at the command line. See
setterminal.

For the relatively simple unconstrained case, a terminal weight can make the finite-
horizon model predictive controller behave as if its prediction horizon were infinite. For
example, the MPC controller behavior is identical to a linear-quadratic regulator (LQR).
The standard LQR derives from the cost function:

J u x k i Qx k i u k i Ru k iT T

i

() () () () ()= + + + + - + -

=

•

Â 1 1

1 (3-1)

where x is the vector of plant states in the standard state-space form:

x k Ax Bu k+() = + ()1 (3-2)

The LQR provides nominal stability provided matrices Q and R meet certain conditions.
You can convert the LQR to a finite-horizon form as follows:

J u x k i Qx k i u k i Ru k i x k p Q xT T

i

p
T

p() [() () () ()] ()= + + + + - + - + +

=

-

Â 1 1

1

1

(()k p+

 (3-3)

where Qp , the terminal penalty matrix, is the solution of the Riccati equation:

Q A Q A A Q B B Q B R B Q A Qp
T

p
T

p
T

p
T

p= - + +
-

()
1

 (3-4)

3 Controller Refinement

3-36

You can obtain this solution using the lqr command in Control System Toolbox™
software.

In general, Qp is a full (symmetric) matrix. You cannot use the “Standard Cost Function”
on page 2-9 to implement the LQR cost function. The only exception is for the first p – 1
steps if Q and R are diagonal matrices. Also, you cannot use the alternative cost function
on page 2-12 because it employs identical weights at each step in the horizon. Thus, by
definition, the terminal weight differs from those in steps 1 to p – 1. Instead, use the
following steps:

1 Augment the model (“Equation 3-2”) to include the weighted terminal states as
auxiliary outputs:

yaug(k) = Qcx(k)

where Qc is the Cholesky factorization of Qp such that Qp = Qc
TQc.

2 Define the auxiliary outputs yaug as unmeasured, and specify zero weight to them.
3 Specify unity weight on yaug at the last step in the prediction horizon using

setterminal.

To make the model predictive controller entirely equivalent to the LQR, use a control
horizon equal to the prediction horizon. In an unconstrained application, you can use a
short horizon and still achieve nominal stability. Thus, the horizon is no longer a
parameter to be tuned.

When the application includes constraints, the horizon selection becomes important. The
constraints, which are usually softened, represent factors not considered in the LQR cost
function. If a constraint becomes active, the control action deviates from the LQR (state
feedback) behavior. If this behavior is not handled correctly in the controller design, the
controller may destabilize the plant.

For an in-depth discussion of design issues for constrained systems see [1]. Depending on
the situation, you might need to include terminal constraints to force the plant states into
a defined region at the end of the horizon, after which the LQR can drive the plant signals
to their targets. Use setterminal to add such constraints to the controller definition.

The standard (finite-horizon) model predictive controller provides comparable
performance, if the prediction horizon is long. You must tune the other controller
parameters (weights, constraint softening, and control horizon) to achieve this
performance.

 Terminal Weights and Constraints

3-37

Tip Robustness to inaccurate model predictions is usually a more important factor than
nominal performance in applications.

References
[1] Rawlings, J. B., and David Q. Mayne “Model Predictive Control: Theory and Design”

Nob Hill Publishing, 2010.

See Also
setterminal

More About
• “Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”
• “Provide LQR Performance Using Terminal Penalty Weights” on page 3-39

3 Controller Refinement

3-38

Provide LQR Performance Using Terminal Penalty
Weights

It is possible to make a finite-horizon model predictive controller equivalent to an infinite-
horizon linear quadratic regulator (LQR) by using terminal penalty weights [1]. The
standard MPC cost function on page 2-9 is similar to the cost function for an LQR
controller with output weighting, as shown in the following equation:

J u y k i Qy k i u k i Ru k iT T

i

() () () () ()= + + + + - + -

=

•

Â 1 1

1

The LQR and MPC cost functions differ in the following ways:

• The LQR cost function forces y and u toward zero, whereas the MPC cost function
forces y and u toward nonzero setpoints. You can shift the MPC prediction model
origin to eliminate this difference and achieve zero nominal setpoints.

• The LQR cost function uses an infinite prediction horizon in which the manipulated
variable changes at each sampling instant. In the standard MPC cost function, the
horizon length is p, and the manipulated variable changes m times, where m is the
control horizon.

The two cost functions are equivalent if the MPC cost function is:

J u y k i Qy k i u k i Ru k i x k p Q x kT T

i

p
T

p() () () () () () (= + + + + - + - + +

=

-

Â 1 1

1

1

++ p)

where Qp is a terminal penalty weight applied at the final prediction horizon step, and the
prediction and control horizons are equal (p = m). The required Qp is the Ricatti matrix
calculated using the lqr and lqry commands.

Design MPC Controller Equivalent to LQR Controller
This example shows how to design an unconstrained MPC controller that provides
performance equivalent to an LQR controller.

 Provide LQR Performance Using Terminal Penalty Weights

3-39

Define Plant Model

The plant is a double integrator, represented as a state-space model in discrete time with
a sample time of 0.1 seconds. In this case the two plant states are measurable at the plant
outputs.

A = [1 0;0.1 1];
B = [0.1;0.005];
C = eye(2);
D = zeros(2,1);
Ts = 0.1;
Plant = ss(A,B,C,D,Ts);
Plant.InputName = {'u'};
Plant.OutputName = {'x_1','x_2'};

Design LQR Controller

Design an LQR controller with output feedback for the plant.

Q = eye(2);
R = 1;
[K,Qp] = lqry(Plant,Q,R);

Q and R are output and input weight matrices, respectively. Qp is the Ricatti matrix.

Design Equivalent MPC Controller

To implement the MPC cost function, compute , the Cholesky decomposition of ,

such that . Then define auxiliary unmeasured output variables ,

such that .

NewPlant = Plant;
L = chol(Qp);
set(NewPlant,'C',[C;L],'D',[D;zeros(2,1)],...
 'OutputName',{'x_1','x_2','Cx_1','Cx_2'})
NewPlant.InputGroup.MV = 1;
NewPlant.OutputGroup.MO = [1 2];
NewPlant.OutputGroup.UO = [3 4];

Create an MPC controller with equal prediction and control horizons.

3 Controller Refinement

3-40

P = 3;
M = 3;
MPCobj = mpc(NewPlant,Ts,P,M);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2 y3 y4

Specify weights for the manipulated variable and output variables for the first
prediction horizon steps. Use the square roots of the diagonal elements of the and
weight matrices from the LQR controller design. The standard weight matrix values

apply to , and has a zero penalty.

ywt = sqrt(diag(Q))';
uwt = sqrt(diag(R))';
MPCobj.Weights.OV = [ywt 0 0];
MPCobj.Weights.MV = uwt;

Specify terminal weights for the final prediction horizon step. On step , the original

has a zero penalty, and has a unit penalty. The input weight remains the same for the
terminal step.

U = struct('Weight',uwt);
Y = struct('Weight',[0 0 1 1]);
setterminal(MPCobj,Y,U)

Remove the default state estimator. Since the model states are measured directly, the
default state estimator is unnecessary.

setoutdist(MPCobj,'model',tf(zeros(4,1)))
setEstimator(MPCobj,[],C)

Compare Controller Performance

Compare the performance of the LQR controller, the MPC controller with terminal
weights, and a standard MPC controller.

Compute the closed-loop response for the LQR controller.

clsys = feedback(Plant,K);
Tstop = 6;

 Provide LQR Performance Using Terminal Penalty Weights

3-41

x0 = [0.2;0.2];
[yLQR,tLQR] = initial(clsys,x0,Tstop);

Compute the closed-loop response for the MPC controller with terminal weights.

SimOptions = mpcsimopt(MPCobj);
SimOptions.PlantInitialState = x0;
r = zeros(1,4);
[y,t,u] = sim(MPCobj,ceil(Tstop/Ts),r,SimOptions);

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Cost = sum(sum(y(:,1:2)*diag(ywt).*y(:,1:2))) + sum(u*diag(uwt).*u);

Compute the closed-loop response for a standard MPC controller with default prediction
and control horizons (,). To match the other controllers, remove the default
state estimator from the standard MPC controller.

MPCobjSTD = mpc(Plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

MPCobjSTD.Weights.MV = uwt;
MPCobjSTD.Weights.OV = ywt;
setoutdist(MPCobjSTD,'model',tf(zeros(2,1)))
setEstimator(MPCobjSTD,[],C)
SimOptions = mpcsimopt(MPCobjSTD);
SimOptions.PlantInitialState = x0;
r = zeros(1,2);
[ySTD,tSTD,uSTD] = sim(MPCobjSTD,ceil(Tstop/Ts),r,SimOptions);

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

CostSTD = sum(sum(ySTD*diag(ywt).*ySTD)) + sum(uSTD*uwt.*uSTD);

Compare the controller responses.

figure
h1 = line(tSTD,ySTD,'color','r');
h2 = line(t,y(:,1:2),'color','b');

3 Controller Refinement

3-42

h3 = line(tLQR,yLQR,'color','m','marker','o','linestyle','none');
xlabel('Time')
ylabel('Plant Outputs')
legend([h1(1) h2(1) h3(1)],'Standard MPC','MPC with Terminal Weights','LQR','Location','NorthEast')

The MPC controller with terminal weights has a faster settling time compared to the
standard MPC controller. The LQR controller and the MPC controller with terminal
weights perform identically.

As reported in [1], the computed Cost value of 2.23 for the MPC controller with terminal
weights is identical to the LQR controller cost. The cost for the standard MPC controller,
CostSTD, is 4.82, more than double the value of Cost.

 Provide LQR Performance Using Terminal Penalty Weights

3-43

You can improve the standard MPC controller performance by adjusting the horizons. For
example, if you increase the prediction and control horizons (,), the
standard MPC controller performs almost identically to the MPC controller with terminal
weights.

This example shows that using terminal penalty weights can eliminate the need to tune
the prediction and control horizons for the unconstrained MPC case. If your application
includes constraints, using a terminal weight is insufficient to guarantee nominal stability.
You must also choose appropriate horizons and possibly add terminal constraints. For
more information, see Rawlings and Mayne [2].

References
[1] Scokaert, P. O. M. and J. B. Rawlings "Constrained linear quadratic regulation" IEEE

Transactions on Automatic Control (1998), Vol. 43, No. 8, pp. 1163-1169.

[2] Rawlings, J. B., and David Q. Mayne "Model Predictive Control: Theory and Design"
Nob Hill Publishing, 2010.

See Also
setterminal

More About
• “Optimization Problem” on page 2-9
• “Terminal Weights and Constraints” on page 3-36

3 Controller Refinement

3-44

Designing Model Predictive Controller Equivalent to
Infinite-Horizon LQR

This example shows how to design an infinite-horizon model predictive controller by
setting the weights on the terminal predicted states.

Define Plant Model

The linear open-loop dynamic model is defined below. DC gain is also computed.

Ts = 0.1; % Sampling time
A = [0.8 Ts;0 0.9];
B = [0;Ts];
C = [1 0];
sysd = ss(A,B,C,0,Ts); % Discrete-time plant model
dcg = dcgain(sysd); % DC-gain of prediction model

Design an Infinite-Horizon LQR Controller

Compute the Riccati matrix associated with the LQR problem with output weight Qy and
input weight Qu:

Qy = 10; % Output weight: y'*Qy*y
Qu = 0.1; % Input weight: u'*Qu*y
[K,P] = lqry(sysd,Qy,Qu); % LQR gain and Riccati matrix

Weight the terminal state x'(t+p)*P*x(t+p), where p is the prediction horizon of the
MPC controller. Compute the Cholesky factor chol(P) of the Riccati matrix P, so that the
terminal penalty becomes:

x'(t+p)*P*x(t+p) = [chol(P)*x(t+p)]'*[chol(P)*x(t+p)] = yc'(t
+p)*yc(t+p)

where the new output yc(t+p) = chol(P)*x(t+p) and the state x(t) is assumed to
be fully measurable.

cholP = chol(P);

Change and augment the output vector to include the full state x and yc: Output = state
vector x + output yc such that yc'*yc = x'*P*x

sysd.C = [eye(2);cholP];
sysd.D = zeros(4,1);

 Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR

3-45

Convert the LQR Controller Into a Finite-Horizon MPC Controller

Label the new additional output signal yc(t) as unmeasured:

sysd = setmpcsignals(sysd,'UO',[3 4]); % Cholesky factor is not measured

-->Assuming unspecified output signals are measured outputs.

Create the controller object with sampling period, prediction and control horizons:

p = 3; % Prediction horizon (for any p>=1, unconstrained MPC = LQR)
m = p; % Control horizon = prediction horizon
mpcobj = mpc(sysd,Ts,p,m); % MPC object

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2 y3 y4

Specify actuator saturation limits as MV constraints.

mpcobj.MV = struct('Min',-3,'Max',3);

Define input and output weights at each step of the prediction horizon (terminal weights
are set later). Very small weights on input increments are included to make the QP
problem associated with the MPC controller positive definite:

mpcobj.Weights.OV = [sqrt(Qy) 0 0 0]; % Output weights (only on original output)
mpcobj.Weights.MV = sqrt(Qu); % Input weight
mpcobj.Weights.MVRate = 1e-5; % Very small weight on command input increments

Define set-points for the output and input signals:

ry = 1; % Output set point
mpcobj.MV.Target = ry/dcg; % Set-point for manipulated variable

Impose the terminal penalty x'(t+p)*P*x(t+p) by specifying a unit weight on yc(t+p)
= chol(P)*x(t+p). The terminal weight on u(t+p-1) remains the same, that is
sqrt(Qu):

Y = struct('Weight',[0 0 1 1]); % Weight on y(t+p)
U = struct('Weight',sqrt(Qu)); % Weight on u(t+p-1)
setterminal(mpcobj,Y,U); % Set terminal weight y'*y = x'*P*x

Since the measured output is the entire state, remove any additional output disturbance
integrator inserted by the MPC controller:

3 Controller Refinement

3-46

setoutdist(mpcobj,'model',ss(zeros(4,1)));

Remove the state estimator by defining the following measurement update equation:

x[n|n] = x[n|n-1] + I * (x[n]-x[n|n-1]) = x[n]

Because setterminal function resets state estimator to default value, we use
setEstimator function to change state estimator after setterminal is called.

setEstimator(mpcobj,[],eye(2)); % State estimate = state measurement

Compare MPC and LQR Controllers

Compute the gain of the MPC controller when constraints are inactive, and compare it to
the LQR gain:

mpcgain = dcgain(ss(mpcobj));
fprintf('\n(unconstrained) MPC: u(k)=[%8.8g,%8.8g]*x(k)',mpcgain(1),mpcgain(2));
fprintf('\n LQR: u(k)=[%8.8g,%8.8g]*x(k)\n\n',-K(1),-K(2));

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

(unconstrained) MPC: u(k)=[-2.8363891,-2.1454028]*x(k)
 LQR: u(k)=[-2.8363891,-2.1454028]*x(k)

The state feedback gains are exactly the same.

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Define a set-point for the new extended output vector containing x and chol(P)*x:

rx = (eye(2)-A)\B/dcg;
r = [rx;cholP*rx]; % Set point for extended prediction model

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.

 Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR

3-47

mdl = 'mpc_infinite';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

3 Controller Refinement

3-48

The closed-loop response shows good setpoint tracking performance.

bdclose('mpc_infinite');

See Also
setterminal

More About
• “Optimization Problem” on page 2-9
• “Terminal Weights and Constraints” on page 3-36

 See Also

3-49

Adjust Disturbance and Noise Models
A model predictive controller requires the following to reject unknown disturbances
effectively:

• Application-specific disturbance models
• Measurement feedback to update the controller state estimates

You can modify input and output disturbance models, and the measurement noise model
using the MPC Designer app and at the command line. You can then adjust controller
tuning weights to improve disturbance rejection.

Overview
MPC attempts to predict how known and unknown events affect the plant output
variables (OVs). Known events are changes in the measured plant input variables (MV
and MD inputs). The plant model of the controller predicts the impact of these events, and
such predictions can be quite accurate. For more information, see “MPC Modeling”.

The impacts of unknown events appear as errors in the predictions of known events.
These errors are, by definition, impossible to predict accurately. However, an ability to
anticipate trends can improve disturbance rejection. For example, suppose that the
control system has been operating at a near-steady condition with all measured OVs near
their predicted values. There are no known events, but one or more of these OVs suddenly
deviates from its prediction. The controller disturbance and measurement noise models
allow you to provide guidance on how to handle such errors.

Output Disturbance Model
Suppose that your plant model includes no unmeasured disturbance inputs. The MPC
controller then models unknown events using an output disturbance model. As shown in
“MPC Modeling”, the output disturbance model is independent of the plant, and its output
adds directly to that of the plant model.

Using MPC Designer, you can specify the type of noise that is expected to affect each
plant OV. In the app, on the Tuning tab, in the Design section, click Estimation Models
> Output Disturbance Model. In the Output Disturbance Model dialog box, in the
Update the model drop-down list, select specifying a custom model channel by
channel.

3 Controller Refinement

3-50

In the Specifications section, in the Disturbance column, select one of the following
disturbance models for each output:

• White Noise — Prediction errors are due to random zero-mean white noise. This
option implies that the impact of the disturbance is short-lived, and therefore requires
a modest, short-term controller response.

 Adjust Disturbance and Noise Models

3-51

• Random Step-like — Prediction errors are due to a random step-like disturbance,
which lasts indefinitely, maintaining a roughly constant magnitude. Such a disturbance
requires a more aggressive, sustained controller response.

• Random Ramp-like — Prediction errors are due to a random ramp-like disturbance,
which lasts indefinitely and tends to grow with time. Such a disturbance requires an
even more aggressive controller response.

Model Predictive Control Toolbox software represents each disturbance type as a model
in which white noise, with zero mean and unit variance, enters a SISO dynamic system
consisting of one of the following:

• A static gain — For a white noise disturbance
• An integrator in series with a static gain — For a step-like disturbance
• Two integrators in series with a static gain — For a ramp-like disturbance

You can also specify the white noise input Magnitude for each disturbance model,
overriding the assumption of unit variance. As you increase the noise magnitude, the
controller responds more aggressively to a given prediction error. The specified noise
magnitude corresponds to the static gain in the SISO model for each type of noise.

You can also view or modify the output disturbance model from the command line using
getoutdist and setoutdist respectively.

Measurement Noise Model
MPC also attempts to distinguish disturbances, which require a controller response, from
measurement noise, which the controller should ignore. Using MPC Designer, you can
specify the expected measurement noise magnitude and character. In the app, on the
Tuning tab, in the Design section, click Estimation Models > Measurement Noise
Model. In the Model Noise Model dialog box, in the Update the model drop-down list,
select specifying a custom model channel by channel.

In the Specifications section, in the Disturbance column, select a noise model for each
measured output channel. The noise options are the same as the output disturbance
model options.

3 Controller Refinement

3-52

White Noise is the default option and, in nearly all applications, should provide
adequate performance.

When you include a measurement noise model, the controller considers each prediction
error to be a combination of disturbance and noise effects. Qualitatively, as you increase
the specified noise Magnitude, the controller attributes a larger fraction of each
prediction error to noise, and it responds less aggressively. Ultimately, the controller

 Adjust Disturbance and Noise Models

3-53

stops responding to prediction errors and only changes its MVs when you change the OV
or MV reference signals.

Input Disturbance Model
When your plant model includes unmeasured disturbance (UD) inputs, the controller can
use an input disturbance model in addition to the standard output disturbance model. The
former provides more flexibility and is generated automatically by default. If the chosen
input disturbance model does not appear to allow complete elimination of sustained
disturbances, an output disturbance model is also added by default.

As shown in “MPC Modeling”, the input disturbance model consists of one or more white
noise signals, with unit variance and zero mean, entering a dynamic system. The outputs
of this system are the UD inputs to the plant model. In contrast to the output disturbance
model, input disturbances affect the plant outputs in a more complex way as they pass
through the plant model dynamics.

As with the output disturbance model, you can use MPC Designer to specify the type of
disturbance you expect for each UD input. In the app, on the Tuning tab, in the Design
section, click Estimation Models > Input Disturbance Model. In the Input
Disturbance Model dialog box, in the Update the model drop-down list, select
specifying a custom model channel by channel.

3 Controller Refinement

3-54

In the Specifications section, in the Disturbance column, select a noise model for each
measured output channel. The input disturbance model options are the same as the
output disturbance model options.

A common approach is to model unknown events as disturbances adding to the plant
MVs. These disturbances, termed load disturbances in many texts, are realistic in that
some unknown events are failures to set the MVs to the values requested by the
controller. You can create a load disturbance model as follows:

 Adjust Disturbance and Noise Models

3-55

1 Begin with an LTI plant model, Plant, in which all inputs are known (MVs and MDs).
2 Obtain the state-space matrices of Plant. For example:

[A,B,C,D] = ssdata(Plant);

3 Suppose that there are nu MVs. Set Bu = columns of B corresponding to the MVs.
Also, set Du = columns of D corresponding to the MVs.

4 Redefine the plant model to include nu additional inputs. For example:

Plant.B = [B Bu];
Plant.D = [D Du]);

5 To indicate that the new inputs are unmeasured disturbances, use setmpcsignals,
or set the Plant.InputGroup property.

This procedure adds load disturbance inputs without increasing the number of states in
the plant model.

By default, given a plant model containing load disturbances, the Model Predictive
Control Toolbox software creates an input disturbance model that generates nym step-like
load disturbances. If nym > nu, it also creates an output disturbance model with integrated
white noise adding to (nym – nu) measured outputs. If nym < nu, the last (nu – nym) load
disturbances are zero by default. You can modify these defaults using MPC Designer.

You can also view or modify the input disturbance model from the command line using
getindist and setindist respectively.

Restrictions
As discussed in “Controller State Estimation” on page 2-2, the plant, disturbance, and
noise models combine to form a state observer, which must be detectable using the
measured plant outputs. If not, the software displays a command-window error message
when you attempt to use the controller.

This limitation restricts the form of the disturbance and noise models. If any models are
defined as anything other than white noise with a static gain, their model states must be
detectable. For example, an integrated white noise disturbance adding to an unmeasured
OV would be undetectable. MPC Designer prevents you from choosing such a model.
Similarly, the number of measured disturbances, nym, limits the number of step-like UD
inputs from an input disturbance model.

3 Controller Refinement

3-56

By default, the Model Predictive Control Toolbox software creates detectable models. If
you modify the default assumptions (or change nym) and encounter a detectability error,
you can revert to the default case.

Disturbance Rejection Tuning
During the design process, you can tune the disturbance rejection properties of the
controller.

1 Before any controller tuning, define scale factors for each plant input and output
variable (see “Specify Scale Factors” on page 1-18). In the context of disturbance and
noise modeling, this makes the default assumption of unit-variance white noise inputs
more likely to yield good performance.

2 Initially, keep the disturbance models in their default configuration.
3 After tuning the cost function weights (see “Tune Weights” on page 1-33), test your

controller response to an unmeasured disturbance input other than a step
disturbance at the plant output. Specifically, if your plant model includes UD inputs,
simulate a disturbance using one or more of these. Otherwise, simulate one or more
load disturbances, that is, a step disturbance added to a designated MV. Both MPC
Designer and the sim command support such simulations.

4 If the response in the simulations is too sluggish, try one or more of the following to
produce more aggressive disturbance rejection:

• Increase all disturbance model gains by a multiplicative factor. In MPC Designer,
do this by increasing the magnitude of each disturbance. If this helps but is
insufficient, increase the magnitude further.

• Decrease the measurement noise gains by a multiplicative factor. In MPC
Designer, do this by increasing the measurement noise magnitude. If this helps
but is insufficient, increase the magnitude further.

• In MPC Designer, in the Tuning tab, drag the State Estimation slider to the
right. Moving towards Faster state estimation simultaneously increases the gains
for disturbance models and decreases the gains for noise models.

 Adjust Disturbance and Noise Models

3-57

If this helps but is insufficient, drag the slider further to the right.
• Change one or more disturbances to model that requires a more aggressive

controller response. For example, change the model from white noise disturbance
to a step-like disturbance.

Note Changing the disturbances in this way adds states to disturbance model,
which can cause violations of the state observer detectability restriction.

5 If the response is too aggressive, and in particular, if the controller is not robust
when its prediction of known events is inaccurate, try reversing the previous
adjustments.

See Also
Apps
MPC Designer

Functions
getindist | getoutdist | setindist | setmpcsignals | setoutdist

More About
• “MPC Modeling”
• “Controller State Estimation” on page 2-2
• “Design Controller Using MPC Designer”

3 Controller Refinement

3-58

Custom State Estimation
The Model Predictive Control Toolbox software allows the following alternatives to the
default state estimation approach:

• You can override the default Kalman gains, L and M. Obtain the default values using
getEstimator. Then, use setEstimator to override those values. These commands
assume that the columns of L and M are in the engineering units for the measured
plant outputs. Internally, the software converts them to dimensionless form.

• You can use the custom estimation option. This skips all Kalman gain calculations.
When the controller operates, at each control interval you must use an external
procedure to estimate the controller states, xc(k|k), providing this to the controller.

Note You cannot use custom state estimation with MPC Designer.

See Also
getEstimator | setEstimator

More About
• “Controller State Estimation” on page 2-2
• Using Custom State Estimation

 Custom State Estimation

3-59

Using Custom State Estimation
This example shows how to use measurable plant states in MPC control at run time.

Define Plant Model

The linear open-loop plant model is a double integrator.

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons.

Ts = 0.1;
p = 10;
m = 3;
mpcobj = mpc(plant, Ts, p, m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify actuator saturation limits as MV constraints.

mpcobj.MV = struct('Min',-1,'Max',1);

Specify the controller to use custom state estimation.

setEstimator(mpcobj,'custom');

Simulate Using MPCMOVE Command

Configure variables to store the closed-loop responses.

Tf = round(5/Ts);
YY = zeros(Tf,1);
UU = zeros(Tf,1);

Prepare the plant used in simulation.

sys = c2d(ss(plant),Ts);
xsys = [0;0];

Use MPCSTATE object to specify the initial controller states before simulation starts.

3 Controller Refinement

3-60

xmpc = mpcstate(mpcobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Simulate closed-loop response iteratively.

for t = 0:Tf
 % Update plant measurement.
 ysys = sys.C*xsys;
 % Compute MPC action. Because the plant states are measurable, use
 % these values for state estimation instead of the plant output.
 xmpc.Plant = xsys;
 u = mpcmove(mpcobj,xmpc,[],1);
 % Store signals.
 YY(t+1) = ysys;
 UU(t+1) = u;
 % Update plant states.
 xsys = sys.A*xsys + sys.B*u;
end
subplot(2,1,1)
plot(0:Ts:5,YY);
title('y');
subplot(2,1,2)
plot(0:Ts:5,UU);
title('u');

 Using Custom State Estimation

3-61

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the MPC Controller block dialog.

mdl = 'mpc_customestimation';
open_system(mdl);
sim(mdl);

3 Controller Refinement

3-62

 Using Custom State Estimation

3-63

The closed-loop responses are identical between simulations in MATLAB and Simulink.

fprintf('\nDifference between simulations in MATLAB and Simulink is %g\n',norm(UU-u));

Difference between simulations in MATLAB and Simulink is 7.66845e-14

bdclose(mdl)

See Also

More About
• “Controller State Estimation” on page 2-2
• “Custom State Estimation” on page 3-59

3 Controller Refinement

3-64

Manipulated Variable Blocking
Manipulated variable blocking is an alternative to the simpler control horizon concept
(see “Choose Sample Time and Horizons” on page 1-2). It has many of the same benefits.
It also provides more tuning flexibility and potential to smooth MV adjustments. To use
manipulated variable blocking, you divide the prediction horizon into a series of blocks.
The controller then holds the manipulated variable constant within each block.

A recommended approach to blocking is as follows:

• Divide the prediction horizon into 3-5 blocks.
• Try the following alternatives

• Equal block sizes (one-fifth to one-third of the prediction horizon, p)
• Block sizes increasing. Example, with p = 20, three blocks of duration 3, 7 and 10

intervals.

To use manipulated variable blocking, specify your control horizon as a vector of block
sizes. For example, the following figure represent control moves for a control horizon of p
= [2 3 2]:

 Manipulated Variable Blocking

3-65

For each block, the manipulated variable, u, is constant, that is:

• u(0) = u(1)
• u(2) = u(3) = u(4)
• u(5) = u(6)

Test the resulting controller in the same way that you test cost function weights. See
“Tune Weights” on page 1-33.

3 Controller Refinement

3-66

See Also
mpc | sim

More About
• “Optimization Problem” on page 2-9
• “Tune Weights” on page 1-33
• “Design MPC Controller for Plant with Delays” on page 1-44
• “Choose Sample Time and Horizons” on page 1-2
• “Design MPC Controller at the Command Line”
• “Design Controller Using MPC Designer”

 See Also

3-67

Specifying Alternative Cost Function with Off-Diagonal
Weight Matrices

This example shows how to use non-diagonal weight matrices in a model predictive
controller.

Define Plant Model and MPC Controller

The linear plant model has two inputs and two outputs.

plant = ss(tf({1,1;1,2},{[1 .5 1],[.7 .5 1];[1 .4 2],[1 2]}));
[A,B,C,D] = ssdata(plant);
Ts = 0.1; % sampling time
plant = c2d(plant,Ts); % convert to discrete time

Create MPC controller.

p=20; % prediction horizon
m=2; % control horizon
mpcobj = mpc(plant,Ts,p,m);

Define constraints on the manipulated variable.

mpcobj.MV = struct('Min',{-3;-2},'Max',{3;2},'RateMin',{-100;-100},'RateMax',{100;100});

Define non-diagonal output weight. Note that it is specified inside a cell array.

OW = [1 -1]'*[1 -1];
% Non-diagonal output weight, corresponding to ((y1-r1)-(y2-r2))^2
mpcobj.Weights.OutputVariables = {OW};
% Non-diagonal input weight, corresponding to (u1-u2)^2
mpcobj.Weights.ManipulatedVariables = {0.5*OW};

Simulate Using SIM Command

Specify simulation options.

Tstop = 30; % simulation time
Tf = round(Tstop/Ts); % number of simulation steps
r = ones(Tf,1)*[1 2]; % reference trajectory

Run the closed-loop simulation and plot results.

[y,t,u] = sim(mpcobj,Tf,r);
subplot(211)

3 Controller Refinement

3-68

plot(t,y(:,1)-r(1,1)-y(:,2)+r(1,2));grid
title('(y_1-r_1)-(y_2-r_2)');
subplot(212)
plot(t,u);grid
title('u');

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this part of the example.')
 return
end

 Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

3-69

Now simulate closed-loop MPC in Simulink®.

mdl = 'mpc_weightsdemo';
open_system(mdl);
sim(mdl)

3 Controller Refinement

3-70

 Specifying Alternative Cost Function with Off-Diagonal Weight Matrices

3-71

bdclose(mdl);

See Also
MPC Controller | mpc

More About
• “Optimization Problem” on page 2-9

3 Controller Refinement

3-72

Controller Analysis

• “Review Model Predictive Controller for Stability and Robustness Issues”
on page 4-2

• “Test Controller Robustness” on page 4-22
• “Compute Steady-State Gain” on page 4-34
• “Extract Controller” on page 4-36
• “Compare Multiple Controller Responses Using MPC Designer” on page 4-39
• “Adjusting Input and Output Weights Based on Sensitivity Analysis” on page 4-52
• “Understanding Control Behavior by Examining Optimal Control Sequence”

on page 4-57

4

Review Model Predictive Controller for Stability and
Robustness Issues

You can review your model predictive controller design for potential stability and
robustness problems. To do so:

• At the command line, use the review function.
• In MPC Designer, on the Tuning tab, in the Analysis section, click Review Design.

In both cases, the software generates a report that shows the results of the following
tests:

• MPC Object Creation — Test whether the controller specifications generate a valid
MPC controller. If the controller is invalid, additional tests are not performed.

• QP Hessian Matrix Validity — Test whether the MPC quadratic programming (QP)
problem for the controller has a unique solution. You must choose cost function
parameters (penalty weights) and horizons such that the QP Hessian matrix is
positive-definite.

• Closed-Loop Internal Stability — Extract the A matrix from the state-space
realization of the unconstrained controller, and then calculate its eigenvalues. If the
absolute value of each eigenvalue is less than or equal to 1 and the plant is stable,
then your feedback system is internally stable.

• Closed-Loop Nominal Stability — Extract the A matrix from the discrete-time state-
space realization of the closed-loop system; that is, the plant and controller connected
in a feedback configuration. Then calculate the eigenvalues of A. If the absolute value
of each eigenvalue is less than or equal to 1, then the nominal (unconstrained) system
is stable.

• Closed-Loop Steady-State Gains — Test whether the controller forces all controlled
output variables to their targets at steady state in the absence of constraints.

• Hard MV Constraints — Test whether the controller has hard constraints on both a
manipulated variable and its rate of change, and if so, whether these constraints may
conflict at run time.

• Other Hard Constraints — Test whether the controller has hard output constraints
or hard mixed input/output constraints, and if so, whether these constraints may
become impossible to satisfy at run time.

• Soft Constraints — Test whether the controller has the proper balance of hard and
soft constraints by evaluating the constraint ECR parameters.

4 Controller Analysis

4-2

• Memory Size for MPC Data — Estimate the memory size required by the controller
at run time.

You can also programmatically assess your controller design using the review function.
In this case, the pass/fail testing results are returned as a structure and the testing report
is suppressed.

The following example shows how to review your controller design at the command line
and address potential design issues.

Plant Model

The example application is a fuel gas blending process. The objective is to blend six gases
to obtain a fuel gas, which is then burned to provide process heating. The fuel gas must
satisfy three quality standards in order for it to burn reliably and with the expected heat
output. The fuel gas header pressure must also be controlled. Thus, there are four
controlled output variables. The manipulated variables are the six feed gas flow rates.

The plant inputs are:

1 Natural Gas (NG)
2 Reformed Gas (RG)
3 Hydrogen (H2)
4 Nitrogen (N2)
5 Tail Gas 1 (T1)
6 Tail Gas 2 (T2)

The plant outputs are:

1 High Heating Value (HHV)
2 Wobbe Index (WI)
3 Flame Speed Index (FSI)
4 Header Pressure (P)

For more information on the fuel gas blending problem, see [1].

Use the following linear plant model as the prediction model for the controller. This state-
space model, applicable at a typical steady-state operating point, uses the time unit of
hours.

 Review Model Predictive Controller for Stability and Robustness Issues

4-3

A = diag([-28.6120 -28.6822 -28.5134 -0.0281 -23.2191 -23.4266 ...
 -22.9377 -0.0101 -26.4877 -26.7950 -27.2210 -0.0083 ...
 -23.0890 -23.0062 -22.9349 -0.0115 -25.8581 -25.6939 ...
 -27.0793 -0.0117 -22.8975 -22.8233 -21.1142 -0.0065]);
B = zeros(24,6);
B(1: 4,1) = [4 4 8 32]';
B(5: 8,2) = [2 2 4 32]';
B(9:12,3) = [2 2 4 32]';
B(13:16,4) = [4 4 8 32]';
B(17:20,5) = [2 2 4 32]';
B(21:24,6) = [1 2 1 32]';
C = [diag([6.1510 7.6785 -5.9312 34.2689]) ...
 diag([-2.2158 -3.1204 2.6220 35.3561]) ...
 diag([-2.5223 1.1480 7.8136 35.0376]) ...
 diag([-3.3187 -7.6067 -6.2755 34.8720]) ...
 diag([-1.6583 -2.0249 2.5584 34.7881]) ...
 diag([-1.6807 -1.2217 1.0492 35.0297])];
D = zeros(4,6);
Plant = ss(A,B,C,D);

By default, all the plant inputs are manipulated variables.

Plant.InputName = {'NG','RG','H2','N2','T1','T2'};

By default, all the plant outputs are measured outputs.

Plant.OutputName = {'HHV','WI','FSI','P'};

To reflect sensor delays, add transport delays to the plant outputs.

Plant.OutputDelay = [0.00556 0.0167 0.00556 0];

Initial Controller Design

Construct an initial model predictive controller based on the design requirements. First,
for clarity, disable MPC command-window messages.

MPC_verbosity = mpcverbosity('off');

Create a controller with a:

• Sample time, Ts, of 20 seconds, specified in hours, which corresponds to the sample
time of the sensors.

• Prediction horizon, p, of 39 control intervals, which is approximately equal to the plant
settling time.

4 Controller Analysis

4-4

• Control horizon, m, that uses four blocked moves with lengths of 2, 6, 12, and 19
control intervals.

Ts = 20/3600;
p = 39;
m = [2 6 12 19];
Obj = mpc(Plant,Ts,p,m);

Specify the output measurement noise and nonzero nominal operating point for the
controller.

Obj.Model.Noise = ss(0.001*eye(4));
Obj.Model.Nominal.Y = [16.5 25 43.8 2100];
Obj.Model.Nominal.U = [1.4170 0 2 0 0 26.5829];

Specify lower and upper bounds for each manipulated variable (MV). Since all the
manipulated variables are flow rates of gas streams, their lower bounds are zero. By
default, all the MV constraints are hard (MinECR = 0 and MaxECR = 0).

MVmin = zeros(1,6);
MVmax = [15 20 5 5 30 30];
for i = 1:6
 Obj.MV(i).Min = MVmin(i);
 Obj.MV(i).Max = MVmax(i);
end

Specify lower and upper bounds for the manipulated variable increments. The bounds are
set large enough to allow full range of movement in one interval. By default, all the MV
rate constraints are hard (RateMinECR = 0 and RateMaxECR = 0).

for i = 1:6
 Obj.MV(i).RateMin = -MVmax(i);
 Obj.MV(i).RateMax = MVmax(i);
end

Specify lower and upper bounds for each plant output variable (OV). By default, all the OV
constraints are soft (MinECR = 1 and MaxECR = 1).

OVmin = [16.5 25 39 2000];
OVmax = [18.0 27 46 2200];
for i = 1:4
 Obj.OV(i).Min = OVmin(i);
 Obj.OV(i).Max = OVmax(i);
end

 Review Model Predictive Controller for Stability and Robustness Issues

4-5

Specify tuning weights for the manipulated variables. MV weights are specified based on
the known costs of each feed stream. Doing so tells MPC controller how to move the six
manipulated variables to minimize the cost of the blended fuel gas. The weights are
normalized such that the maximum weight is approximately 1.0.

Obj.Weights.MV = [54.9 20.5 0 5.73 0 0]/55;

Specify tuning weights for the manipulated variable increments. These weights are small
relative to the maximum MV weight so that the MVs are free to vary.

Obj.Weights.MVrate = 0.1*ones(1,6);

Specify tuning weights for the plant output variables. The OV weights penalize deviations
from specified setpoints and would normally be large relative to the other weights. For
this example, first consider the default values, which equal the maximum MV weight.

Obj.Weights.OV = [1,1,1,1];

Improve the Initial Design

Review the initial controller design. The review function generates and opens a report in
the Web Browser window.

review(Obj)

4 Controller Analysis

4-6

The review summary lists three warnings and one error. Review the warnings and error in
order. Click QP Hessian Matrix Validity and scroll down to the warning, which indicates
that the plant signal magnitudes differ significantly. Specifically, the pressure response is
much larger than the other signals.

 Review Model Predictive Controller for Stability and Robustness Issues

4-7

The OV spans indicated by the specified OV bounds are quite different, and the pressure
span is two orders of magnitude larger than the others. It is good practice to account for
the expected differences in signal magnitudes by specifying MPC scale factors. Since the
MVs are already weighted based on relative cost, specify scale factors only for the OVs.

Calculate OV spans.

OVspan = OVmax - OVmin;

Use these spans as scale factors.

for i = 1:4
 Obj.OV(i).ScaleFactor = OVspan(i);
end

To verify that setting output scale factors fixes the warning, review the updated controller
design.

review(Obj)

4 Controller Analysis

4-8

The next warning indicates that the controller does not drive the OVs to their targets at
steady state. To see a list of the nonzero gains, click Closed-Loop Steady-State Gains.

 Review Model Predictive Controller for Stability and Robustness Issues

4-9

4 Controller Analysis

4-10

The first entry in the list shows that adding a sustained disturbance of unit magnitude to
the HHV output would cause the HHV output to deviate about 0.0860 units from its steady-
state target, assuming no constraints are active. The second entry shows that a unit
disturbance in WI would cause a steady-state deviation, or offset, of about -0.0345 in HHV,
and so on.

Since there are six MVs and only four OVs, excess degrees of freedom are available.
Therefore, you might expect the controller to have no steady-state offsets. However, the
specified nonzero MV weights, which were selected to drive the plant toward the most
economical operating condition, are causing nonzero steady-state offsets.

Nonzero steady-state offsets are often undesirable but are acceptable in this application
because:

1 The primary objective is to minimize the blend cost. The gas quality (HHV, and so on)
can vary freely within the specified OV limits.

2 The small offset gain magnitudes indicate that the impact of disturbances is small.
3 The OV limits are soft constraints. Small, short-term violations are acceptable.

View the second warning by clicking Hard MV Constraints. This warning indicates a
potential conflict in hard constraints.

 Review Model Predictive Controller for Stability and Robustness Issues

4-11

If an external event causes NG to go far below its specified minimum, the constraint on its
rate of increase might make it impossible to return the NG within bounds in one control
interval. In other words, if you specify both MV.Min and MV.RateMax, the controller
would not be able to find an optimal solution if the most recent MV value is less than
(MV.Min - MV.RateMax). Similarly, there is a potential conflict when you specify both
MV.Max and MV.RateMin.

4 Controller Analysis

4-12

An MV constraint conflict would be unlikely in the gas blending application. However, it is
good practice to eliminate the possibility by softening one of the two constraints. Since
the MV minimum and maximum values are physical limits and the increment bounds are
not, soften the increment bounds.

for i = 1:6
 Obj.MV(i).RateMinECR = 0.1;
 Obj.MV(i).RateMaxECR = 0.1;
end

Review the updated controller design.

review(Obj)

The MV constraint conflict warning is fixed.

To view the error message, click Soft Constraints.

 Review Model Predictive Controller for Stability and Robustness Issues

4-13

The delay in the WI output makes it impossible to satisfy bounds on that variable within
the first three control intervals. The WI bounds are soft, but it is poor practice to include
unattainable constraints in a design. Therefore, modify the WI bound specifications such
that it is unconstrained until the fourth prediction horizon step.

Obj.OV(2).Min = [-Inf(1,3) OVmin(2)];
Obj.OV(2).Max = [Inf(1,3) OVmax(2)];

Rerunning the review command verifies that this change eliminates the error message, as
shown in the next step.

Assess Impact of Zero Output Weights

Given that the design requirements allow the OVs to vary freely within their limits,
consider removing their penalty weights.

Obj.Weights.OV = zeros(1,4);

Review the impact of this design change.

review(Obj)

4 Controller Analysis

4-14

There is a new warning regarding the QP Hessian matrix validity. To see the warning
details, click QP Hessian Matrix Validity.

 Review Model Predictive Controller for Stability and Robustness Issues

4-15

The review flags the zero weights on all four output variables. Since the zero weights are
consistent with the design requirements and the other Hessian tests indicate that the
quadratic programming problem has a unique solution, this warning can be ignored. To
see the second new warning, click Closed-Loop Steady-State Gains. The warning
shows another consequence of setting the four OV weights to zero. When an OV is not
penalized by a weight, the controller ignores any output disturbance added to the OV and
passes the disturbance through with no attenuation.

4 Controller Analysis

4-16

Since it is a design requirement, nonzero steady-state offsets are acceptable as lons as
the controller is able to hold all the OVs within their specified bounds. Therefore, it is a
good idea to examine how easily the soft OV constraints can be violated when
disturbances are present.

Review Soft Constraints

To see a list of soft constraints, click Soft Constraints. In this example, the soft
constraints are the upper and lower bound on each OV.

 Review Model Predictive Controller for Stability and Robustness Issues

4-17

4 Controller Analysis

4-18

The Impact Factor column shows that using the default MinECR and MaxECR values give
the pressure (P) a much higher priority than the other OVs. To make the priorities more
comparable, increase the pressure constraint ECR values, and adjust the others as well.
For example:

Obj.OV(1).MinECR = 0.5;
Obj.OV(1).MaxECR = 0.5;
Obj.OV(3).MinECR = 3;
Obj.OV(3).MaxECR = 3;
Obj.OV(4).MinECR = 80;
Obj.OV(4).MaxECR = 80;

Review the impact of this design change.

review(Obj)

In the Sensitivity Ratio column, all the sensitivity ratios are now less than unity, which
means that the soft constraints receive less attention than other terms in the MPC
objective function, such as deviations of the MVs from their target values. Therefore, it is
likely that an output constraint violation would occur.

To give the output constraints higher priority than other MPC objectives, increase the
Weights.ECR parameter from the default, 1e5, to a higher value, which hardens all the
soft OV constraints.

Obj.Weights.ECR = 1e8;

 Review Model Predictive Controller for Stability and Robustness Issues

4-19

Review the impact of this design change.

review(Obj)

The controller is now more sensitive to output constraint violations than to errors in
target tracking by a factor of 100.

Review Data Memory Size

To see the estimated memory size required to store the MPC data matrices used on
hardware, click Memory Size for MPC Data.

4 Controller Analysis

4-20

In this example, if the controller is running using single precision, it requires 250 KB of
memory to store its matrices. If the controller memory size exceeds the memory available
on the target system, redesign the controller to reduce its memory requirements.
Alternatively, increase the memory available on the target system.

Restore the MPC verbosity level, and close the web browser.

mpcverbosity(MPC_verbosity);
[~,hWebBrowser] = web;
close(hWebBrowser)

References

[1] Muller C. J., I. K. Craig, and N. L. Ricker. "Modeling, validation, and control of an
industrial fuel gas blending system." Journal of Process Control. Vol. 21, Number 6, 2011,
pp. 852-860.

See Also
review

 See Also

4-21

Test Controller Robustness
This example shows how to test the sensitivity of your model predictive controller to
prediction errors using simulations.

It is good practice to test the robustness of your controller to prediction errors. Classical
phase and gain margins are one way to quantify robustness for a SISO application.
Robust Control Toolbox™ software provides sophisticated approaches for MIMO systems.
It can also be helpful to run simulations.

Define Plant Model

For this example, use the CSTR model described in “Design Controller Using MPC
Designer”.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

Specify the signal names and signal types for the plant.

CSTR.InputName = {'T_c','C_A_i'};
CSTR.OutputName = {'T','C_A'};
CSTR.StateName = {'C_A','T'};
CSTR = setmpcsignals(CSTR,'MV',1,'UD',2,'MO',1,'UO',2);

Open MPC Designer, and import the plant model.

mpcDesigner(CSTR)

The app imports the plant model and adds it to the Data Browser. It also creates a
default controller and a default simulation scenario.

Design Controller

Typically, you would design your controller by specifying scaling factors, defining
constraints, and adjusting tuning weights. For this example, modify the controller sample
time, and keep the other controller settings at their default values.

In MPC Designer, on the Tuning tab, in the Horizon section, specify a Sample time of
0.25 seconds.

4 Controller Analysis

4-22

The Input Response and Output Response plots update to reflect the new sample time.

Configure Simulation Scenario

To test controller setpoint tracking and unmeasured disturbance rejection, modify the
default simulation scenario.

In the Data Browser, in the Scenarios sections, right-click scenario1, and select Edit.

In the Simulation Scenario dialog box, specify a Simulation duration of 50 seconds.

In the Reference Signals table, keep the default Ref of T setpoint configuration,
which simulates a unit-step change in the reactor temperature.

 Test Controller Robustness

4-23

To hold the concentration setpoint at its nominal value, in the second row, in the Signal
drop-down list, select Constant.

Simulate a unit-step unmeasured disturbance at a time of 25 seconds. In the
Unmeasured Disturbances table, in the Signal drop-down list, select Step, and specify
a Time of 25.

Click OK.

4 Controller Analysis

4-24

The app runs the simulation scenario, and updates the response plots to reflect the new
simulation settings. For this scenario, the internal model of the controller is used in the
simulation. Therefore, the simulation results represent the controller performance when
there are no prediction errors.

Define Perturbed Plant Models

Suppose that you want to test the sensitivity of your controller to plant changes that
modify the effect of the coolant temperature on the reactor temperature. You can simulate
such changes by perturbing element B(2,1) of the CSTR input-to-state matrix.

In the MATLAB Command Window, specify the perturbation matrix.

dB = [0 0;0.05 0];

 Test Controller Robustness

4-25

Create the two perturbed plant models.

perturbUp = CSTR;
perturbUp.B = perturbUp.B + dB;

perturbDown = CSTR;
perturbDown.B = perturbDown.B - dB;

Examine Step Responses of Perturbed Plants

To examine the effects of the plant perturbations, plot the plant step responses.

step(CSTR,perturbUp,perturbDown)
legend('CSTR','peturbUp','perturbDown')

4 Controller Analysis

4-26

Perturbing element B(2,1) of the CSTR plant changes the magnitude of the response of
the reactor temperature, T, to changes in the coolant temperature, Tc.

Import Perturbed Plants

In MPC Designer, on the MPC Designer tab, in the Import section, click Import
Plant.

In the Import Plant Model dialog box, select the perturbUp and perturbDown models.

 Test Controller Robustness

4-27

Click Import.

The app imports the models and adds them to the Data Browser.

Define Perturbed Plant Simulation Scenarios

Create two simulation scenarios that use the perturbed plant models.

In the Data Browser, in the Scenarios section, double-click scenario1, and rename it
accurate.

Right-click accurate, and click Copy. Rename accurate_Copy to errorUp.

Right-click errorUp, and select Edit.

In the Simulation Scenario dialog box, in the Plant used in simulation drop-down list,
select perturbUp.

4 Controller Analysis

4-28

Click OK.

Repeat this process for the second perturbed plant.

Copy the accurate scenario and rename it to errorDown.

Edit errorDown, selecting the perturbDown plant.

Examine errorUp Simulation Response

On the MPC Designer tab, in the Scenario section, click Plot Scenario > errorUp.

 Test Controller Robustness

4-29

The app creates the errorUp: Input and errorUp: Output tabs, and displays the
simulation response.

To view the accurate and errorUp responses side-by-side, drag the accurate: Output
tab into the left plot panel.

4 Controller Analysis

4-30

The perturbation creates a plant, perturbUp, that responds faster to manipulated
variable changes than the controller predicts. On the errorUp: Output tab, in the
Output Response plot, the T setpoint step response has about 10% overshoot with a
longer settling time. Although this response is worse than the response of the accurate
simulation, it is still acceptable. The faster plant response leads to a smaller peak error
due to the unmeasured disturbance. Overall, the controller is able to control the
perturbUp plant successfully despite the internal model prediction error.

Examine errorDown Simulation Response

On the MPC Designer tab, in the Scenario section, click Plot Scenario > errorDown.

The app creates the errorDown: Input and errorDown: Output tabs, and displays the
simulation response.

 Test Controller Robustness

4-31

To view the accurate and errorDown responses side-by-side, click the accurate:
Output tab in the left display panel.

The perturbation creates a plant, perturbDown, that responds slower to manipulated
variable changes than the controller predicts. On the errorDown: Output tab, in the
Output Response plot, the setpoint tracking and disturbance rejection are worse than
for the unperturbed plant.

4 Controller Analysis

4-32

Depending on the application requirements and the real-world potential for such plant
changes, the degraded response for the perturbDown plant may require modifications to
the controller design.

See Also
MPC Designer | mpc

More About
• “Design Controller Using MPC Designer”
• “Test an Existing Controller” on page 5-9

 See Also

4-33

Compute Steady-State Gain
This example shows how to analyze a model predictive controller using cloffset. This
function computes the closed-loop, steady-state gain for each output when a sustained, 1-
unit disturbance is added to each output. It assumes that no constraints are active.

Define a state-space plant model.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;

Create an MPC controller for the defined plant.

MPCobj = mpc(CSTR,1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Specify tuning weights for the measured output signals.

MPCobj.W.OutputVariables = [1 0];

Compute the closed-loop, steady-state gain for this controller.

DCgain = cloffset(MPCobj)

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

DCgain = 2×2

4 Controller Analysis

4-34

 0.0000 -0.0000
 2.3272 1.0000

DCgain(i,j) represents the gain from the sustained, 1-unit disturbance on output j to
measured output i.

The second column of DCgain shows that the controller does not react to a disturbance
applied to the second output. This disturbance is ignored because the tuning weight for
this channel is 0.

Since the tuning weight for the first output is nonzero, the controller reacts when a
disturbance is applied to this output, removing the effect of the disturbance
(DCgain(1,1) = 0). However, since the tuning weight for the second output is 0, this
controller reaction introduces a gain for output 2 (DCgain(2,1) = 2.3272).

See Also
cloffset | mpc

More About
• “MPC Modeling”

 See Also

4-35

Extract Controller
This example shows how to obtain an LTI representation of an unconstrained MPC
controller using ss. You can use this to analyze the frequency response and performance
of the controller.

Define a plant model. For this example, use the CSTR model described in “Design
Controller Using MPC Designer”.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;

Create an MPC controller for the defined plant using the same sample time, prediction
horizon, and tuning weights described in “Design MPC Controller at the Command Line”.

MPCobj = mpc(CSTR,1,15);

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

MPCobj.W.ManipulatedVariablesRate = 0.3;
MPCobj.W.OutputVariables = [1 0];

Extract the LTI state-space representation of the controller.

MPCss = ss(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Controller Analysis

4-36

Convert the original CSTR model to discrete form using the same sample time as the MPC
controller.

CSTRd = c2d(CSTR,MPCss.Ts);

Create an LTI model of the closed-loop system using feedback. Use the manipulated
variable and measured output for feedback, indicating a positive feedback loop. Using
negative feedback would lead to an unstable closed-loop system, because the MPC
controller is designed to use positive feedback.

CLsys = feedback(CSTRd,MPCss,1,1,1);

You can then analyze the resulting feedback system. For example, verify that all closed-
loop poles are within the unit circle.

poles = eig(CLsys)

poles = 6×1 complex

 0.5513 + 0.2700i
 0.5513 - 0.2700i
 0.6131 + 0.1110i
 0.6131 - 0.1110i
 0.9738 + 0.0000i
 0.9359 + 0.0000i

You can also view the system frequency response.

bode(CLsys)

 Extract Controller

4-37

See Also
feedback | mpc | ss

More About
• “Design MPC Controller at the Command Line”

4 Controller Analysis

4-38

Compare Multiple Controller Responses Using MPC
Designer

This example shows how to compare multiple controller responses using MPC Designer.
In particular, controllers with different output constraint configurations are compared.

Define Plant Model

Create a state-space model of your plant, and specify the MPC signal types.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);

plant = ss(A,B,C,D);
plant = setmpcsignals(plant,'MV',1,'UD',2,'MO',1,'UO',2);

Open MPC Designer, and import the plant model.

mpcDesigner(plant)

 Compare Multiple Controller Responses Using MPC Designer

4-39

The app adds the specified plant to the Data Browser along with a default controller,
mpc1, and a default simulation scenario, scenario1.

Define Simulation Scenario

Configure a disturbance rejection simulation scenario.

In MPC Designer, on the MPC Designer tab, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, specify a Simulation duration of 40 seconds.

In the Reference Signals table, in the Signal drop-down lists, select Constant to hold
the setpoints of both outputs at their nominal values.

4 Controller Analysis

4-40

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step. Use
the default Time and Step values.

This scenario simulates a unit step change in the unmeasured input disturbance at a time
of 1 second.

Click OK.

The app runs the updated simulation scenario and updates the controller response plots.
In the Output Response plots, the default controller returns the measured output, MO1,
to its nominal value, however the control action causes an increase in the unmeasured
output, UO1.

 Compare Multiple Controller Responses Using MPC Designer

4-41

Create Controller with Hard Output Constraints

Suppose that the control specifications indicate that such an increase in the unmeasured
disturbance is undesirable. To limit the effect of the unmeasured disturbance, create a
controller with a hard output constraint.

Note In practice, using hard output constraints is not recommended. Such constraints
can create an infeasible optimization problem when the output variable moves outside of
the constraint bounds due to a disturbance.

In the Data Browser, in the Controllers section, right-click mpc1, and select Copy.

The app creates a copy of the default controller and adds it to the Data Browser.

Double-click each controller and rename them as follows.

4 Controller Analysis

4-42

Right-click the mpcHard controller, and select Tune (make current). The app adds the
mpcHard controller response to the Input Response and Output Response plots.

 Compare Multiple Controller Responses Using MPC Designer

4-43

On the Tuning tab, in the Controller section, mpcHard is selected as the current MPC
Controller being tuned.

In the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, in the Max column,
specify a maximum output constraint of 3 for the unmeasured output (UO).

By default, all output constraints are soft, that is the controller can allow violations of the
constraint when computing optimal control moves.

To make the unmeasured output constraint hard, click Constraint Softening Settings,
and enter a MaxECR value of 0 for the UO. This setting places a strict limit on the
controller output that cannot be violated.

4 Controller Analysis

4-44

Click OK.

 Compare Multiple Controller Responses Using MPC Designer

4-45

The response plots update to reflect the new mpcHard configuration. In the Output
Response plot, in the UO1 plot, the mpcHard response is limited to a maximum of 3. As a
trade-off, the controller cannot return the MO1 response to its nominal value.

Tip If the plot legends are blocking the response signals, you can drag the legends to
different locations.

Create Controller with Soft Output Constraints

Suppose the deviation of MO1 from its nominal value is too large. You can soften the
output constraint for a compromise between the two control objectives: MO1 output
tracking and UO1 constraint satisfaction.

4 Controller Analysis

4-46

On the Tuning tab, in the Analysis section, click Store Controller to save a copy of
mpcHard in the Data Browser.

In the Data Browser, in the Controllers section, rename mpcHard_Copy to mpcSoft.

On the Tuning tab, in the Controller section, in the MPC Controller drop-down list,
select mpcSoft as the current controller.

The app adds the mpcSoft controller response to the Input Response and Output
Response plots.

In the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, enter a MaxECR value
of 100 for the UO to soften the constraint.

Click OK.

 Compare Multiple Controller Responses Using MPC Designer

4-47

The response plots update to reflect the new mpcSoft configuration. In the Output
Response plot, mpcSoft shows a compromise between the previous controller
responses.

Remove Default Controller Response Plot

To compare the two constrained controllers only, you can remove the default
unconstrained controller from the input and output response plots.

On the MPC Designer tab, in the Result section, click Compare Controllers >
mpcNone.

4 Controller Analysis

4-48

The app removes the mpcNone responses from the Input Response and Output
Response plots.

 Compare Multiple Controller Responses Using MPC Designer

4-49

You can toggle the display of any controller in the Data Browser except for controller
currently being tuned. Under Compare Controllers, the controllers with displayed
responses are indicated with check marks.

See Also
MPC Designer

More About
• “Specify Constraints” on page 1-6
• “Design Controller Using MPC Designer”

4 Controller Analysis

4-50

• “Design MPC Controller in Simulink”

 See Also

4-51

Adjusting Input and Output Weights Based on
Sensitivity Analysis

This example shows how to compute numerical derivatives of a closed-loop cumulated
performance index with respect to weights and use them to improve model predictive
controller performance.

Define Plant Model

plant = ss(tf({1,1,2;1 -1 -1},{[1 0 0],[1 0 0],[1 1];[1 2 8],[1 3],[1 1 3]}),'min');

Design MPC Controller

Create an MPC controller with initial design parameters.

Ts = 0.1; % Sampling time
p = 20; % Prediction horizon
m = 3; % Control horizon
mpcobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set constraints on manipulated variables and their rates of change.

for i = 1:3,
 mpcobj.MV(i).Min = -2;
 mpcobj.MV(i).Max = 2;
 mpcobj.MV(i).RateMin = -4;
 mpcobj.MV(i).RateMax = 4;
end

Set weights on output variables.

mpcobj.Weights.OutputVariables = [1 1];

Set weights on the rates of manipulated variables.

mpcobj.Weights.ManipulatedVariablesRate = [.1 .1 .1];

Weights on manipulated variables remain as the default values [0 0 0].

4 Controller Analysis

4-52

Performance Evaluation Setup

The default closed-loop performance is expressed through a set of weights that reflect the
desired closed-loop behavior. The weights are contained in a structure with the same
fields as the Weights property of an MPC object.

PerformanceWeights = mpcobj.weights;

In this example we make output weights more important than weights on MV rates in
evaluating closed-loop performance.

PerformanceWeights.OutputVariables = [100 100];
PerformanceWeights.ManipulatedVariablesRate = [1 1 1];

Note that "PerformanceWeights" is only used in the cumulated performance index
computation. It is not related to the weights specified inside the MPC object.

Setup Simulation Options

In this example, we only inspect the setpoint tracking scenario for the sensitivity analysis.

Tstop = 80; % time steps to simulate
r = ones(Tstop,1)*[1 1];% set point signals
v = []; % no measured disturbance
simopt = mpcsimopt;
simopt.PlantInitialState = zeros(8,1);

Compute Sensitivities

[J1, Sens1] = sensitivity(mpcobj, 'ISE', PerformanceWeights, Tstop, r, v, simopt);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

disp('')
disp('--------------')

disp('Sensitivity analysis')

Sensitivity analysis

disp('--------------')

 Adjusting Input and Output Weights Based on Sensitivity Analysis

4-53

disp('')
fprintf('Output weights: dJ/dWy = [%g, %g]\n',Sens1.OutputVariables);

Output weights: dJ/dWy = [-27345.7, 27166]

fprintf('Input weights: dJ/dWu = [%g, %g, %g]\n',Sens1.ManipulatedVariables);

Input weights: dJ/dWu = [3.33751, -125.827, -35.1067]

fprintf('Input-rate weights: dJ/dWdu = [%g, %g, %g]\n',Sens1.ManipulatedVariablesRate);

Input-rate weights: dJ/dWdu = [-7.30068, 10250.2, -8369.89]

disp('--------------')

disp('')

Adjust MPC Weights

Since we always want to reduce closed-loop cumulated performance index J, in this
example the derivatives with respect to output weights show that the weight on y1 should
be increased, as the corresponding derivative is negative, while the weight on y2 should
be decreased.

mpcobj_new = mpcobj;

Sensitivity less than 0 suggests increasing output weight from 1 to 2.

mpcobj_new.Weights.OutputVariables(1) = 2;

Sensitivity greater than 0 suggests decreasing output weight from 1 to 0.2.

mpcobj_new.Weights.OutputVariables(2) = 0.2;

Note that the sensitivity analysis only tells you which direction to change the parameters,
not how much. Trial and error is expected.

Verify Performance Changes

[y1, t1] = sim(mpcobj, Tstop, r, v, simopt);
[y2, t2] = sim(mpcobj_new, Tstop, r, v, simopt);

4 Controller Analysis

4-54

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

h = figure;
subplot(211)
plot(t2,r(:,1),t1,y1(:,1),t2,y2(:,1));grid
legend('reference','original tuning','new tuning')
title('Output #1')
subplot(212)
plot(t2,r(:,2),t1,y1(:,2),t2,y2(:,2));grid
legend('reference','original tuning','new tuning')
title('Output #2')

 Adjusting Input and Output Weights Based on Sensitivity Analysis

4-55

Verify Cumulated Performance Index is Reduced

Recompute just the cumulated performance index using the same performance measure.

J2 = sensitivity(mpcobj_new, 'ISE', PerformanceWeights, Tstop, r, v, simopt);

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

fprintf('Previous Cumulated Performance Index J1 = %g\n',J1);

Previous Cumulated Performance Index J1 = 128645

fprintf('New Cumulated Performance Index J2 = %g\n',J2);

New Cumulated Performance Index J2 = 116234

Note that the absolute value of the cumulated performance index is not important.

Use a User-Defined Performance Function

This is an example of how to write a user-defined performance function used by the
sensitivity method. In this example, custom function
mpc_performance_function.m illustrates how ISE performance index is implemented.

J3 = sensitivity(mpcobj,'mpc_performance_function',Tstop,r,PerformanceWeights);
fprintf('User Defined Cumulated Performance Index J3 = %g (same as J1).\n',J3);

User Defined Cumulated Performance Index J3 = 128645 (same as J1).

See Also
mpc | sensitivity

4 Controller Analysis

4-56

Understanding Control Behavior by Examining Optimal
Control Sequence

This example shows how to inspect the optimized sequence of manipulated variables
computed by a model predictive controller at each sample time.

The plant is a double integrator subject to input saturation.

Design MPC Controller

The basic setup of the MPC controller includes:

• A double integrator as the prediction model
• Prediction horizon of 20
• Control horizon of 10
• Input constraints -1 <= u(t) <= 1

DConfigure the MPC controller.

Ts = 0.1; % Sampling time
p = 20; % Prediction horizon
m = 10; % Control horizon
mpcobj = mpc(tf(1,[1 0 0]),Ts,p,m); % MPC object
mpcobj.MV = struct('Min',-1,'Max',1); % Input saturation constraints
nu=1; % Number of manipulated variables

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Simulate Model in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Open the Simulink® model and run the simulation.

 Understanding Control Behavior by Examining Optimal Control Sequence

4-57

mdl = 'mpc_sequence';
open_system(mdl)
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

4 Controller Analysis

4-58

 Understanding Control Behavior by Examining Optimal Control Sequence

4-59

The MPC Controller block has an mv.seq output port, which is enabled by selecting the
Optimal control sequence block parameter. Theis port outputs the optimal control
sequence computed by the controller at each sample time. The output signal is a (p+1)-
by-Nmv array, where p is prediction horizon and Nmv is the number of manipulated
variables.

In a simlar manner, the controller can output the optimal state sequence (x.seq) and the
optimal output sequence (y.seq).

The model exports this control sequence to the MATLAB® workspace at each simluation
step, logging the the data as useq.

Analyze Optimal Control Sequences

Plot the optimal control sequence at specific time instants.

times = [0 0.2 1 2 2.1 2.2 3 3.5 5];
figure('Name','Optimal sequence history');
for t = 1:9
 ct = times(t)*10+1;
 subplot(3,3,t)
 h = stairs(0:p,useq.signals.values(ct,:));

4 Controller Analysis

4-60

 h.LineWidth = 1.5;
 hold on
 plot((0:p)+.5,useq.signals.values(ct,:),'*r')
 xlabel('prediction step')
 ylabel('u')
 title(sprintf('Sequence (t=%3.1f)',useq.time(ct)))
 grid
 axis([0 p -1.1 1.1])
 hold off
end

The MPC controller uses the first two seconds to bring the output very close to the new
set point. The controller output is at the high limit (+1) for one second and then switched

 Understanding Control Behavior by Examining Optimal Control Sequence

4-61

to the low limit (-1) for the next second, which is the best control strategy under the input
constraint limits.

bdclose(mdl)

See Also
MPC Controller

4 Controller Analysis

4-62

Controller Simulation

• “Simulate Controller with Nonlinear Plant” on page 5-2
• “Test an Existing Controller” on page 5-9
• “Generate Simulink Model from MPC Designer” on page 5-13
• “Signal Previewing” on page 5-15
• “Improving Control Performance with Look-Ahead (Previewing)” on page 5-17
• “Simulating Model Predictive Controller with Plant Model Mismatch” on page 5-26
• “Update Constraints at Run Time” on page 5-30
• “Vary Input and Output Bounds at Run Time” on page 5-33
• “Tune Weights at Run Time” on page 5-40
• “Tuning Controller Weights” on page 5-42
• “Bumpless Transfer Between Manual and Automatic Operations” on page 5-50
• “Switching Controller Online and Offline with Bumpless Transfer” on page 5-58
• “Switching Controllers Based on Optimal Costs” on page 5-65
• “Monitoring Optimization Status to Detect Controller Failures” on page 5-73
• “Simulate MPC Controller with a Custom QP Solver” on page 5-78
• “Use Suboptimal Solution in Fast MPC Applications” on page 5-89
• “Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus

Dynamics” on page 5-98

5

Simulate Controller with Nonlinear Plant
You can use sim to simulate a closed-loop system consisting of a linear plant model and
an MPC controller.

If your plant is a nonlinear Simulink model, you must linearize the plant (see
“Linearization Using Linear Analysis Tool in Simulink Control Design”) and design a
controller for the linear model (see “Design MPC Controller in Simulink”). To simulate the
system, specify the controller in the MPC block parameter MPC Controller field and run
the closed-loop Simulink model.

Alternatively, your nonlinear model might be a MEX-file, or you might want to include
features unavailable in the MPC block, such as a custom state estimator. The mpcmove
function is the Model Predictive Control Toolbox computational engine, and you can use it
in such cases. The disadvantage is that you must duplicate the infrastructure that the sim
function and the MPC block provide automatically.

Nonlinear CSTR Application
The CSTR model described in “Linearize Simulink Models” is a strongly nonlinear system.
As shown in “Design MPC Controller in Simulink”, a controller can regulate this plant, but
degrades (and might even become unstable) if the operating point changes significantly.

The objective of this example is to redefine the predictive controller at the beginning of
each control interval so that its predictive model, though linear, represents the latest
plant conditions as accurately as possible. This will be done by linearizing the nonlinear
model repeatedly, allowing the controller to adapt as plant conditions change. For more
details on this approach, see [1] and [2].

Example Code for Successive Linearization
In the following code, the simulation begins at the nominal operating point of the CSTR
model (concentration = 8.57) and moves to a lower point (concentration = 2) where the
reaction rate is much higher. The required code is as follows:

[sys, xp] = CSTR_INOUT([],[],[],'sizes');
up = [10 298.15 298.15];
u = up(3);
tsave = [];
usave = [];

5 Controller Simulation

5-2

ysave = [];
rsave = [];
Ts = 1;
t = 0;
while t < 40
 yp = xp;
 % Linearize the plant model at the current conditions
 [a,b,c,d] = linmod('CSTR_INOUT',xp,up);
 Plant = ss(a,b,c,d);
 Plant.InputGroup.ManipulatedVariables = 3;
 Plant.InputGroup.UnmeasuredDisturbances = [1 2];
 Model.Plant = Plant;

 % Set nominal conditions to the latest values
 Model.Nominal.U = [0 0 u];
 Model.Nominal.X = xp;
 Model.Nominal.Y = yp;

 dt = 0.001;

 simOptions.StartTime = num2str(t);
 simOptions.StopTime = num2str(t+dt);
 simOptions.LoadInitialState = 'on';
 simOptions.InitialState = 'xp';
 simOptions.SaveTime = 'on';
 simOptions.SaveState = 'on';
 simOptions.LoadExternalInput = 'on';
 simOptions.ExternalInput = '[t up; t+dt up]';

 simOut = sim('CSTR_INOUT',simOptions);

 T = simOut.get('tout');
 XP = simOut.get('xout');
 YP = simOut.get('yout');

 Model.Nominal.DX = (1/dt)*(XP(end,:)' - xp(:));

 % Define MPC controller for the latest model
 MPCobj = mpc(Model, Ts);
 MPCobj.W.Output = [0 1];

 % Ramp the setpoint
 r = max([8.57 - 0.25*t, 2]);

 Simulate Controller with Nonlinear Plant

5-3

 % Compute the control action
 if t <= 0
 xd = [0; 0];
 x = mpcstate(MPCobj,xp,xd,[],u);
 end

 u = mpcmove(MPCobj,x,yp,[0 r],[]);

 % Simulate the plant for one control interval
 up(3) = u;

 simOptions.StartTime = num2str(t);
 simOptions.StopTime = num2str(t+Ts);
 simOptions.InitialState = 'xp';
 simOptions.ExternalInput = '[t up; t+Ts up]';

 simOut = sim('CSTR_INOUT',simOptions);

 T = simOut.get('tout');
 XP = simOut.get('xout');
 YP = simOut.get('yout');

 % Save results for plotting
 tsave = [tsave; T];
 ysave = [ysave; YP];
 usave = [usave; up(ones(length(T),1),:)];
 rsave = [rsave; r(ones(length(T),1),:)];

 xp = XP(end,:)';

 t = t + Ts;
end

figure(1)
plot(tsave,[ysave(:,2) rsave])
title('Residual Concentration')
figure(2)
plot(tsave,usave(:,3))
title('Coolant Temperature')

CSTR Results and Discussion
The plotted results appear below. Note the following points:

5 Controller Simulation

5-4

• The setpoint is being ramped from the initial concentration to the desired final value
(see the step-wise changes in the reactor concentration plot below). The reactor
concentration tracks this ramp smoothly with some delay (see the smooth curve), and
settles at the final state with negligible overshoot. The controller works equally well
(and achieves the final concentration more rapidly) for a step-wise setpoint change,
but it makes unrealistically rapid changes in coolant temperature (not shown).

• The final steady state requires a coolant temperature of 305.20 K (see the coolant
temperature plot below). An interesting feature of this nonlinear plant is that if one
starts at the initial steady state (coolant temperature = 298.15 K), stepping the
coolant temperature to 305.20 and holding will not achieve the desired final
concentration of 2. In fact, under this simple strategy the reactor concentration
stabilizes at a final value of 7.88, far from the desired value. A successful controller
must increase the reactor temperature until the reaction "takes off," after which it
must reduce the coolant temperature to handle the increased heat load. The
relinearization approach provides such a controller (see following plots).

 Simulate Controller with Nonlinear Plant

5-5

5 Controller Simulation

5-6

• Function linearize relinearizes the plant as its state evolves. This function was
discussed previously in “Linearization Using MATLAB Code”.

• The code also resets the linear model's nominal conditions to the latest values. Note,
however, that the first two input signals, which are unmeasured disturbances in the
controller design, always have nominal zero values. As they are unmeasured, the
controller cannot be informed of the true values. A non-zero value would cause an
error.

• Function mpc defines a new controller based on the relinearized plant model. The
output weight tuning ignores the temperature measurement, focusing only on the
concentration.

• At t = 0, the mpcstate function initializes the controller's extended state vector, x,
which is an mpcstate object. Thereafter, the mpcmove function updates it
automatically using the controller's default state estimator. It would also be possible to

 Simulate Controller with Nonlinear Plant

5-7

use an Extended Kalman Filter (EKF) as described in [1] and [2], in which case the
EKF would reset the mpcstate input variables at each step.

• The mpcmove function uses the latest controller definition and state, the measured
plant outputs, and the setpoints to calculate the new coolant temperature at each step.

• The Simulink sim function simulates the nonlinear plant from the beginning to the end
of the control interval. Note that the final condition from the previous step is being
used as the initial plant state, and that the plant inputs are being held constant during
each interval.

Remember that a conventional feedback controller or a fixed Model Predictive Control
Toolbox controller tuned to operate at the initial condition would become unstable as the
plant moves to the final condition. Periodic model updating overcomes this problem
automatically and provides excellent control under all conditions.

References
[1] Lee, J. H. and N. L. Ricker, "Extended Kalman Filter Based Nonlinear Model Predictive

Control," Ind. Eng. Chem. Res., Vol. 33, No. 6, pp. 1530–1541 (1994).

[2] Ricker, N. L., and J. H. Lee "Nonlinear Model Predictive Control of the Tennessee
Eastman Challenge Process," Computers & Chemical Engineering, Vol. 19, No. 9,
pp. 961–981 (1995).

5 Controller Simulation

5-8

Test an Existing Controller
This topic shows how to test an existing model predictive controller by adding it to a
Simulink model.

1 Open your Simulink model.
2 Add an MPC Controller block to the model.
3 If your controller includes measured disturbances, add the md inport to the MPC

Controller block.

Double-click the MPC Controller block.

In the Block Parameters dialog box, on the General tab, select Measured
disturbance (md).

Click OK.
4 Connect the plant and controller signals in the Simulink model. Connect:

• The plant inputs to the manipulated variable (mv) inport of the MPC Controller
block.

• The plant measured outputs to the measured output (mo) inport of the MPC
Controller block.

• The measured disturbances, if any, to the plant and to the measured disturbance
(md) inport of the MPC Controller block.

 Test an Existing Controller

5-9

• Any unmeasured disturbances or unmeasured outputs to their corresponding
plant inport and outport.

• The reference signals to the reference (ref) inport of the MPC Controller block.

5 Specify the controller.

Double-click the MPC Controller block.

In the Block Parameters dialog box, in the MPC Controller field, specify the name of
an mpc controller from the MATLAB workspace.

5 Controller Simulation

5-10

Click OK.
6 (Optional) Modify the controller.

After specifying a controller in the MPC Controller block, you can modify the
controller:

• Using MPC Designer:

• In the Block Parameters dialog box, click Design.
• In MPC Designer, tune the controller parameters.
• In the MPC Designer tab, in the Result section, click Update and Simulate

> Update Block Only.

The app exports the updated controller to the MATLAB workspace.
• Using commands to modify the controller object in the MATLAB workspace.

7 Run the Simulink model.

Tip If you do not have a Simulink model of your plant, you can generate one that uses
your MPC controller to control its internal plant model. For more information, see
“Generate Simulink Model from MPC Designer” on page 5-13.

 Test an Existing Controller

5-11

See Also
MPC Controller | MPC Designer | mpc

More About
• “Design MPC Controller in Simulink”
• “Design MPC Controller at the Command Line”
• “Generate Simulink Model from MPC Designer” on page 5-13

5 Controller Simulation

5-12

Generate Simulink Model from MPC Designer
This topic shows how to generate a Simulink model that uses the current model predictive
controller to control its internal plant model.

To create a Simulink model:

1 In the MPC Designer app, interactively design and tune your model predictive
controller.

2 On the Tuning tab, in the Analysis section, click the Export Controller arrow .

Alternatively, on the MPC Designer tab, in the Result section, click Export
Controller.

3
Under Export Controller, click Generate Simulink Model .

The app exports the current MPC controller and its internal plant model to the
MATLAB workspace and creates a Simulink model that contains an MPC Controller
block and a Plant block

Also, default step changes in the output setpoints are added to the References block.

 Generate Simulink Model from MPC Designer

5-13

Use the generated model to validate your controller design. The generated model serves
as a template for moving easily from the MATLAB design environment to the Simulink
environment.

You can also use the Simulink model to generate code and deploy it for real-time control
applications. For more information, see “Generate Code and Deploy Controller to Real-
Time Targets” on page 9-2.

See Also
MPC Controller | MPC Designer

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 9-2
• “Design MPC Controller in Simulink”
• “Generate MATLAB Code from MPC Designer” on page 1-87

5 Controller Simulation

5-14

Signal Previewing
By default, a model predictive controller assumes that the current reference and
measured disturbance signals remain constant during the controller prediction horizon.
By doing so, the controller emulates a conventional feedback controller.

However, as shown in “Optimization Problem” on page 2-9, these signals can vary within
the prediction horizon. If your application allows you to anticipate trends in such signals,
an MPC controller with signal previewing can improve reference tracking, measured
disturbance rejection, or both.

The following Model Predictive Control Toolbox commands provide previewing options:

• sim
• mpcmove
• mpcmoveAdaptive

For Simulink, the following blocks support previewing:

• MPC Controller
• Adaptive MPC Controller
• Multiple MPC Controllers

Previewing for explicit MPC controllers will be supported in a future release.

In MPC Designer, you can specify whether simulation scenarios use previewing. When
editing a scenario in the Simulation Scenario dialog box, select the Preview references
or Preview measured disturbances options.

 Signal Previewing

5-15

See Also

More About
• “Update Constraints at Run Time” on page 5-30
• “Improving Control Performance with Look-Ahead (Previewing)”

5 Controller Simulation

5-16

Improving Control Performance with Look-Ahead
(Previewing)

This example shows how to design a model predictive controller with look-ahead
(previewing) on reference and measured disturbance trajectories.

Define Plant Model

Define the plant model as a linear time invariant system with two inputs (one manipulated
variable and one measured disturbance) and one output.

plant = ss(tf({1,1},{[1 .5 1],[1 1]}),'min');

Get the state-space matrices of the plant model and specify the initial condition.

[A,B,C,D] = ssdata(plant);
Ts = 0.2; % Sample time
[Ad,Bd,Cd,Dd] = ssdata(c2d(plant,Ts));
x0 = [0;0;0];

Design Model Predictive Controller

Define type of input signals.

plant = setmpcsignals(plant,'MV',1,'MD',2);

Create the MPC object.

p = 20; % prediction horizon
m = 10; % control horizon
mpcobj = mpc(plant,Ts,p,m);
% Specify MV constraints.
mpcobj.MV = struct('Min',0,'Max',2);
% Specify weights
mpcobj.Weights = struct('MV',0,'MVRate',0.1,'Output',1);

Simulate Using SIM Command

Let us run closed-loop simulation in MATLAB.

Tstop = 30; % simulation time.
time = (0:Ts:(Tstop+p*Ts))'; % time vector
r = double(time>10); % reference signal
v = -double(time>20); % measured disturbance signal

 Improving Control Performance with Look-Ahead (Previewing)

5-17

Use MPCSIMOPT object to turn on previewing feature in the closed-loop simulation.

params = mpcsimopt(mpcobj);
params.MDLookAhead='on';
params.RefLookAhead='on';

Simulate in MATLAB with SIM command.

YY1 = sim(mpcobj,Tstop/Ts+1,r,v,params);

Simulate Using MPCMOVE Command

Store the closed-loop MPC trajectories.

YY2 = [];
% Use MPCSTATE object to specify the initial state of MPC
x = x0;
xmpc = mpcstate(mpcobj);

Start simulation loop

for ct=0:round(Tstop/Ts),
 % Plant equations: output update
 y = C*x + D(:,2)*v(ct+1);
 % Store signals
 YY2 = [YY2,y]; %#ok<*AGROW>
 % Compute MPC law. Extracts references r(t+1),r(t+2),...,r(t+p) and
 % measured disturbances v(t),v(t+1),...,v(t+p) for previewing.
 u = mpcmove(mpcobj,xmpc,y,r(ct+2:ct+p+1),v(ct+1:ct+p+1));
 % Plant equations: state update
 x = Ad*x+Bd(:,1)*u+Bd(:,2)*v(ct+1);
end

Plot results.

figure
t = 0:Ts:Tstop;
plot(t,r(1:length(t)),'c:',t,YY1,'r-',t,YY2,'bo');
xlabel('Time');
ylabel('Plant Output');
legend({'Reference';'From SIM command';'From MPCMOVE command'},'Location','SouthEast');
grid

5 Controller Simulation

5-18

The responses are identical.

Optimal predicted trajectories are returned by MPCMOVE. Assume to you start from the
current state and have a set-point change to 0.5 in 5 steps, and assume the measured
disturbance has disappeared.

r1 = [ones(5,1);0.5*ones(p-5,1)];
v1 = zeros(p+1,1);
[~,Info] = mpcmove(mpcobj,xmpc,y,r1(1:p),v1(1:p+1));

Extract the optimal predicted trajectories and plot them.

topt = Info.Topt;
yopt = Info.Yopt;

 Improving Control Performance with Look-Ahead (Previewing)

5-19

uopt = Info.Uopt;
figure
subplot(211)
title('Optimal sequence of predicted outputs')
stairs(topt,yopt);
grid
axis([0 p*Ts -2 2]);
subplot(212)
title('Optimal sequence of manipulated variables')
stairs(topt,uopt);
axis([0 p*Ts -2 2]);
grid

5 Controller Simulation

5-20

Obtain LTI Representation of MPC Controller with Previewing

When the constraints are not active, the MPC controller behaves like a linear controller.
You can get the state-space form of the MPC controller, with y, [r(t+1);r(t+2);...;r(t+p)],
and [v(t);v(t+1);...;v(t+p)] as inputs to the controller.

Get state-space matrices of linearized controller.

LTI = ss(mpcobj,'rv','on','on');
[AL,BL,CL,DL] = ssdata(LTI);

Store the closed-loop MPC trajectories in arrays YY,RR.

YY3 = [];
% Setup initial state of the MPC controller
x = x0;
xL = [x0;0;0];

Start main simulation loop

for ct=0:round(Tstop/Ts),
 % Plant output update
 y = Cd*x + Dd(:,2)*v(ct+1);
 % Save output and refs value
 YY3 =[YY3,y];
 % Compute the linear MPC control action
 u = CL*xL + DL*[y;r(ct+2:ct+p+1);v(ct+1:ct+p+1)];
 % Note that the optimal move provided by MPC would be: mpcmove(MPCobj,xmpc,y,ref(t+2:t+p+1),v(t+1:t+p+1));
 % Plant update
 x = Ad*x + Bd(:,1)*u + Bd(:,2)*v(ct+1);
 % Controller update
 xL = AL*xL + BL*[y;r(ct+2:ct+p+1);v(ct+1:ct+p+1)];
end

Plot results.

figure
plot(t,r(1:length(t)),'c:',t,YY3,'r-');
xlabel('Time');
ylabel('Plant Output');
legend({'Reference';'Unconstrained MPC'},'Location','SouthEast');
grid

 Improving Control Performance with Look-Ahead (Previewing)

5-21

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
time = (0:Ts:(Tstop+p*Ts))'; % time vector
r = double(time>10); % reference signal
v = -double(time>20); % measured disturbance signal
% Define the reference signal in structure
ref.time = time;
ref.signals.values = r;

5 Controller Simulation

5-22

% Define the measured disturbance
md.time = time;
md.signals.values = v;
% Open Simulink model
mdl = 'mpc_preview';
open_system(mdl)
% Start simulation
sim(mdl,Tstop);

Plot results.

 Improving Control Performance with Look-Ahead (Previewing)

5-23

figure
t = 0:Ts:Tstop;
plot(t,r(1:length(t)),'c:',t,YY1,'r-',t,YY2,'bo',t,ySL,'gx');
xlabel('Time');
ylabel('Plant Output');
legend({'Reference';'From SIM command';'From MPCMOVE command';'From Simulink'},'Location','SouthEast');
grid

The responses are identical.

5 Controller Simulation

5-24

bdclose('mpc_preview')

See Also
MPC Controller | mpc

More About
• “Signal Previewing” on page 5-15

 See Also

5-25

Simulating Model Predictive Controller with Plant Model
Mismatch

This example shows how to simulate a model predictive controller under a mismatch
between the predictive plant model and the actual plant.

The predictive plant model has 2 manipulated variables, 2 unmeasured input
disturbances, and 2 measured outputs. The actual plant has different dynamics.

Define Plant Model

Define the parameters of the nominal plant which the MPC controller is based on.
Systems from MV to MO and UD to MO are identical.

p1 = tf(1,[1 2 1])*[1 1; 0 1];
plant = ss([p1 p1],'min');
plant.InputName = {'mv1','mv2','ud3','ud4'};

Design MPC Controller

Define inputs 1 and 2 as manipulated variables, 3 and 4 as unmeasured disturbances.

plant = setmpcsignals(plant,'MV',[1 2],'UD',[3 4]);
% Create the controller object with sampling period, prediction and control
% horizons:
mpcobj = mpc(plant,1,40,2);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

For unmeasured input disturbances, the MPC controller will use the following
unmeasured disturbance model.

distModel = eye(2,2)*ss(-.5,1,1,0);
mpcobj.Model.Disturbance = distModel;

Define the Real Plant Model Used in Simulation

Define the parameters of the actual plant in closed loop with the MPC controller.

p2 = tf(1.5,[0.1 1 2 1])*[1 1; 0 1];
psim = ss([p2 p2],'min');
psim = setmpcsignals(psim,'MV',[1 2],'UD',[3 4]);

5 Controller Simulation

5-26

Simulate Closed-Loop Response Using the SIM Command

Define reference trajectories and unmeasured disturbances entering the actual plant.

dist = ones(1,2); % unmeasured disturbance signal
refs = [1 2]; % output reference signal
Tf = 20; % total number of simulation steps

Create an MPC simulation object.

options = mpcsimopt(mpcobj);
options.unmeas = dist; % unmeasured disturbance signal
options.model = psim; % real plant model

Run the closed-loop MPC simulation with model mismatch and unforeseen unmeasured
disturbance inputs.

sim(mpcobj,Tf,refs,options);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.

 Simulating Model Predictive Controller with Plant Model Mismatch

5-27

5 Controller Simulation

5-28

The closed loop tracking performance is acceptable with the presence of unmeasured
disturbances.

See Also
mpc

More About
• “MPC Modeling”

 See Also

5-29

Update Constraints at Run Time
To compensate for changing operating conditions, you can update constraints on plant
inputs and outputs at run time. You can update the saturation limits for input and output
signals as well as linear mixed input/output constraints.

Run-time constraint updating supports code generation.

Update Bounds on Input and Output Signals at Run Time
You can update the bounds on plant input and output signals at run time. To do so, first
define initial signal bounds when designing your MPC controller. For more information,
see “Specify Constraints” on page 1-6. If you do not specify initial bounds for a given
signal, you cannot constrain that signal at run time.

To update signal bounds during a command-line simulation, at each control interval, set
the corresponding properties of an mpcmoveopt object before calling mpcmove,
mpcmoveAdaptive, or mpcmoveMultiple. To update:

• Manipulated variable lower and upper bounds, set the MVMin and MVMax properties,
respectively.

• Output variable lower and upper bounds, set the OutputMin and OutputMax
properties, respectively.

You can also update input and output bounds at run-time in Simulink for the MPC
Controller, Adaptive MPC Controller, and Multiple MPC Controllers blocks. The following
table lists the bounds, their associated block ports, and the block parameters to select to
enable the ports.

Bounds Port Name Block Parameter
Lower bounds on
manipulated variables

umin Lower MV Limits

Upper bounds on
manipulated variables

umax Upper MV Limits

Lower bounds on output
variables

ymin Lower OV Limits

Upper bounds on output
variables

ymax Upper OV Limits

5 Controller Simulation

5-30

Connect signals to these ports that specify the run-time values of the bounds for each
variable. If there is more than one manipulated variable or output variable, connect a
vector signal to the corresponding ports. For example, if there are three output variables,
connect a three-element vector signal to the ymin and ymax ports. If a variable is
unconstrained in the controller object, then the connected signal value is ignored.

If you define time-varying constraints in your controller object, the new bounds are
applied to the first finite values in the prediction horizon. All subsequent prediction
horizon values adjust to maintain the same profile across the prediction horizon; that is,
they change by the same amount.

For an example, see “Vary Input and Output Bounds at Run Time” on page 5-33.

Update Mixed Input/Output Constraints at Run Time
You can update mixed input/output constraints at run time. For more information on these
constraints, see “Constraints on Linear Combinations of Inputs and Outputs” on page 3-
10. This feature is not supported for gain-scheduled MPC controllers.

You can update the following constraint matrices during your simulation:

• E — Manipulated variable constraint constant
• F — Controlled output constraint constant
• G — Mixed input/output constraint constant
• S — Measured disturbance constraint constant

To do so, first define initial constraints using the setconstraint command. You cannot
add additional constraints at run time.

To update mixed input/output constraints during a command-line simulation, in each
control interval set the CustomConstraint property of an mpcmoveopt object before
calling mpcmove or mpcmoveAdaptive. Specify CustomConstraint as a structure with
E, F, G, and S fields. Specify each field as an array with dimensions that match the initial
constraint arrays specified using setconstraint.

To update mixed input/output constraints during a Simulink simulation, select the
Custom constraints parameter of your MPC Controller or Adaptive MPC Controller
block. Doing so adds E, F, G, and S input ports to the block. The S input port is added only
if your controller has measured disturbances.

 Update Constraints at Run Time

5-31

Connect matrix signals to these ports that specify the run-time values for each array. If
you define E, F, G, or S in your MPC controller, you must connect a signal to the
corresponding input port, and that signal must have the same dimensions as the array
specified in the controller. If an array is not defined in the controller object, use a zero
matrix with the correct size.

For an example that updates mixed input/output constraints for an adaptive MPC
controller, see “Obstacle Avoidance Using Adaptive Model Predictive Control” on page 6-
48.

See Also
mpcmove | mpcmoveAdaptive | mpcmoveExplicit | setconstraint

More About
• “Tune Weights at Run Time” on page 5-40
• “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
• “Vary Input and Output Bounds at Run Time”

5 Controller Simulation

5-32

Vary Input and Output Bounds at Run Time
This example shows how to vary input and output saturation limits in real-time control.
For both command-line and Simulink® simulations, you specify updated input and output
constraints at each control interval. The MPC controller then keeps the input and output
signals within their specified bounds.

For more information on updating linear constraints at run time, see “Update Constraints
at Run Time” on page 5-30.

Create Plant Model and MPC Controller

Define a SISO discrete-time plant with sample time Ts.

Ts = 0.1;
plant = c2d(tf(1,[1 .8 3]),Ts);
[A,B,C,D] = ssdata(plant);

Create an MPC controller with specified prediction horizon, p, control horizon, c, and
sample time, Ts. Use plant as the internal prediction model.

p = 10;
m = 4;
mpcobj = mpc(plant,Ts,p,m);

Specify controller tuning weights.

mpcobj.Weights.MV = 0;
mpcobj.Weights.MVrate = 0.5;
mpcobj.Weights.OV = 1;

For this example, the upper and lower bounds on the manipulated variable, and the upper
bound on the output variable are varied at run time. To do so, you must first define initial
dummy finite values for these constraints in the MPC controller object. Specify values for
MV.Min, MV.Max, and OV.Max.

At run time, these constraints are changed using an mpcmoveopt object at the command
line or corresponding input signals to the MPC Controller block.

mpcobj.MV.Min = 1;
mpcobj.MV.Max = 1;
mpcobj.OV.Max = 1;

 Vary Input and Output Bounds at Run Time

5-33

Simulate Model Using Simulink

Open Simulink Model.

mdl = 'mpc_varbounds';
open_system(mdl)

In this model, the input and output constraint input ports of the MPC Controller block are
enabled. The umin, umax, and ymax ports are connected to signals which change during
the simulation. Since the minimum output bound is unconstrained, the ymin input port is
disconnected.

Configure the output setpoint, ref, and simulation duration, Tsim.

ref = 1;
Tsim = 20;

5 Controller Simulation

5-34

Since the ymin port is disconnected, disable input/output not connected warnings.

set_param(mdl,'UnconnectedInputMsg','off')
set_param(mdl,'UnconnectedOutputMsg','off')

Run the simulation, and view the input and output responses in the I/O scope.

sim(mdl)
open_system([mdl '/I//O'])

 Vary Input and Output Bounds at Run Time

5-35

Simulate Model at Command Line

Specify the initial state of the plant and controller.

x = zeros(size(B,1),1);
xmpc = mpcstate(mpcobj);

Store the closed-loop output, manipulated variable, and state trajectories of the MPC
controller in arrays YY, UU, and XX, respectively.

YY = [];
UU = [];
XX = [];

Create an mpcmoveopt object for specifying the run-time bound values.

options = mpcmoveopt;

Run the simulation loop.

for t = 0:round(Tsim/Ts)
 % Store the plant state.
 XX = [XX; x];

 % Compute and store the plant output. There is no direct feedthrough
 % from the input to the output.
 y = C*x;
 YY = [YY; y'];

 % Get the reference signal value from the data output by the Simulink
 % simulation.
 ref = yout.Data(t+1,2);

 % Update the input and output bounds. For consistency, use the
 % constraint values output by the Simulink simulation.
 options.MVMin = uout.Data(t+1,2);
 options.MVMax = uout.Data(t+1,3);
 options.OutputMax = yout.Data(t+1,3);

 % Compute the MPC control action.
 u = mpcmove(mpcobj,xmpc,y,ref,[],options);

 % Update the plant state and store the input signal value.
 x = A*x + B*u;

5 Controller Simulation

5-36

 UU = [UU; u'];
end

Compare Simulation Results

Plot the input and output signals from both the Simulink and command-line simulations
along with the changing input and output bounds.

figure
subplot(1,2,1)
plot(0:Ts:Tsim,[UU uout.Data(:,1) uout.Data(:,2) uout.Data(:,3)])
grid
title('Input')
legend('Command-line input','Simulink input','Lower bound',...
 'Upper bound','Location','Southeast')
subplot(1,2,2)
plot(0:Ts:Tsim,[YY yout.Data(:,1) yout.Data(:,3)])
grid
title('Output')
legend('Command-line output','Simulink output','Upper bound',...
 'Location','Southeast')

 Vary Input and Output Bounds at Run Time

5-37

The results of the command-line and Simulink simulations are the same. The MPC
controller keeps the input and output signals within the specified bounds as the
constraints change throughout the simulation.

bdclose(mdl)

See Also
MPC Controller

5 Controller Simulation

5-38

More About
• “Update Constraints at Run Time” on page 5-30

 See Also

5-39

Tune Weights at Run Time
There are two ways to perform tuning experiments using Model Predictive Control
Toolbox software:

• Modify your controller object off line (by changing weights, etc.) and then test the
modified object.

• Change tuning weights as the controller operates, as described in this topic.

In Simulink, the following blocks support online tuning:

• MPC Controller
• Adaptive MPC Controller
• Multiple MPC Controllers. In this case, the tuning signals apply to the active controller

object, which might switch as the control system operates. If the objects in your set
employ different weights, you should tune them off line.

The Explicit MPC Controller and Multiple Explicit MPC Controllers blocks do not support
online tuning because a weight change requires a complete revision of the explicit MPC
control law, which is computationally intensive.

To tune weights during command-line simulations, first create an mpcmoveopt object,
and specify the corresponding tuning weight properties. Then pass this object to either
mpcmove, mpcmoveAdaptive, or mpcmoveMultiple.

This table lists the weights that you can tune at run time and their corresponding
Simulink block ports and mpcmoveopt properties. For more information on tuning
weights, including tuning tips, see “Tune Weights” on page 1-33.

Tune weights for Simulink Block Port mpcmoveopt Property
Output variables y.wt OutputWeights
Manipulated variables u.wt MVWeights
Manipulated variable
increment

du.wt MVRateWeights

Slack variable for constraint
softening

ecr.wt ECRWeight

5 Controller Simulation

5-40

For the output variable, manipulated variable, and manipulated variable increment
weights, you can specify time-varying weights at run time; that is, tuning weights that
vary over the prediction horizon. To do so, specify the tuning weights as arrays.

See Also

More About
• “Signal Previewing” on page 5-15
• “Tuning Controller Weights”

 See Also

5-41

Tuning Controller Weights
This example shows how to vary the weights on outputs, inputs, and ECR slack variable
for soft constraints in real-time.

The weights specified in the MPC object are overridden by the weights supplied to the
MPC Controller block. If a weight signal is not connected to the MPC Controller block,
then the corresponding weight is the one specified in the MPC object.

Define Plant Model

Define a multivariable discrete-time linear system with no direct I/O feedthrough, and
assume input #4 is a measured disturbance and output #4 is unmeasured.

Ts = 0.1; % sampling time
plant = tf({1,[1 1],5,2;3,[1 5],1,0;0,0,1,[1 1];2,[1 -1],0,0},...
 {[1 1 1],[1 3 4 5],[1 10],[1 5];
 [1 1],[1 2],[1 2 8],[1 1];
 [1 2 1],[1 3 1 1],[1 1],[1 2];
 [1 1],[1 3 10 10],[1 10],[1 1]});
plant = c2d(ss(plant),Ts);
plant.D = 0;

Design MPC Controller

Specify input and output signal types.

plant = setmpcsignals(plant,'MD',4,'UO',4);
% Create the controller object with sampling period, prediction and control
% horizons:
p = 20; % Prediction horizon
m = 3; % Control horizon
mpcobj = mpc(plant,Ts,p,m);

Specify MV constraints.

mpcobj.MV(1).Min = -6;
mpcobj.MV(1).Max = 6;
mpcobj.MV(2).Min = -6;
mpcobj.MV(2).Max = 6;
mpcobj.MV(3).Min = -6;
mpcobj.MV(3).Max = 6;

5 Controller Simulation

5-42

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
% Define reference signal.
Tstop = 10;
ref = [1 0 3 1];
r = struct('time',(0:Ts:Tstop)');
N = numel(r.time);
r.signals.values=ones(N,1)*ref;

Define measured disturbance.

v = 0.5;

OV weights are linearly increasing with time, except for output #2 that is not weighted.

ywt.time = r.time;
ywt.signals.values = (1:N)'*[.1 0 .1 .1];

MVRate weights are decreasing linearly with time.

duwt.time = r.time;
duwt.signals.values = (1-(1:N)/2/N)'*[.1 .1 .1];

ECR weight increases exponentially with time.

ECRwt.time = r.time;
ECRwt.signals.values = 10.^(2+(1:N)'/N);

Start simulation.

mdl = 'mpc_onlinetuning';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

 Tuning Controller Weights

5-43

5 Controller Simulation

5-44

 Tuning Controller Weights

5-45

Simulate Using MPCMOVE Command

Define real plant and MPC state object.

[A,B,C,D] = ssdata(plant);
x = zeros(size(plant.B,1),1); % Initial state of the plant
xmpc = mpcstate(mpcobj); % Initial state of the MPC controller

Store the closed-loop MPC trajectories in arrays YY,UU,XX.

YY = [];
UU = [];
XX = [];

Use MPCMOVEOPT object to provide weights at run-time.

options = mpcmoveopt;

Start simulation.

5 Controller Simulation

5-46

for t = 0:N-1,
 % Store states
 XX = [XX,x]; %#ok<*AGROW>
 % Compute plant output (no feedthrough from MV to Y)
 y = C*x+D(:,4)*v;
 YY = [YY;y'];
 % Obtain reference signal
 ref = r.signals.values(t+1,:)';
 % Update MPCMOVEOPT object with run-time weights
 options.MVRateWeight = duwt.signals.values(t+1,:);
 options.OutputWeight = ywt.signals.values(t+1,:);
 options.ECRWeight = ECRwt.signals.values(t+1,:);
 % Compute control action
 u = mpcmove(mpcobj,xmpc,y(1:3),ref,v,options);
 UU = [UU;u'];
 % Update plant states
 x = A*x + B(:,1:3)*u + B(:,4)*v;
end

Plot and Compare Simulation Results

figure(1);
clf;
subplot(121)
plot(0:Ts:Tstop,[YY ysim])
grid
title('output')
subplot(122)
plot(0:Ts:Tstop,[UU usim])
grid
title('input')

 Tuning Controller Weights

5-47

Simulation results are the same.

fprintf('\n\nDifference between MPC Simulink block and MPCMOVE simulations: %g',norm(UU-usim)+norm(YY-ysim));

Difference between MPC Simulink block and MPCMOVE simulations: 6.27263e-11

bdclose(mdl);

See Also
MPC Controller

5 Controller Simulation

5-48

More About
• “Tune Weights at Run Time” on page 5-40

 See Also

5-49

Bumpless Transfer Between Manual and Automatic
Operations

This example shows how to bumplessly transfer between manual and automatic
operations of a plant.

During startup of a manufacturing process, operators adjust key actuators manually until
the plant is near the desired operating point before switching to automatic control. If not
done correctly, the transfer can cause a bump, that is, large actuator movement.

In this example, you simulate a Simulink model that contains a single-input single-output
LTI plant and an MPC Controller block.

A model predictive controller monitors all known plant signals, even when it is not in
control of the actuators. This monitoring improves its state estimates and allows a
bumpless transfer to automatic operation.

Open Simulink Model
Open the Simulink model.

open_system('mpc_bumpless')

5 Controller Simulation

5-50

To simulate switching between manual and automatic operation, the Switching block
sends either 1 or 0 to control a switch. When it sends 0, the system is in automatic mode,
and the output from the MPC Controller block goes to the plant. Otherwise, the system is
in manual mode, and the signal from the Operator Commands block goes to the plant.

In both cases, the actual plant input feeds back to the controller ext.mv inport, unless
the plant input saturates at –1 or 1. The controller constantly monitors the plant output
and updates its estimate of the plant state, even when in manual operation.

This model also shows the optimization switching option. When the system switches to
manual operation, a nonzero signal enters the switch inport of the controller block. The
signal turns off the optimization calculations, which reduces computational effort.

Define Plant and MPC Controller
Create the plant model.

num = [1 1];
den = [1 3 2 0.5];
sys = tf(num,den);

The plant is a stable single-input single-output system as seen in its step response.

step(sys)

Create an MPC controller.

Ts = 0.5; % sampling time (seconds)
p = 15; % prediction horizon

 Bumpless Transfer Between Manual and Automatic Operations

5-51

m = 2; % control horizon
MPC1 = mpc(sys,Ts,p,m);
MPC1.Weights.Output = 0.01;
MPC1.MV = struct('Min',-1,'Max',1);
Tstop = 250;

To achieve bumpless transfer, the initial states of your plant and controller must be the
same, which is the case for the plant and controller in this example.

Configure MPC Block Settings
Open the Block Parameters dialog box for the MPC Controller block.

• In the MPC Controller box, specify MPC1.
• (optional) In the Initial Controller State box, specify the initial conditions for the

controller. This step is not necessary if the controller and plant already have the same
initial state, as is the case for this example. To specify initial conditions, first extract
the mpcstate object from your controller and set the initial state of the plant.

stateobj = mpcstate(MPC1);
stateobj.Plant = x0;

where x0 is a vector of the initial plant states. Then, specify stateobj in the Initial
Controller State box.

• Verify that the External Manipulated Variable (ext.mv) option in the General tab is
selected. This option adds the ext.mv inport to the block to enable the use of external
manipulated variables.

• Verify that the Use external signal to enable or disable optimization (switch)
option in the Others tab is selected. This option adds the switch inport to the
controller block to enable switching off the optimization calculations.

5 Controller Simulation

5-52

Click OK.

Examine Switching Between Manual and Automatic Operation
Click Run in the Simulink model window to simulate the model.

 Bumpless Transfer Between Manual and Automatic Operations

5-53

5 Controller Simulation

5-54

For the first 90 time units, the Switching Signal is 0, which makes the system operate
in automatic mode. During this time, the controller smoothly drives the controlled plant
output from its initial value, 0, to the desired reference value, –0.5.

The controller state estimator has zero initial conditions as a default, which is appropriate
when this simulation begins. Thus, there is no bump at startup. In general, start the
system running in manual mode long enough for the controller to acquire an accurate
state estimate before switching to automatic mode.

At time 90, the Switching Signal changes to 1. This change switches the system to
manual operation and sends the operator commands to the plant. Simultaneously, the
nonzero signal entering the switch inport of the controller turns off the optimization
calculations. While the optimization is turned off, the MPC Controller block passes the
current ext.mv signal to the Controller Output.

Once in manual mode, the operator commands set the manipulated variable to –0.5 for 10
time units, and then to 0. The Plant Output plot shows the open-loop response between
times 90 and 180 when the controller is deactivated.

At time 180, the system switches back to automatic mode. As a result, the plant output
returns to the reference value smoothly, and a similar smooth adjustment occurs in the
controller output.

Turn off Manipulated Variable Feedback
Delete the signals entering the ext.mv and switch inports of the controller block.

Delete the Unit Delay block and the signal line entering its inport.

Open the Function Block Parameters: MPC Controller dialog box.

Deselect the External Manipulated Variable (ext.mv) option in the General tab to
remove the ext.mv inport from the controller block.

Deselect the Use external signal to enable or disable optimization (switch) option in
the Others tab to remove the switch inport from the controller block.

Click OK. The Simulink model now resembles the following figure.

 Bumpless Transfer Between Manual and Automatic Operations

5-55

Click Run to simulate the model.

5 Controller Simulation

5-56

The behavior is identical to the original case for the first 90 time units.

When the system switches to manual mode at time 90, the plant behavior is the same as
before. However, the controller tries to hold the plant at the setpoint. So, its output
increases and eventually saturates, as seen in Controller Output. Since the controller
assumes that this output is going to the plant, its state estimates become inaccurate.
Therefore, when the system switches back to automatic mode at time 180, there is a large
bump in the Plant Output.

Such a bump creates large actuator movements within the plant. By smoothly
transferring from manual to automatic operation, a model predictive controller eliminates
such undesired movements.

See Also
Blocks
MPC Controller

 See Also

5-57

Switching Controller Online and Offline with Bumpless
Transfer

This example shows how to obtain bumpless transfer when switching model predictive
controller from manual to automatic operation or vice versa.

In particular, it shows how the EXT.MV input signal to the MPC block can be used to keep
the internal MPC state up to date when the operator or another controller is in control.

Define Plant Model

The linear open-loop dynamic plant model is as follows:

num = [1 1];
den = [1 3 2 0.5];
sys = tf(num,den);

Design MPC Controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.5; % Sampling time
p = 15; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(sys,Ts,p,m);

Define constraints on the manipulated variable.

mpcobj.MV=struct('Min',-1,'Max',1);

Change the output weight.

mpcobj.Weights.Output=0.01;

To achieve bumpless transfer, the initial states of your plant and controller must be the
same, which is the case for the plant and controller in this example. However, if the initial
conditions for your system do not match, you can set the initial states of the controller to
the plant initial states. To do so, extract the mpcstate object from your controller and set
the initial state of the plant.

stateobj = mpcstate(MPC1);
stateobj.Plant = x0;

5 Controller Simulation

5-58

where x0 is a vector of the initial plant states. Then, in the MPC Controller block dialog,
set the Initial Controller State to stateobj.

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. In this model, in the
MPC Controller block dialog, the MPC Controller property is specified as mpcobj.

mdl = 'mpc_bumpless';
open_system(mdl)
sim(mdl)

 Switching Controller Online and Offline with Bumpless Transfer

5-59

5 Controller Simulation

5-60

 Switching Controller Online and Offline with Bumpless Transfer

5-61

Simulate without Using External MV Signal

Without using the external MV signal, MPC controller is no longer able to provide
bumpless transfer because the internal controller states are not estimated correctly.

delete_line(mdl,'Switch/1','Unit Delay/1');
delete_line(mdl,'Unit Delay/1','MPC Controller/3');
delete_block([mdl '/Unit Delay']);
delete_line(mdl,'Switching/1','MPC Controller/4');
set_param([mdl '/MPC Controller'],'mv_inport','off');
set_param([mdl '/MPC Controller'],'switch_inport','off');
set_param([mdl '/Yplots'],'Ymin','-1~-0.1')
set_param([mdl '/Yplots'],'Ymax','3~1.1')

5 Controller Simulation

5-62

set_param([mdl '/MVplots'],'Ymin','-1.1~-5')
set_param([mdl '/MVplots'],'Ymax','1.1~10')
sim(mdl)

 Switching Controller Online and Offline with Bumpless Transfer

5-63

Now the transition from manual to automatic control is much less smooth. Note the large
"bump" between time = 180 and 200.

bdclose(mdl)

See Also
MPC Controller

5 Controller Simulation

5-64

Switching Controllers Based on Optimal Costs
This example shows how to use the "optimal cost" outport of the MPC Controller block to
switch between multiple model predictive controllers whose outputs are restricted to
discrete values.

Define Plant Model

The linear plant model is as follows::

plant = ss(tf({1,1},{[1 1.2 1],[1 1]}),'min'); % Plant with 2 inputs and 1 output
[A,B,C,D] = ssdata(plant); % Get state-space realization matrices, to be used in Simulink
x0 = [0;0;0]; % Initial plant state

Design MPC Controller

Specify input and output signal types.

plant = setmpcsignals(plant,'MV',1,'MD',2); % First input is manipulated, second is measured disturbance

Design two MPC controllers with the MV constraints of u=-1 and u=1, respectively. Only
u at the current time is quantized. The subsequent calculated control actions may be any
value between -1 and 1. The controller uses a receding horizon approach so these values
don't actually go to the plants.

Ts = 0.2; % Sampling time
p = 20; % Prediction horizon
m = 10; % Control horizon
mpc1 = mpc(plant,Ts,p,m); % First MPC object
mpc2 = mpc(plant,Ts,p,m); % Second MPC object
% Specify weights
mpc1.Weights = struct('MV',0,'MVRate',.3,'Output',1); % Weights
mpc2.Weights = struct('MV',0,'MVRate',.3,'Output',1); % Weights
% Specify constraints
mpc1.MV = struct('Min',[-1;-1],'Max',[-1;1]); % Constraints on the manipulated variable: u = -1
mpc2.MV = struct('Min',[1;-1],'Max',[1;1]); % Constraints on the manipulated variable: u = 1

Simulate in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return

 Switching Controllers Based on Optimal Costs

5-65

end
% Specify signals:
Tstop = 40;
ref.time = 0:Ts:(Tstop+p*Ts);
ref.signals.values = double(ref.time>10)'; % Step change in reference signal at time t=10
md.time = ref.time;
md.signals.values = double(md.time>30)'; % Step change in measured disturbance signal at time t=30

Open and simulate the Simulink® model:

mdl = 'mpc_optimalcost';
open_system(mdl); % Open Simulink(R) Model
sim(mdl,Tstop); % Start Simulation

5 Controller Simulation

5-66

 Switching Controllers Based on Optimal Costs

5-67

5 Controller Simulation

5-68

Note that:

• From time 0 to time 10, the control action keeps switching between MPC1 (-1) and
MPC2 (+1). This is because the reference signal is 0 and it requires a controller
output at 0 to reach steady state, which cannot be achieved with either MPC
controller.

• From time 10 to 30, MPC2 control output (+1) is chosen because the reference signal
becomes +1 and it requires a controller output at +1 to reach steady state (plant gain
is 1), which can be achieved by MPC2.

• From time 30 to 40, control action starts switching again. This is because with the
presence of measured disturbance (+1), MPC1 leads to a steady state of 0 and MPC2
leads to a steady state of +2, while the reference signal still requires +1.

Simulate Using MPCMOVE Command

Use mpcmove to perform step-by-step simulation and compute current MPC control
action:

 Switching Controllers Based on Optimal Costs

5-69

[Ad,Bd,Cd,Dd] = ssdata(c2d(plant,Ts)); % Discrete-time dynamics
Nsteps = round(Tstop/Ts); % Number of simulation steps

Initialize matrices for storing simulation results

YY = zeros(Nsteps+1,1);
RR = zeros(Nsteps+1,1);
UU = zeros(Nsteps+1,1);
COST = zeros(Nsteps+1,1);
x = x0; % Initial plant state
xt1 = mpcstate(mpc1); % Initial state of the MPC controller #1
xt2 = mpcstate(mpc2); % Initial state of the MPC controller #2

Start simulation.

for td=0:Nsteps
 % Construct signals
 v = md.signals.values(td+1);
 r = ref.signals.values(td+1);
 % Plant equations: output update
 y = Cd*x + Dd(:,2)*v;
 % Compute both MPC moves
 options = mpcmoveopt;
 options.OnlyComputeCost = true; % the last input argument tells "mpcmove" to only compute the optimal cost
 [u1,Info1] = mpcmove(mpc1,xt1,y,r,v,options);
 [u2,Info2] = mpcmove(mpc2,xt2,y,r,v,options);
 % Compare the resulting optimal costs and choose the input value
 % corresponding to the smallest cost
 if Info1.Cost<=Info2.Cost
 u = u1;
 cost = Info1.Cost;
 % Update internal MPC state to the correct value
 xt2.Plant = xt1.Plant;
 xt2.Disturbance = xt1.Disturbance;
 xt2.LastMove = xt1.LastMove;
 else
 u = u2;
 cost = Info2.Cost;
 % Update internal MPC state to the correct value
 xt1.Plant = xt2.Plant;
 xt1.Disturbance = xt2.Disturbance;
 xt1.LastMove = xt2.LastMove;
 end
 % Store plant information
 YY(td+1) = y;

5 Controller Simulation

5-70

 RR(td+1) = r;
 UU(td+1) = u;
 COST(td+1) = cost;
 % Plant equations: state update
 x = Ad*x + Bd(:,1)*u + Bd(:,2)*v;
end

Plot the results of mpcmove to compare with the simulation results obtained in
Simulink®:

subplot(131)
plot((0:Nsteps)*Ts,[YY,RR]); % Plot output and reference signals
grid
title('OV and Reference')
subplot(132)
plot((0:Nsteps)*Ts,UU); % Plot manipulated variable
grid
title('MV')
subplot(133)
plot((0:Nsteps)*Ts,COST); % Plot optimal MPC value function
grid
title('Optimal cost')

 Switching Controllers Based on Optimal Costs

5-71

These plots resemble the plots in the scopes in the Simulink® model.

bdclose(mdl);

See Also
MPC Controller

More About
• “Optimization Problem” on page 2-9

5 Controller Simulation

5-72

Monitoring Optimization Status to Detect Controller
Failures

This example shows how to use the "qp.status" outport of the MPC Controller block in
Simulink® to detect controller failures in real time.

Overview of Run-Time Control Monitoring

The "qp.status" output from the MPC Controller block returns a positive integer when the
controller finds an optimal control action by solving a quadratic programming (QP)
problem. The integer value corresponds to the number of iterations used during
optimization. If the QP problem formulated at a given sample interval is infeasible, the
controller will fail to find a solution. In that case, the MV outport of controller block
retains the most recent value and the "qp.status" outport returns -1. In a rare case when
the maximum number of iteration is reached during optimization, the "qp.status" outport
returns 0.

In industrial MPC applications, we can detect whether model predictive controller is in a
"failure" mode (0 or -1) or not by monitoring the "qp.status" outport. If an MPC failure
occurs, we can use this signal to switch to a backup control plan.

In this example, we show how to setup run-time controller status monitoring in Simulink.

Define Plant Model

The test plant is a single-input, single-output plant with hard limits on both manipulated
variable and controlled output. A load disturbance is added at the plant output. The
disturbance consists of a ramp signal that saturates manipulated variable due to the hard
limit on the MV. After saturation occurs, we lose the control degree of freedom and the
disturbance eventually forces the output outside its upper limit. When that happens, the
QP problem formulated by model predictive controller at run-time becomes infeasible.

Define the plant model as a simple SISO system with unity gain.

Plant = tf(1,[2 1]);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and
3 seconds, then ramps down from 2 to 0 between 3 and 5 seconds.

LoadDist = [0 0; 1 0; 3 2; 5 0; 7 0];

 Monitoring Optimization Status to Detect Controller Failures

5-73

Design MPC Controller

Create MPC object.

Ts = 0.2;
Obj = mpc(Plant, Ts);

Define hard constraints on plant input (MV) and output (OV). By default, all the MV
constraints are hard and OV constraints are soft.

Obj.MV.Min = -1;
Obj.MV.Max = 1;
Obj.OV.Min = -1;
Obj.OV.Max = 1;
Obj.OV.MinECR = 0; % change OV lower limit from soft to hard
Obj.OV.MaxECR = 0; % change OV upper limit from soft to hard

Override the default estimator. This high-gain estimator improves detection of an
impending constraint violation.

setEstimator(Obj,[],[0;1]);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
% Build the control system in a Simulink model and enable the "qp.status"
% outport from the controller block dialog. Its run-time value is displayed
% in a Simulink Scope block.
mdl = 'mpc_onlinemonitoring';
open_system(mdl);

5 Controller Simulation

5-74

Simulate the closed-loop response.

open_system([mdl '/Controller Status']);
open_system([mdl '/Response']);
sim(mdl);
% As shown in the response scope, the ramp-up disturbance signal causes the
% MV to saturate at its lower bound -1, which is the optimal solution for
% these situations. After the plant output exceeds the upper limit, at the
% next sampling interval (2.6 seconds), the controller realizes that it can
% no longer keep the output within bounds (because its MV is still
% saturated), so it signals controller failure due to an infeasible QP problem
% (-1 in the controller status scope). After the output comes back within
% bounds, the QP problem becomes feasible again (3.4 seconds). We see
% normal control behavior once the MV is no longer saturated.

 Monitoring Optimization Status to Detect Controller Failures

5-75

5 Controller Simulation

5-76

bdclose(mdl);

See Also

 See Also

5-77

Simulate MPC Controller with a Custom QP Solver
You can simulate the closed-loop response of an MPC controller with a custom quadratic
programming (QP) solver in Simulink®.

This example uses an on-line monitoring application, first solving it using the Model
Predictive Control Toolbox™ built-in solver, then using a custom solver that uses the
quadprog solver from the Optimization Toolbox™.

Implementing a custom QP solver in this way does not support code generation. For more
information on generating code for a custom QP solver, see “Simulate and Generate Code
for MPC Controller with Custom QP Solver” on page 9-61. For more information on QP
Solvers, see “QP Solver” on page 2-22.

In the on-line monitoring example, the qp.status output of the MPC Controller block
returns a positive integer whenever the controller obtains a valid solution of the current
run-time QP problem and sets the mv output. The qp.status value corresponds to the
number of iterations used to solve this QP.

If the QP is infeasible for a given control interval, the controller fails to find a solution. In
that case, the mv outport stays at its most recent value and the qp.status outport
returns -1. Similarly, if the maximum number of iterations is reached during optimization
(rare), the mv outport also freezes and the qp.status outport returns 0.

Real-time MPC applications can detect whether the controller is in a "failure" mode (0 or
-1) by monitoring the qp.status outport. If a failure occurs, a backup control plan
should be activated. This is essential if there is any chance that the QP could become
infeasible, because the default action (freezing MVs) may lead to unacceptable system
behavior, such as instability. Such a backup plan is, necessarily, application-specific.

MPC Application with Online Monitoring

The plant used in this example is a single-input, single-output system with hard limits on
both the manipulated variable (MV) and the controlled output (OV). The control objective
is to hold the OV at a setpoint of 0. An unmeasured load disturbance is added to the OV.
This disturbance is initially a ramp increase. The controller response eventually saturates
the MV at its hard limit. Once saturation occurs, the controller can do nothing more, and
the disturbance eventually drives the OV above its specified hard upper limit. When the
controller predicts that it is impossible to force the OV below this upper limit, the run-
time QP becomes infeasible.

Define the plant as a first-order SISO system with unity gain.

5 Controller Simulation

5-78

Plant = tf(1,[2 1]);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and
3 seconds, then ramps back down from 2 to 0 between 3 and 5 seconds.

LoadDist = [0 0; 1 0; 3 2; 5 0; 7 0];

Design MPC Controller

Create an MPC object using the model of the test plant. The chosen control interval is
about one tenth of the dominant plant time constant.

Ts = 0.2;
Obj = mpc(Plant, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define hard constraints on the plant input (MV) and output (OV). By default, all the MV
constraints are hard and OV constraints are soft.

Obj.MV.Min = -0.5;
Obj.MV.Max = 1;
Obj.OV.Min = -1;
Obj.OV.Max = 1;
Obj.OV.MinECR = 0; % change OV lower limit from soft to hard
Obj.OV.MaxECR = 0; % change OV upper limit from soft to hard

Generally, hard OV constraints are discouraged and are used here only to illustrate how
to detect an infeasible QP. Hard OV constraints make infeasibility likely, in which case a
backup control plan is essential. This example does not include a backup plan. However,
as shown in the simulation, the default action of freezing the single MV is the best
response in this simple case.

Simulate Using Simulink with Built-in QP Solver

To run this example, Simulink and the Optimization Toolbox are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end

 Simulate MPC Controller with a Custom QP Solver

5-79

if ~mpcchecktoolboxinstalled('optim')
 disp('The Optimization Toolbox is required to run this example.')
 return
end

Build the control system in a Simulink model and enable the qp.status outport by
selecting the Optimization status parameter of the MPC Controller block. Display the
run-time qp.status value in the Controller Status scope.

mdl = 'mpc_onlinemonitoring';
open_system(mdl)

Simulate the closed-loop response using the default Model Predictive Control Toolbox QP
solver.

open_system([mdl '/Controller Status'])
open_system([mdl '/Response'])
sim(mdl)

5 Controller Simulation

5-80

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Simulate MPC Controller with a Custom QP Solver

5-81

Explanation of the Closed-Loop Response

As shown in the response scope, at 1.4 seconds, the increasing disturbance causes the
MV to saturate at its lower bound of -0.5, which is the QP solution under these conditions
(because the controller is trying to hold the OV at its setpoint of 0).

5 Controller Simulation

5-82

The OV continues to increase due to the ramp disturbance and, at 2.2 seconds, exceeds
the specified hard upper bound of 1.0. Since the QP is formulated in terms of predicted
outputs, the controller still predicts that it can bring OV back below 1.0 in the next move
and therefore the QP problem is still feasible.

Finally, at t = 3.2 seconds, the controller predicts that it can no longer move the OV below
1.0 within the next control interval, and the QP problem becomes infeasible and
qp.status changes to -1 at this time.

After three seconds, the disturbance is decreasing. At 3.8 seconds, the QP becomes
feasible again. The OV is still well above its setpoint, however, and the MV remains
saturated until 5.4 seconds, when the QP solution is to increase the MV as shown. From
then on, the MV is not saturated, and the controller is able to drive the OV back to its
setpoint.

When the QP is feasible, the built-in solver finds the solution in three iterations or less.

Simulate with a Custom QP Solver

To examine how the custom solver behaves under the same conditions, activate the
custom solver option by setting the Optimizer.CustomSolver property of the MPC
controller.

Obj.Optimizer.CustomSolver = true;

You must also provide a MATLAB® function that satisfies all the following requirements:

• Function name must be mpcCustomSolver.
• Function input and output arguments must match those defined in the

mpcCustomSolver.txt template file.
• Function must be on the MATLAB path.

For this example, use the custom solver defined in mpcCustomSolver.txt, which uses
the quadprog command from the Optimization Toolbox as the custom QP solver. To
implement your own custom QP solver, modify this file.

Save the function in your working folder as a .m file.

src = which('mpcCustomSolver.txt');
dest = fullfile(pwd,'mpcCustomSolver.m');
copyfile(src,dest,'f');

Review the saved mpcCustomSolver.m file.

 Simulate MPC Controller with a Custom QP Solver

5-83

function [x, status] = mpcCustomSolver(H, f, A, b, x0)
% mpcCustomSolver allows user to specify a custom quadratic programming
% (QP) solver to solve the QP problem formulated by MPC controller. When
% the "mpcobj.Optimizer.CustomSolver" property is set true, instead of
% using the built-in QP solver, MPC controller will now use the customer QP
% solver defined in this function for simulations in MATLAB and Simulink.
%
% The MPC QP problem is defined as follows:
% Find an optimal solution, x, that minimizes the quadratic objective
% function, J = 0.5*x'*H*x + f'*x, subject to linear inequality
% constraints, A*x >= b.
%
% Inputs (provided by MPC controller at run-time):
% H: a n-by-n Hessian matrix, which is symmetric and positive definite.
% f: a n-by-1 column vector.
% A: a m-by-n matrix of inequality constraint coefficients.
% b: a m-by-1 vector of the right-hand side of inequality constraints.
% x0: a n-by-1 vector of the initial guess of the optimal solution.
%
% Outputs (fed back to MPC controller at run-time):
% x: must be a n-by-1 vector of optimal solution.
% status: must be an finite integer of:
% positive value: number of iterations used in computation
% 0: maximum number of iterations reached
% -1: QP is infeasible
% -2: Failed to find a solution due to other reasons
% Note that even if solver failed to find an optimal solution, "x" must be
% returned as a n-by-1 vector (i.e. set it to the initial guess x0)
%
% DO NOT CHANGE LINES ABOVE

% The following code is an example of how to implement the custom QP solver
% in this function. It requires Optimization Toolbox to run.

% Define QUADPROG options and turn off display of optimization results in
% Command window.
options = optimoptions('quadprog');
options.Display = 'none';
% By definition, constraints required by "quadprog" solver is defined as
% A*x <= b. However, in our MPC QP problem, the constraints are defined as
% A*x >= b. Therefore, we need to implement some conversion here:
A_custom = -A;
b_custom = -b;

5 Controller Simulation

5-84

% Compute the QP's optimal solution. Note that the default algorithm used
% by "quadprog" ('interior-point-convex') ignores x0. "x0" is used here as
% an input argument for illustration only.
H = (H+H')/2; % ensure Hessian is symmetric
[x, ~, Flag, Output] = quadprog(H, f, A_custom, b_custom, [], [], [], [], x0, options);
% Converts the "flag" output to "status" required by the MPC controller.
switch Flag
 case 1
 status = Output.iterations;
 case 0
 status = 0;
 case -2
 status = -1;
 otherwise
 status = -2;
end
% Always return a non-empty x of the correct size. When the solver fails,
% one convenient solution is to set x to the initial guess.
if status <= 0
 x = x0;
end

Repeat the simulation.

set_param([mdl '/Controller Status'],'ymax','10');
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Simulate MPC Controller with a Custom QP Solver

5-85

5 Controller Simulation

5-86

The plant input and output signals are identical to those obtained using the built-in Model
Predictive Control Toolbox solver, but the qp.status shows that quadprog does not take
the same number of iterations to find a solution. However, it does detect the same
infeasibility time period.

 Simulate MPC Controller with a Custom QP Solver

5-87

bdclose(mdl);

See Also

More About
• “QP Solver” on page 2-22
• “Simulate and Generate Code for MPC Controller with Custom QP Solver” on page

9-61

5 Controller Simulation

5-88

Use Suboptimal Solution in Fast MPC Applications
This example shows how to guarantee the worst-case execution time of an MPC controller
in real-time applications by using the suboptimal solution returned by the optimization
solver.

What is a Suboptimal Solution?

Model predictive control (MPC) solves a quadratic programming (QP) problem at each
control interval. The built-in QP solver uses an iterative active-set algorithm that is
efficient for MPC applications. However, when constraints are present, there is no way to
predict how many solver iterations are required to find an optimal solution. Also, in real-
time applications, the number of iterations can change dramatically from one control
interval to the next. In such cases, the worst-case execution time can exceed the limit that
is allowed on the hardware platform and determined by the controller sample time.

You can guarantee the worst-case execution time for your MPC controller by applying a
suboptimal solution after the number of optimization iterations exceeds a specified
maximum value. To set the worst-case execution time, first determine the time needed for
a single optimization iteration by experimenting with your controller under nominal
conditions. Then, set a small upper bound on the number of iterations per control
interval.

By default, when the maximum number of iterations is reached, an MPC controller does
not use the suboptimal solution. Instead, the controller sets an error flag (status = 0)
and freezes its output. Often, the solution available in earlier iterations is good enough,
but requires refinement to find an optimal solution, which leads to many additional
iterations.

This example shows how to configure your MPC controller to use the suboptimal solution.
The suboptimal solution is a feasible solution available at the final iteration (modified, if
necessary, to satisfy any hard constraints on the manipulated variables). To determine
whether the suboptimal solution provides acceptable control performance for your
application, run simulations across your operating range.

Define Plant Model

The plant model is a stable randomly generated state-space system. It has 10 states, 3
manipulated variables (MV), and 3 outputs (OV).

rng(1234);
nX = 10;

 Use Suboptimal Solution in Fast MPC Applications

5-89

nOV = 3;
nMV = 3;
Plant = rss(nX,nOV,nMV);
Plant.d = 0;
Ts = 0.1;

Design MPC Controller with Constraints on MVs and OVs

Create an MPC controller with default values for all controller parameters except the
constraints. Specify constraints on both the manipulated and output variables.

verbosity = mpcverbosity('off'); % Temporarily disable command line messages.
mpcobj = mpc(Plant, Ts);
for i = 1:nMV
 mpcobj.MV(i).Min = -1.0;
 mpcobj.MV(i).Max = 1.0;
end
for i = 1:nOV
 mpcobj.OV(i).Min = -1.0;
 mpcobj.OV(i).Max = 1.0;
end

Simultaneous constraints on both manipulated and output variables require a relatively
large number of QP iterations to determine the optimal control sequence.

Simulate in MATLAB with Random Output Disturbances

First, simulate the MPC controller using the optimal solution in each control interval. To
focus on only output disturbance rejection performance, set the output reference values
to zero.

T = 5;
N = T/Ts + 1;
r = zeros(1,nOV);
SimOptions = mpcsimopt();
SimOptions.OutputNoise = 3*randn(N,nOV);
[y,t,u,~,~,~,status] = sim(mpcobj,N,r,[],SimOptions);

Plot the number of iterations used in each control interval.

figure
stairs(status)
hold on
title('Number of Iterations')

5 Controller Simulation

5-90

The largest number of iterations is 21, and the average is 5.8 iterations.

Create an MPC controller with the same settings, but configure it to use the suboptimal
solution.

mpcobjSub = mpcobj;
mpcobjSub.Optimizer.UseSuboptimalSolution = true;

Reduce the maximum number of iterations to a small number.

mpcobjSub.Optimizer.MaxIter = 3;

Simulate the second controller with the same output disturbance sequence.

[ySub,tSub,uSub,~,~,~,statusSub] = sim(mpcobjSub,N,r,[],SimOptions);

 Use Suboptimal Solution in Fast MPC Applications

5-91

Plot the number of iterations used in each control interval on the same plot. For any
control interval in which the maximum number of iterations is reached, statusSub is
zero. Before plotting the result, set the number of iterations for these intervals to 3.

statusSub(statusSub == 0) = 3;
stairs(statusSub)
legend('optimal','suboptimal')

The largest number of iterations is now 3, and the average is 2.8 iterations.

Compare the performance of the two controllers. When the suboptimal solution is used,
there is no significant deterioration in control performance compared to the optimal
solution.

5 Controller Simulation

5-92

figure
for ct=1:3
 subplot(3,1,ct)
 plot(t,y(:,ct),t,ySub(:,ct))
end
subplot(3,1,1)
title('Outputs')
legend('optimal','suboptimal')

For a real-time application, as long as each solver iteration takes less than 30
milliseconds on the hardware, the worst-case execution time does not exceed the
controller sample time (0.1 seconds). In general, it is safe to assume that the execution
time used by each iteration is more or less a constant.

 Use Suboptimal Solution in Fast MPC Applications

5-93

Simulate in Simulink with Random Output Disturbances

Simulate the controllers in Simulink®.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Model = 'mpc_SuboptimalSolution';
open_system(Model)
sim(Model)

5 Controller Simulation

5-94

 Use Suboptimal Solution in Fast MPC Applications

5-95

As in the command-line simulation, the average number of QP iterations per control
interval decreased without significantly affecting control performance.

5 Controller Simulation

5-96

mpcverbosity(verbosity); % Enable command line messages.
bdclose(Model)

See Also
Functions
mpcmoveopt

Blocks
Adaptive MPC Controller | MPC Controller

More About
• “QP Solver” on page 2-22

 See Also

5-97

Design and Cosimulate Control of High-Fidelity
Distillation Tower with Aspen Plus Dynamics

This example shows how to design a model predictive controller in MATLAB for a high-
fidelity distillation tower model built in Aspen Plus Dynamics®. The controller
performance is then verified through cosimulation between Simulink and Aspen Plus
Dynamics.

Distillation Tower

The distillation tower uses 29 ideal stages to separate a mixture of benzene, toluene, and
xylenes (represented by p-xylene). The distillation process is continuous. The equipment
includes a reboiler and a total condenser as shown below:

5 Controller Simulation

5-98

The distillation tower operates at a nominal steady-state condition:

• The feed stream contains 30% of benzene, 40% of toluene and 30% of xylenes.
• The feed flow rate is 500 kmol/hour.
• To satisfy the distillate purity requirement, the distillate contains 95% of benzene.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-99

• To satisfy the requirement of recovering 95% of benzene in the feed, the benzene
impurity in the bottoms is 1.7%.

The control objectives are listed below, sorted by their importance:

1 Hold the tower pressure constant.
2 Maintain 5% of toluene in the distillate (it is equivalent to maintain 95% of benzene

in the distillate because the distillate only contains benzene and toluene).
3 Maintain 1.7% of the benzene in the bottoms.
4 Keep liquid levels in the sump and the reflux drum within specified limits.

Build High-Fidelity Plant Model in Aspen Plus Dynamics

Use an Aspen Plus RADFRAC block to define the tower's steady-state characteristics. In
addition to the usual information needed for a steady-state simulation, you must specify
tray hydraulics, tower sump geometry, and the reflux drum size. The trays are a sieve
design spaced 18 inches apart. All trays have a 1.95 m in diameter with a 5 cm weir
height. Nominal liquid depths are 0.67 m and 1.4875 m in the horizontal reflux drum and
sump respectively.

The steady-state model is ported to Aspen Plus Dynamics (APD) for a flow-driven
simulation. This neglects actuator dynamics and assumes accurate regulation of
manipulated flow rates. By default, APD adds PI controllers to regulate the tower
pressure and the two liquid levels. In this example, the default PI controllers are
intentionally removed.

The APD model of the high-fidelity distillation tower is shown below:

5 Controller Simulation

5-100

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-101

Linearize Plant Using Aspen Plus Control Design Interface

Model Predictive Controller requires an LTI model of the plant. In this example, the plant
inputs are:

1 Condenser duty (W)
2 Reboiler duty (W)
3 Reflux mass flow rate (kg/h)
4 Distillate mass flow rate (kg/h stream #2)
5 Bottoms mass flow rate (kg/h stream #3)
6 Feed molar flow rate (kmol/h stream #1)

The plant outputs are:

1 Tower pressure (in the condenser: stage 1, bar)
2 Reflux drum liquid level (m)
3 Sump liquid level (m)
4 Mass fraction toluene in the distillate
5 Mass fraction benzene in the bottoms

Aspen Plus Dynamics provides a Control Design Interface (CDI) tool that linearizes a
dynamic model at a specified condition.

The following steps are taken to obtain the linear plant model in Aspen Plus Dynamics.

Step 1: Add a "script" to the APD model under the "Flowsheet" folder. In this example,
the script name is CDI_Calcs (as shown above) and it contains the following APD
commands:

Set Doc = ActiveDocument
set CDI = Doc.CDI
CDI.Reset
CDI.AddInputVariable "blocks(""B1"").condenser(1).QR"
CDI.AddInputVariable "blocks(""B1"").QrebR"
CDI.AddInputVariable "blocks(""B1"").Reflux.FmR"
CDI.AddInputVariable "streams(""2"").FmR"
CDI.AddInputVariable "streams(""3"").FmR"
CDI.AddInputVariable "streams(""1"").FR"
CDI.AddOutputVariable "blocks(""B1"").Stage(1).P"
CDI.AddOutputVariable "blocks(""B1"").Stage(1).Level"

5 Controller Simulation

5-102

CDI.AddOutputVariable "blocks(""B1"").SumpLevel"
CDI.AddOutputVariable "streams(""2"").Zmn(""TOLUENE"")"
CDI.AddOutputVariable "streams(""3"").Zmn(""BENZENE"")"
CDI.Calculate

Step 2: Initialize the APD model to the nominal steady-state condition.

Step 3: Invoke the script, which generates the following text files:

• cdi_A.dat, cdi_B.dat, cdi_C.dat define the A, B, and C matrices of a standard
continuous-time LTI state-space model. D matrix is zero. The A, B, C matrices are
sparse matrices.

• cdi_list.lis lists the model variables and their nominal values.
• cdi_G.dat defines the input/output static gain matrix at the nominal condition. The

gain matrix is also a sparse matrix.

In this example, cdi_list.lis includes the following information:

A matrix computed, number of non-zero elements = 1408
B matrix computed, number of non-zero elements = 26
C matrix computed, number of non-zero elements = 20
G matrix computed, number of non-zero elements = 30
Number of state variables: 120
Number of input variables: 6
Number of output variables: 5
Input variables:
 1 -3690034.247458334 BLOCKS("B1").Condenser(1).QR
 2 3819023.193875 BLOCKS("B1").QRebR
 3 22135.96620144 BLOCKS("B1").Reflux.FmR
 4 11717.39655353 STREAMS("2").FmR
 5 34352.86345834 STREAMS("3").FmR
 6 500 STREAMS("1").FR
Output variables:
 1 1.100022977953499 BLOCKS("B1").Stage(1).P
 2 0.6700005140605662 BLOCKS("B1").Stage(1).Level
 3 1.4875 BLOCKS("B1").SumpLevel
 4 0.05002582161855798 STREAMS("2").Zmn("TOLUENE")
 5 0.01705308738356429 STREAMS("3").Zmn("BENZENE")

The nominal values of the state variables listed in the file are ignored because they are
not needed in the MPC design.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-103

Create Scaled and Reduced LTI State-Space Model

Step 1: Convert the CDI-generated sparse-matrices to a state-space model.

Load state-space matrices from the CDI data files to MATLAB workspace and convert the
sparse matrices to full matrices.

load mpcdistillation_cdi_A.dat
load mpcdistillation_cdi_B.dat
load mpcdistillation_cdi_C.dat
A = full(spconvert(mpcdistillation_cdi_A));
B = full(spconvert(mpcdistillation_cdi_B));
C = full(spconvert(mpcdistillation_cdi_C));
D = zeros(5,6);

It is possible that an entire sparse matrix row or column is zero, in which case the above
commands are insufficient. Use the following additional checks to make sure A, B, and C
have the correct dimensions:

[nxAr,nxAc] = size(A);
[nxB,nu] = size(B);
[ny,nxC] = size(C);
nx = max([nxAr, nxAc, nxB, nxC]);
if nx > nxC
 C = [C, zeros(ny,nx-nxC)];
end
if nx > nxAc
 A = [A zeros(nxAr,nx-nxAc)];
end
if nx > nxAr
 nxAc = size(A,2);
 A = [A; zeros(nx-nxAr, nxAc)];
end
if nxB < nx
 B = [B; zeros(nx-nxB,nu)];
end

Step 2: Scale the plant signals.

It is good practice, if not essential, to convert plant signals from engineering units to a
uniform dimensionless scale (e.g., 0-1 or 0-100%). One alternative is to define scale
factors as part of a Model Predictive Controller design. This can simplify controller tuning
significantly. See, e.g., the demo "mpcscalefactor".

5 Controller Simulation

5-104

In the present example, however, we will use a model reduction procedure prior to
controller design, and we therefore scale the plant model, using the scaled model in both
model reduction and controller design. We define a span for each input and output, i.e.,
the difference between expected maximum and minimum values in engineering units.
Also record the nominal and zero values in engineering units to facilitate subsequent
conversions.

U_span = [2*(-3690034), 2*3819023, 2*22136, 2*11717, 2*34353, 2*500];
U_nom = 0.5*U_span;
U_zero = zeros(1,6);
Y_nom = [1.1, 0.67, 1.4875, 0.050026, 0.017053];
Y_span = [0.4, 2*Y_nom(2:5)];
Y_zero = [0.9, 0, 0, 0, 0];

Scale the B and C matrices such that all input/output variables are expressed as
percentages.

B = B.*(ones(nx,1)*U_span);
C = C./(ones(nx,1)*Y_span)';

Step 3: Define the state-space plant model.

G = ss(A,B,C,D);
G.TimeUnit = 'hours';
G.u = {'Qc','Qr','R','D','B','F'};
G.y = {'P','RLev','Slev','xD','xB'};

Step 4: Reduce model order.

Model reduction speeds up the calculations with negligible effect on prediction accuracy.
Use the "hsvd" command to determine which states can be safely discarded. Use the
"balred" function to remove these states and reduce model order.

[hsv, baldata] = hsvd(G);
order = find(hsv>0.01,1,'last');
Options = balredOptions('StateElimMethod','Truncate');
G = balred(G,order,baldata,Options);

The original model has 120 states and the reduced model has only 16 states. Note that
the "Truncate" option is used in the "balred" function to preserve a zero D matrix. The
model has two poles at zero, which correspond to the two liquid levels.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-105

Test Accuracy of the Linear Plant Model

Before continuing with the MPC design, it is good practice to verify that the scaled LTI
model is accurate for small changes in the plant inputs. To do so, you need to compare the
response of the nonlinear plant in APD and the response of linear model G.

Step 1: To obtain the response of the nonlinear plant, create a Simulink model and add
the Aspen Modeler interface block to it.

The block is provided by Aspen Plus Dynamics in their AMSimulink library shown below:

Step 2: Double-click the block and provide the location of the APD model.

The APD model information is then imported into Simulink. For large APD models, the
importing process may take some time.

Step 3: Specify input and output signals in the "AMSimulation" block dialog.

5 Controller Simulation

5-106

Use the same variable names and sequence as in the CDI script.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-107

The block now shows inports and outports for each signal that you defined.

Step 4: Expand the Simulink model with an input signal coming from the variable Umat
and an output signal saved to variable Ypct_NL. Both variables are created in Step 5.

Since Umat is in the percentage units, the "Pct2Engr" block is implemented to convert
from percentage units to engineering units.

5 Controller Simulation

5-108

Since Ypct_NL is in the percentage units, the "Engr2Pct" block is implemented to convert
from engineering units to percentage units.

With everything connected and configured, the model appears as follows:

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-109

Step 5: Verify linear model with cosimulation.

In this example, 1 percent increase in the scaled reflux rate (input #3) is used as the
excitation signal to the plant.

U_nom_pct = (U_nom - U_zero)*100./U_span; % Convert nominal condition from engineering units to percentages
Y_nom_pct = (Y_nom - Y_zero)*100./Y_span;
Tend = 1; % Simulation duration (1 hour)
t = (0:1/60:Tend)'; % Sample period is 1 minute
nT = length(t);
Upct = ones(nT,1)*U_nom_pct;
DUpct = zeros(nT,6);
DUpct(:,3) = ones(nT,1); % Input signal where step occurs in channel #3

The response of the linear plant model is computed using the lsim command and stored
in variable Ypct_L.

5 Controller Simulation

5-110

Ypct_L = lsim(G,DUpct,t);
Ypct_L = Ypct_L + ones(nT,1)*Y_nom_pct;

The response of the nonlinear plant is obtained through cosimulation between Simulink
and Aspen Plus Dynamics. The excitation signal Umat is constructed as below. The result
is stored in variable Ypct_NL.

Umat = [t, Upct+DUpct];

Compare the linear and nonlinear model responses.

The LTI model predictions track the nonlinear responses well. The amount of prediction
error is acceptable. In any case, a Model Predictive Controller must be tuned to
accommodate prediction errors, which are inevitable in applications.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-111

You can repeat the above steps to verify similar agreement for the other five inputs.

Design Model Predictive Controller

Given an LTI prediction model, you are ready to design a Model Predictive Controller. In
this example, the manipulated variables are the first five plant inputs. The sixth plant
input (feed flow rate) is a measured disturbance for feed-forward compensation. All the
plant outputs are measured.

Step 1: Augment the plant to model unmeasured load disturbances.

Lacking any more specific details regarding load disturbances, it is common practice to
assume an unmeasured load disturbance occurring at each of the five inputs. This allows
the MPC state estimator to eliminate offset in each controlled output when a load
disturbance occurs.

In this example, 5 unmeasured load disturbances are added to the plant model G. In total,
there are now 11 inputs to the prediction model Gmpc: 5 manipulated variables, 1
measured disturbance, and 5 unmeasured disturbances.

Gmpc = ss(G.A,G.B(:,[1:6,1:5]),G.C,zeros(5,11),'TimeUnit','hours');
InputName = cell(1,11);
for i = 1:5
 InputName{i} = G.InputName{i};
 InputName{i+6} = [G.InputName{i}, '-UD'];
end
InputName{6} = G.InputName{6};
Gmpc.InputName = InputName;
Gmpc.InputGroup = struct('MV',1:5,'MD',6,'UD',7:11);
Gmpc.OutputName = G.OutputName;

Step 2: Create an initial model predictive controller and specify sample time and
horizons.

In this example, the controller sample period is 30 seconds. The prediction horizon is 60
intervals (30 minutes), which is large enough to make the controller performance
insensitive to further increases of the prediction horizon. The control horizon is 4
intervals (2 minutes), which is relatively small to reduce computational effort.

Ts = 30/3600; % sample time
PH = 60; % prediction horizon
CH = 4; % control horizon
MPCobj = mpc(Gmpc,Ts,PH,CH); % MPC object

5 Controller Simulation

5-112

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Step 3: Specify weights for manipulated variables and controlled outputs.

Weights are key tuning adjustments in MPC design and they should be chosen based on
your control objectives.

There is no reason to hold a particular MV at a setpoint, so set the
Weights.ManipulatedVariables property to zero:

MPCobj.Weights.ManipulatedVariables = [0, 0, 0, 0, 0];

The distillate product (MV #4) goes to storage. The only MV affecting downstream unit
operations is the bottoms rate (MV #5). To discourage rapid changes in bottoms rate,
retain the default weight of 0.1 for its rate of change. Reduce the other rate of change
weights by a factor of 10:

MPCobj.Weights.ManipulatedVariablesRate = [0.01, 0.01, 0.01, 0.01, 0.1];

The control objectives provide guidelines to choose weights on controlled outputs:

1 The tower pressure must be regulated tightly for safety reasons and for minimizing
upsets in tray temperatures and hydraulics. (objective #1)

2 The distillate composition must also be regulated tightly. (objective #2)
3 The bottoms composition can be regulated less tightly. (objective #3)
4 The liquid levels are even less important. (objective #4)

With these priorities in mind, weights on controlled outputs are chosen as follows::

MPCobj.Weights.OutputVariables = [10, 0.1, 0.1, 1, 0.5];

Scaling the model simplifies the choice of the optimization weights. Otherwise, in addition
to the relative priority of each variable, you would also have to consider the relative
magnitudes of the variables and choose weights accordingly.

Step 4: Specify nominal plant input/output values.

In this example, the nominal values are scaled as percentages. MPC controller demands
that the nominal values for unmeasured disturbances must be zero.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-113

MPCobj.Model.Nominal.U = [U_nom_pct'; zeros(5,1)];
MPCobj.Model.Nominal.Y = Y_nom_pct';

Step 5: Adjust state estimator gain.

Adjusting the state estimator gain affects the disturbance rejection performance.
Increasing the state estimator gain (e.g. by increasing the gain of the input/output
disturbance model) makes the controller respond more aggressively towards output
changes (because the controller assumes the main source of the output changes is a
disturbance, instead of measurement noise). On the other hand, decreasing the state
estimator gain makes the closed-loop system more robust.

First, check whether using the default state estimator provides a decent disturbance
rejection performance.

Simulate the closed-loop response to a 1% unit step in reflux (MV #3) in MATLAB. The
simulation uses G as the plant, which implies no model mismatch.

T = 30; % Simulation time
r = Y_nom_pct; % Nominal setpoints
v = U_nom_pct(6); % No measured disturbance
SimOptions = mpcsimopt(MPCobj);
SimOptions.InputNoise = [0 0 1 0 0]; % 1% unit step in reflux
[y_L,t_L,u_L] = sim(MPCobj, T, r, v, SimOptions); % Closed-loop simulation

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
 Assuming unmeasured input disturbance #7 is integrated white noise.
 Assuming unmeasured input disturbance #8 is integrated white noise.
 Assuming unmeasured input disturbance #9 is integrated white noise.
 Assuming unmeasured input disturbance #10 is integrated white noise.
 Assuming unmeasured input disturbance #11 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
 Assuming no disturbance added to measured output channel #4.
 Assuming no disturbance added to measured output channel #5.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

% plot responses
f1 = figure();
subplot(2,1,1);
plot(t_L,y_L,[0 t_L(end)],[50 50],'k--')
title('Controlled Outputs, %')

5 Controller Simulation

5-114

legend(Gmpc.OutputName,'Location','NorthEastOutside')
subplot(2,1,2);
plot(t_L,u_L(:,1:5),[0 t_L(end)],[50 50],'k--')
title('Manipulated Variables, %')
legend(Gmpc.InputName(1:5),'Location','NorthEastOutside')
xlabel('Time, h')

The default estimator provides sluggish load rejection. In particular, the critical xD output
drops to 49% and has just begun to return to the setpoint after 0.25 hours.

Secondly, increase the estimator gain by multiplying the default input disturbance model
gain by a factor of 25.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-115

EstGain = 25; % factor of 25
Gd = getindist(MPCobj); % get default input disturbance model
Gd_new = EstGain*Gd; % create new input disturbance model
setindist(MPCobj,'Model',Gd_new); % set input disturbance model
[y_L,t_L,u_L] = sim(MPCobj,T,r,v,SimOptions); % Closed-loop simulation

-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
 Assuming no disturbance added to measured output channel #4.
 Assuming no disturbance added to measured output channel #5.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

% plot responses
f2 = figure();
subplot(2,1,1);
plot(t_L,y_L,[0 t_L(end)],[50 50],'k--')
title('Controlled Outputs, %')
legend(Gmpc.OutputName,'Location','NorthEastOutside')
subplot(2,1,2)
plot(t_L,u_L(:,1:5),[0 t_L(end)],[50 50],'k--')
title('Manipulated Variables, %')
legend(Gmpc.InputName(1:5),'Location','NorthEastOutside')
xlabel('Time, h')

5 Controller Simulation

5-116

Now, the peak deviation in xD is 50% less than the default case and xD returns to its
setpoint much faster. Other variables also respond more rapidly.

Thirdly, look at the reflux response (#3 in the "Manipulated Variables" plot). Because the
disturbance is a 1% unit step, the response begins at 51% and its final value is 50% at
steady state. The reflux response overshoots by 20% (reaching 49.8%) before settling.
This amount of overshoot is acceptable.

If the estimator gain were increased further (e.g. by a factor of 50), the controller
overshoot would increase too. However, such aggressive behavior is unlikely to be robust
when applied to the nonlinear plant model.

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-117

You can introduce other load disturbances to verify that disturbance rejection is now
rapid in all cases.

Scaling the model also simplifies disturbance model tuning. Otherwise, you would need to
adjust the gain of each channel in the disturbance model to achieve good disturbance
rejection for all loads.

Generally, you next check the response to setpoint changes. If the response is too
aggressive, you can use setpoint filter to smooth it. Setpoint filter has no effect on load
disturbance rejection and thus can be tuned independently.

Cosimulate MPC Controller and Nonlinear Plant

Use cosimulation to determine whether the MPC design is robust enough to control the
nonlinear plant model.

Step 1: Add constraints to the MPC controller

Because the nonlinear plant model has input and output constraints during operation, MV
and OV constraints are defined in the MPC controller as follows:

MV = MPCobj.MV;
OV = MPCobj.OV;
% Physical bounds on MVs at 0 and 100
for i = 1:5
 MV(i).Min = 0;
 MV(i).Max = 100;
end
MPCobj.MV = MV;
% Keep liquid levels greater than 25% and less than 75% of capacity.
for i = 2:3
 OV(i).Min = 25;
 OV(i).Max = 75;
end
MPCobj.OV = OV;

Step 2: Build Simulink model for cosimulation.

5 Controller Simulation

5-118

 Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

5-119

The model can simulate 1% unit step in reflux (MV #3). It can also simulate a change in
feed composition, which is a common disturbance and differs from the load disturbances
considered explicitly in the design.

Step 3: Simulate 1% unit step in reflux (MV #3). Compare the closed-loop responses
between using the linear plant model and using the nonlinear plant model.

Plot distillate product composition (xD) and the reflux rate (R):

In cosimulation, the model predictive controller rejects the small load disturbance in a
manner almost identical to the linear simulation.

5 Controller Simulation

5-120

Step 4: Simulate a large decrease of benzene fraction (from 0.3 to 0.22) in the feed
stream. Compare the closed-loop responses between using the linear and nonlinear plant
models.

The drop in benzene fraction requires a sustained decrease in the distillate rate and a
corresponding increase in the bottoms rate. There are also sustained drops in the heat
duties and a minor increase in the reflux. All MV adjustments are smooth and all
controlled outputs are nearly back to their setpoints within 0.5 hours.

See Also
mpc

 See Also

5-121

Adaptive MPC Design

• “Adaptive MPC” on page 6-2
• “Model Updating Strategy” on page 6-6
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 6-8
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 6-21
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter

Varying System” on page 6-34
• “Obstacle Avoidance Using Adaptive Model Predictive Control” on page 6-48
• “Time-Varying MPC” on page 6-61
• “Time-Varying MPC Control of a Time-Varying Plant” on page 6-65
• “Time-Varying MPC Control of an Inverted Pendulum on a Cart” on page 6-72

6

Adaptive MPC

When to Use Adaptive MPC
MPC control predicts future behavior using a linear-time-invariant (LTI) dynamic model.
In practice, such predictions are never exact, and a key tuning objective is to make MPC
insensitive to prediction errors. In many applications, this approach is sufficient for
robust controller performance.

If the plant is strongly nonlinear or its characteristics vary dramatically with time, LTI
prediction accuracy might degrade so much that MPC performance becomes
unacceptable. Adaptive MPC can address this degradation by adapting the prediction
model for changing operating conditions. As implemented in the Model Predictive Control
Toolbox software, adaptive MPC uses a fixed model structure, but allows the models
parameters to evolve with time. Ideally, whenever the controller requires a prediction (at
the beginning of each control interval) it uses a model appropriate for the current
conditions.

After you design an MPC controller for the average or most likely operating conditions of
your control system, you can implement an adaptive MPC controller based on that design.
For information about designing that initial controller, see “Controller Creation”.

At each control interval, the adaptive MPC controller updates the plant model and
nominal conditions. Once updated, the model and conditions remain constant over the
prediction horizon. If you can predict how the plant and nominal conditions vary in the
future, you can use “Time-Varying MPC” on page 6-61 to specify a model that changes
over the prediction horizon.

An alternative option for controlling a nonlinear or time-varying plant is to use gain-
scheduled MPC control. See “Gain-Scheduled MPC” on page 8-2.)

Plant Model
The plant model used as the basis for adaptive MPC must be an LTI discrete-time, state-
space model. See “Basic Models” (Control System Toolbox) or “Linearization Basics”
(Simulink Control Design) for information about creating and modifying such systems.
The plant model structure is as follows:

6 Adaptive MPC Design

6-2

x k Ax k B u k B v k B d k

y k Cx k D v k D d k

u v d

v d

+() = () + () + () + ()

() = () + () + ()

1

.

Here, the matrices A, Bu, Bv, Bd, C, Dv and Dd are the parameters that can vary with time.
The other variables in the expression are:

• k — Time index (current control interval).
• x — nx plant model states.
• u — nu manipulated inputs (MVs). These are the one or more inputs that are adjusted

by the MPC controller.
• v — nv measured disturbance inputs.
• d — nd unmeasured disturbance inputs.
• y — ny plant outputs, including nym measured and nyu unmeasured outputs. The total

number of outputs, ny = nym + nyu. Also, nym ≥ 1 (there is at least one measured
output).

Additional requirements for the plant model in adaptive MPC control are:

• Sample time (Ts) is a constant and identical to the MPC control interval.
• Time delay (if any) is absorbed as discrete states (see, e.g., the Control System

Toolbox absorbDelay command).
• nx, nu, ny, nd, nym, and nyu are all constants.
• Adaptive MPC prohibits direct feed-through from any manipulated variable to any

plant output. Thus, Du = 0 in the above model.
• The input and output signal configuration remains constant.

For more details about creation of plant models for MPC control, see “Plant
Specification”.

Nominal Operating Point
A traditional MPC controller includes a nominal operating point at which the plant model
applies, such as the condition at which you linearize a nonlinear model to obtain the LTI
approximation. The Model.Nominal property of the controller contains this information.

In adaptive MPC, as time evolves you should update the nominal operating point to be
consistent with the updated plant model.

 Adaptive MPC

6-3

You can write the plant model in terms of deviations from the nominal conditions:

x k x A x k x B u k u x

y k y C x k x D u k u

t t

t

+() = + () -() + () -() +

() = + () -() + () -

1 D

tt().

Here, the matrices A, B, C, and D are the parameter matrices to be updated. ut is the
combined plant input variable, comprising the u, v, and d variables defined above. The
nominal conditions to be updated are:

•
x — nx nominal states

•
Dx — nx nominal state increments

•
u

t
 — nut nominal inputs

•
y — ny nominal outputs

State Estimation
By default, MPC uses a static Kalman filter (KF) to update its controller states, which
include the nxp plant model states, nd (≥ 0) disturbance model states, and nn (≥ 0)
measurement noise model states. This KF requires two gain matrices, L and M. By
default, the MPC controller calculates them during initialization. They depend upon the
plant, disturbance, and noise model parameters, and assumptions regarding the
stochastic noise signals driving the disturbance and noise models. For more details about
state estimation in traditional MPC, see “Controller State Estimation” on page 2-2.

Adaptive MPC uses a Kalman filter and adjusts the gains, L and M, at each control
interval to maintain consistency with the updated plant model. The result is a linear-time-
varying Kalman filter (LTVKF):

L A P C N C P C R

M P C C

k k k k m k
T

m k k k m k
T

k k k m k
T

m

= +() +()

=

- -

-

-

| , , | ,

| , ,

1 1

1

1 kk k k m k
T

k k k k k k
T

k k k m k
T

k
T

P C R

P A P A A P C N L

| ,

| | | ,

-

-

+ - -

+()
= - +()

1

1

1 1 1 ++ Q.

Here, Q, R, and N are constant covariance matrices defined as in MPC state estimation.
Ak and Cm,k are state-space parameter matrices for the entire controller state, defined as

6 Adaptive MPC Design

6-4

for traditional MPC but with the portions affected by the plant model updated to time k.
The value Pk|k–1 is the state estimate error covariance matrix at time k based on
information available at time k–1. Finally, Lk and Mk are the updated KF gain matrices.
For details on the KF formulation used in traditional MPC, see “Controller State
Estimation” on page 2-2. By default, the initial condition, P0|–1, is the static KF solution
prior to any model updates.

The KF gain and the state error covariance matrix depend upon the model parameters
and the assumptions leading to the constant Q, R, and N matrices. If the plant model is
constant, the expressions for Lk and Mk converge to the equivalent static KF solution used
in traditional MPC.

The equations for the controller state evolution at time k are identical to the KF
formulation of traditional MPC described in “Controller State Estimation” on page 2-2,
but with the estimator gains and state space matrices updated to time k.

You have the option to update the controller state using a procedure external to the MPC
controller, and then supply the updated state to MPC at each control instant, k. In this
case, the MPC controller skips all KF and LTVKF calculations.

See Also

More About
• “Model Updating Strategy” on page 6-6
• “Controller State Estimation” on page 2-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 6-8
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 6-21

 See Also

6-5

Model Updating Strategy

Overview
Typically, to implement “Adaptive MPC” on page 6-2 control, you can use one of the
following model-updating strategies:

• Successive linearization — Given a mechanistic plant model, for example a set of
nonlinear ordinary differential and algebraic equations, derive its LTI approximation at
the current operating condition. For example, Simulink Control Design™ software
provides linearization tools for this purpose.

• Using a Linear Parameter Varying (LPV) model — Control System Toolbox
software provides a LPV System Simulink block that allows you to specify an array of
LTI models with scheduling parameters. You can perform batch linearization offline to
obtain an array of plant models at the desired operating points and then use them in
the LPV System block to provide model updating to the Adaptive MPC Controller
Simulink block.

• Online parameter estimation — Given an empirical model structure and initial
estimates of its parameters, use the available real-time plant measurements to
estimate the current model parameters. For example, the System Identification
Toolbox software provides real-time parameter estimation tools.

To implement “Time-Varying MPC” on page 6-61 control, you need to obtain LTI plants
for the future prediction horizon steps. In this case, you can use the successive
linearization and LPV model approaches as long as each model is a function of time

Other Considerations
There are several factors to keep in mind when designing and implementing an adaptive
MPC controller.

• Before attempting adaptive MPC, define and tune an MPC controller for the most
typical (nominal) operating condition. Make sure the system can tolerate some
prediction error. Test this tolerance via simulations in which the MPC prediction model
differs from the plant. See “MPC Design”.

• An adaptive MPC controller requires more real-time computations than traditional
MPC. In addition to the state estimation calculation, you must also implement and test
a model-updating strategy, which might be computationally intensive.

6 Adaptive MPC Design

6-6

• You must determine MPC tuning constants that provide robust performance over the
expected range of model parameters. See “Tune Weights” on page 1-33.

• Model updating via online parameter estimation is most effective when parameter
variations occur gradually.

• When implementing adaptive MPC control, adapt only parameters defining the
Model.Plant property of the controller. The disturbance and noise models, if any,
remain constant.

See Also
Adaptive MPC Controller

More About
• “Adaptive MPC” on page 6-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 6-8
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 6-21

 See Also

6-7

Adaptive MPC Control of Nonlinear Chemical Reactor
Using Successive Linearization

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A first principle nonlinear plant model is available and being linearized at each control
interval. The adaptive MPC controller then updates its internal predictive model with the
linearized plant model and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

6 Adaptive MPC Design

6-8

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A, at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to
high conversion rate. The coolant temperature is the manipulated variable used by the
MPC controller to track the reference as well as reject the measured disturbance arising
from the inlet feed stream temperature . The inlet feed stream concentration, , is
assumed to be constant. The Simulink model mpc_cstr_plant implements the nonlinear
CSTR plant.

We also assume that direct measurements of concentrations are unavailable or
infrequent, which is the usual case in practice. Instead, we use a "soft sensor" to estimate
CA based on temperature measurements and the plant model.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

6-9

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy. See “Gain-Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System” for more details. Use this approach when all the
plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization as shown in this example. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an LPV
system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design(R) is required to run this example.')
 return
end

6 Adaptive MPC Design

6-10

To implement an adaptive MPC controller, first you need to design a MPC controller at the
initial operating point where CAi is 10 kgmol/m^3, Ti and Tc are 298.15 K.

Create operating point specification.

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 8.57 dx: -6.87e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

6-11

 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 298

Outputs:

(1.) mpc_cstr_plant/T
 y: 311 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 8.57 [-Inf Inf]

Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

Obtain linear plant model at the initial condition.

sys = linearize(plant_mdl, op_point);

Drop the first plant input CAi because it is not used by MPC.

sys = sys(:,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time
plant model.

Ts = 0.5;
plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive mode,
the plant model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances = 1;
plant.InputGroup.ManipulatedVariables = 2;
plant.OutputGroup.Measured = 1;
plant.OutputGroup.Unmeasured = 2;

6 Adaptive MPC Design

6-12

plant.InputName = {'Ti','Tc'};
plant.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

Set nominal values in the controller

mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0, 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [30 50];
Yscale = [50 10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.MV(1).ScaleFactor = Uscale(2);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

Let reactor temperature T float (i.e. with no setpoint tracking error penalty), because the
objective is to control reactor concentration CA and only one manipulated variable
(coolant temperature Tc) is available.

mpcobj.Weights.OV = [0 1];

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by degrees
per minute.

mpcobj.MV.RateMin = -2;
mpcobj.MV.RateMax = 2;

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

Open the Simulink model.

mdl = 'ampc_cstr_linearization';
open_system(mdl);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

6-13

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.
3 The "Successive Linearizer" block in a MATLAB Function block that linearizes a first

principle nonlinear CSTR plant and provides the linear plant model to the "Adaptive
MPC Controller" block at each control interval. Double click the block to see the
MATLAB code. You can use the block as a template to develop appropriate linearizer
for your own applications.

Note that the new linear plant model must be a discrete time state space system with the
same order and sample time as the original plant model has. If the plant has time delay, it
must also be same as the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.

• Tracking: reactor concentration CA setpoint transitions from original 8.57 (low
conversion rate) to 2 (high conversion rate) kgmol/m^3. During the transition, the
plant first becomes unstable then stable again (see the poles plot).

6 Adaptive MPC Design

6-14

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to the MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
open_system([mdl '/Pole'])
sim(mdl);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

6-15

6 Adaptive MPC Design

6-16

bdclose(mdl);

The tracking and regulating performance is very satisfactory. In an application to a real
reactor, however, model inaccuracies and unmeasured disturbances could cause poorer
tracking than shown here. Additional simulations could be used to study these effects.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than a non-adaptive MPC. To
illustrate this point, the control performance of the same MPC controller running in the
non-adaptive mode is shown below. The controller is implemented with a MPC Controller
block.

mdl1 = 'ampc_cstr_no_linearization';
open_system(mdl1);
open_system([mdl1 '/Concentration'])
open_system([mdl1 '/Temperature'])
sim(mdl1);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

6-17

6 Adaptive MPC Design

6-18

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization

6-19

As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl1)

See Also
Adaptive MPC Controller

More About
• “Adaptive MPC” on page 6-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 6-21

6 Adaptive MPC Design

6-20

Adaptive MPC Control of Nonlinear Chemical Reactor
Using Online Model Estimation

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A discrete time ARX model is being identified online by the Recursive Polynomial Model
Estimator block at each control interval. The adaptive MPC controller uses it to update
internal plant model and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

6-21

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the reactor temperature at its desired setpoint,
which changes over time when reactor transitions from low conversion rate to high
conversion rate. The coolant temperature is the manipulated variable used by the MPC
controller to track the reference as well as reject the measured disturbance arising from
the inlet feed stream temperature . The inlet feed stream concentration, , is
assumed to be constant. The Simulink model mpc_cstr_plant implements the nonlinear
CSTR plant.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

6 Adaptive MPC Design

6-22

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy. See “Gain-Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System” for more details. Use this approach when all the
plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed, as shown in this
example. Use this approach when linear plant model cannot be obtained from either an
LPV system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design™ are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design(TM) is required to run this example.')
 return
end

To implement an adaptive MPC controller, first you need to design a MPC controller at the
initial operating point where CAi is 10 kgmol/m^3, Ti and Tc are 298.15 K.

Create operating point specification.

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

6-23

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point, op_report] = findop(plant_mdl,op);

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 8.57 dx: -6.87e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi
 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 298

6 Adaptive MPC Design

6-24

Outputs:

(1.) mpc_cstr_plant/T
 y: 311 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 8.57 [-Inf Inf]

Obtain nominal values of x, y and u.

x0 = [op_report.States(1).x;op_report.States(2).x];
y0 = [op_report.Outputs(1).y;op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u;op_report.Inputs(2).u;op_report.Inputs(3).u];

Obtain linear plant model at the initial condition.

sys = linearize(plant_mdl, op_point);

Drop the first plant input CAi and second output CA because they are not used by MPC.

sys = sys(1,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time
plant model.

Ts = 0.5;
plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive mode,
the plant model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances = 1;
plant.InputGroup.ManipulatedVariables = 2;
plant.OutputGroup.Measured = 1;
plant.InputName = {'Ti','Tc'};
plant.OutputName = {'T'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

6-25

Set nominal values in the controller

mpcobj.Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0(1), 'DX', [0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [30 50];
Yscale = 50;
mpcobj.DV.ScaleFactor = Uscale(1);
mpcobj.MV.ScaleFactor = Uscale(2);
mpcobj.OV.ScaleFactor = Yscale;

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by 2
degrees per minute.

mpcobj.MV.RateMin = -2;
mpcobj.MV.RateMax = 2;

Reactor concentration is not directly controlled in this example. If reactor temperature
can be successfully controlled, the concentration will achieve desired performance
requirement due to the strongly coupling between the two variables.

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

To run this example with online estimation, System Identification Toolbox™ software is
required.

if ~mpcchecktoolboxinstalled('ident')
 disp('System Identification Toolbox(TM) is required to run this example.')
 return
end

Open the Simulink model.

mdl = 'ampc_cstr_estimation';
open_system(mdl);

6 Adaptive MPC Design

6-26

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.
3 The "Recursive Polynomial Model Estimator" block estimates a two-input (Ti and Tc)

and one-output (T) discrete time ARX model based on the measured temperatures.
The estimated model is then converted into state space form by the "Model Type
Converter" block and fed to the "Adaptive MPC Controller" block at each control
interval.

In this example, the initial plant model is used to initialize the online estimator with
parameter covariance matrix set to 1. The online estimation method is "Kalman Filter"
with noise covariance matrix set to 0.01. The online estimation result is sensitive to these
parameters and you can further adjust them to achieve better estimation result.

Both "Recursive Polynomial Model Estimator" and "Model Type Converter" are provided
by System Identification Toolbox. You can use the two blocks as a template to develop
appropriate online model estimation for your own applications.

The initial value of A(q) and B(q) variables are populated with the numerator and
denominator of the initial plant model.

[num, den] = tfdata(plant);
Aq = den{1};
Bq = num;

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

6-27

Note that the new linear plant model must be a discrete time state space system with the
same order and sample time as the original plant model has. If the plant has time delay, it
must also be same as the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.

• Tracking: reactor temperature T setpoint transitions from original 311 K (low
conversion rate) to 377 K (high conversion rate) kgmol/m^3.

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
sim(mdl);

6 Adaptive MPC Design

6-28

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

6-29

The tracking and regulating performance is very satisfactory.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than non-adaptive MPC. To
illustrate this point, the control performance of the same MPC controller running in the
non-adaptive mode is shown below. The controller is implemented with a MPC Controller
block.

mdl1 = 'ampc_cstr_no_estimation';
open_system(mdl1);
open_system([mdl1 '/Concentration'])
open_system([mdl1 '/Temperature'])
sim(mdl1);

6 Adaptive MPC Design

6-30

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

6-31

6 Adaptive MPC Design

6-32

As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl)
bdclose(mdl1)

See Also
Adaptive MPC Controller

More About
• “Adaptive MPC” on page 6-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization” on page 6-8

 See Also

6-33

Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A linear parameter varying (LPV) system consisting of three linear plant models is
constructed offline to describe the local plant dynamics across the operating range. The
adaptive MPC controller then uses the LPV system to update the internal predictive
model at each control interval and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

6 Adaptive MPC Design

6-34

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A, at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to
high conversion rate. The coolant temperature is the manipulated variable used by the
MPC controller to track the reference as well as reject the measured disturbance arising
from the inlet feed stream temperature . The inlet feed stream concentration, , is
assumed to be constant. The Simulink model mpc_cstr_plant implements the nonlinear
CSTR plant.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter Varying System

6-35

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy. See “Gain-Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy) as shown in this example. Use this approach when all the
plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an LPV
system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design(R) is required to run this example.')
 return
end

First, a linear plant model is obtained at the initial operating condition, CAi is 10 kgmol/
m^3, Ti and Tc are 298.15 K. Functions from Simulink Control Design such as "operspec",
"findop", "linearize", are used to generate the linear state space system from the Simulink
model.

6 Adaptive MPC Design

6-36

Specify sample time used by plant models and MPC controller

Ts = 0.5;
% Create operating point specification.
plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point,op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0_initial = [op_report.States(1).x; op_report.States(2).x];
y0_initial = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0_initial = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 8.57 dx: -6.87e-12 (0)

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter Varying System

6-37

Inputs:

(1.) mpc_cstr_plant/CAi
 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 298

Outputs:

(1.) mpc_cstr_plant/T
 y: 311 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 8.57 [-Inf Inf]

Obtain linear model at the initial condition.

plant_initial = linearize(plant_mdl,op_point);
% Discretize the plant model
plant_initial = c2d(plant_initial,Ts);

Specify signal types and names used in MPC.

plant_initial.InputGroup.UnmeasuredDisturbances = [1 2];
plant_initial.InputGroup.ManipulatedVariables = 3;
plant_initial.OutputGroup.Measured = [1 2];
plant_initial.InputName = {'CAi','Ti','Tc'};
plant_initial.OutputName = {'T','CA'};

Obtain Linear Plant Model at Intermediate Operating Condition

Create operating point specification.

op = operspec(plant_mdl);

Feed concentration is known.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

6 Adaptive MPC Design

6-38

Reactor concentration is known

op.Outputs(2).y = 5.5;
op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point,op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0_intermediate = [op_report.States(1).x; op_report.States(2).x];
y0_intermediate = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0_intermediate = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 339 dx: 3.42e-08 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 5.5 dx: -2.87e-09 (0)

Inputs:

(1.) mpc_cstr_plant/CAi
 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 298 [-Inf Inf]

Outputs:

(1.) mpc_cstr_plant/T
 y: 339 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 5.5 (5.5)

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter Varying System

6-39

Obtain linear model at the initial condition.

plant_intermediate = linearize(plant_mdl,op_point);
% Discretize the plant model
plant_intermediate = c2d(plant_intermediate,Ts);

Specify signal types and names used in MPC.

plant_intermediate.InputGroup.UnmeasuredDisturbances = [1 2];
plant_intermediate.InputGroup.ManipulatedVariables = 3;
plant_intermediate.OutputGroup.Measured = [1 2];
plant_intermediate.InputName = {'CAi','Ti','Tc'};
plant_intermediate.OutputName = {'T','CA'};

Obtain Linear Plant Model at Final Operating Condition

Create operating point specification.

op = operspec(plant_mdl);

Feed concentration is known.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Reactor concentration is known

op.Outputs(2).y = 2;
op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point,op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0_final = [op_report.States(1).x; op_report.States(2).x];
y0_final = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0_final = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

6 Adaptive MPC Design

6-40

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 373 dx: 5.57e-11 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 2 dx: -4.6e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi
 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 305 [-Inf Inf]

Outputs:

(1.) mpc_cstr_plant/T
 y: 373 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 2 (2)

Obtain linear model at the initial condition.

plant_final = linearize(plant_mdl,op_point);
% Discretize the plant model
plant_final = c2d(plant_final,Ts);

Specify signal types and names used in MPC.

plant_final.InputGroup.UnmeasuredDisturbances = [1 2];
plant_final.InputGroup.ManipulatedVariables = 3;
plant_final.OutputGroup.Measured = [1 2];
plant_final.InputName = {'CAi','Ti','Tc'};
plant_final.OutputName = {'T','CA'};

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter Varying System

6-41

Construct Linear Parameter Varying System

You can use an LTI array to store the three linear plant models obtained in previous
sections.

lpv(:,:,1) = plant_initial;
lpv(:,:,2) = plant_intermediate;
lpv(:,:,3) = plant_final;

Specify reactor temperature T as the scheduling parameter.

lpv.SamplingGrid = struct('T',[y0_initial(1); y0_intermediate(1); y0_final(1)]);

Specify nominal values of plant inputs, outputs and states at each steady state operating
point.

lpv_u0(:,:,1) = u0_initial;
lpv_u0(:,:,2) = u0_intermediate;
lpv_u0(:,:,3) = u0_final;
lpv_y0(:,:,1) = y0_initial;
lpv_y0(:,:,2) = y0_intermediate;
lpv_y0(:,:,3) = y0_final;
lpv_x0(:,:,1) = x0_initial;
lpv_x0(:,:,2) = x0_intermediate;
lpv_x0(:,:,3) = x0_final;

You don't need to provide input signal "u" to the LPV System block because plant output
signal "y" is not used in this example.

Design MPC Controller at Initial Operating Condition

You design a MPC controller at the initial operating condition but the controller settings
such as horizons and tuning weights should be chosen such that they apply to the whole
operating range.

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant_initial,Ts);

Set nominal values in the controller. Note that nominal values for unmeasured
disturbance must be zero.

mpcobj.Model.Nominal = struct('X',x0_initial,'U',[0;0;u0_initial(3)],'Y',y0_initial,'DX',[0 0]);

6 Adaptive MPC Design

6-42

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [10;30;50];
Yscale = [50;10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.DV(2).ScaleFactor = Uscale(2);
mpcobj.MV.ScaleFactor = Uscale(3);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

The goal will be to track a specified transition in the reactor concentration. The reactor
temperature will be measured and used in state estimation but the controller will not
attempt to regulate it directly. It will vary as needed to regulate the concentration. Thus,
set its MPC weight to zero.

mpcobj.Weights.OV = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes
integrated white noise with unit magnitude at these inputs when configuring the state
estimator. Increase the state estimator signal-to-noise by a factor of 10 to improve
disturbance rejection performance.

Dist = ss(getindist(mpcobj));
Dist.B = eye(2)*10;
setindist(mpcobj,'model',Dist);

All other MPC parameters are at their default values.

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

Open the Simulink model.

mdl = 'ampc_cstr_lpv';
open_system(mdl);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter Varying System

6-43

The model includes three parts:

1 The "CSTR" block implements the nonlinear plant model.
2 The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.
3 The "LPV System" block provides local state space plant model and its nominal values

via interpolation at each control interval. The plant model is then fed to the "Adaptive
MPC Controller" block and updates the predictive model used by MPC controller. In
this example, the initial plant model is used to initialize the LPV System block.

The "LPV System" is provided by Control System Toolbox. You can use the Simulink model
as a template to develop your own LPV based adaptive MPC applications.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.

6 Adaptive MPC Design

6-44

• Tracking: reactor temperature T setpoint transitions from original 311 K (low
conversion rate) to 377 K (high conversion rate) kgmol/m^3. During the transition, the
plant first becomes unstable then stable again (see the poles plot).

• Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
sim(mdl);

 Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter Varying System

6-45

The tracking and regulating performance is very satisfactory.

bdclose(mdl)

See Also
Adaptive MPC Controller

More About
• “Adaptive MPC” on page 6-2
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 6-21

6 Adaptive MPC Design

6-46

• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization” on page 6-8

 See Also

6-47

Obstacle Avoidance Using Adaptive Model Predictive
Control

This example shows how to make a vehicle (ego car) follow a reference velocity and avoid
obstacles in the lane using adaptive MPC. To do so, you update the plant model and linear
mixed input/output constraints at run time.

Obstacle Avoidance

A vehicle with obstacle avoidance (or passing assistance) has a sensor, such as lidar, that
measures the distance to an obstacle in front of the vehicle and in the same lane. The
obstacle can be static, such as a large pot hole, or moving, such as a slow-moving vehicle.
The most common maneuver from the driver is to temporarily move to another lane, drive
past the obstacle, and move back to the original lane afterward.

As part of the autonomous driving experience, an obstacle avoidance system can perform
the maneuver without human intervention. In this example, you design an obstacle
avoidance system that moves the ego car around a static obstacle in the lane using
throttle and steering angle. This system uses an adaptive model predictive controller that
updates both the predictive model and the mixed input/output constraints at each control
interval.

Vehicle Model

The ego car has a rectangular shape with a length of 5 meters and width of 2 meters. The
model has four states:

• - Global X position of the car center
• - Global Y position of the car center
• - Heading angle of the car (0 when facing east, counterclockwise positive)
• - Speed of the car (positive)

There are two manipulated variables:

• - Throttle (positive when accelerating, negative when decelerating)
• - Steering angle (0 when aligned with car, counterclockwise positive)

Use a simple nonlinear model to describe the dynamics of the ego car:

6 Adaptive MPC Design

6-48

where is the car length.

Also, assume all the states are measurable. At the nominal operating point, the ego car
drives east at a constant speed of 20 meters per second.

V = 20;
x0 = [0; 0; 0; V];
u0 = [0; 0];

Obtain a linear plant model at the nominal operating point and convert it into a discrete-
time model to be used by the model predictive controller.

Ts = 0.02;
[Ad,Bd,Cd,Dd,U,Y,X,DX] = obstacleVehicleModelDT(Ts,x0,u0);
dsys = ss(Ad,Bd,Cd,Dd,'Ts',Ts);
dsys.InputName = {'Throttle','Delta'};
dsys.StateName = {'X','Y','Theta','V'};
dsys.OutputName = dsys.StateName;

Road and Obstacle Information

In this example, assume that:

• The road is straight and has 3 lanes.
• Each lane is 4 meters wide.
• The ego car drives in the middle of the center lane when not passing.
• Without losing generality, the ego car passes an obstacle only from the left (fast) lane.

lanes = 3;
laneWidth = 4;

The obstacle in this example is a nonmoving object in the middle of the center lane with
the same size as the ego car.

obstacle = struct;
obstacle.Length = 5;
obstacle.Width = 2;

 Obstacle Avoidance Using Adaptive Model Predictive Control

6-49

Place the obstacle 50 meters down the road.

obstacle.X = 50;
obstacle.Y = 0;

Create a virtual safe zone around the obstacle so that the ego car does not get too close
to the obstacle when passing it. The safe zone is centered on the obstacle and has a:

• Length equal to two car lengths.
• Width equal to two lane widths.

obstacle.safeDistanceX = obstacle.Length;
obstacle.safeDistanceY = laneWidth;
obstacle = obstacleGenerateObstacleGeometryInfo(obstacle);

In this example, assume that the lidar device can detect an obstacle 30 meters in front of
the vehicle.

obstacle.DetectionDistance = 30;

Plot the following at the nominal condition:

• Ego car - Green dot with black boundary
• Horizontal lanes - Dashed blue lines
• Obstacle - Red x with black boundary
• Safe zone - Dashed red boundary.

f = obstaclePlotInitialCondition(x0,obstacle,laneWidth,lanes);

6 Adaptive MPC Design

6-50

MPC Design at the Nominal Operating Point

Design a model predictive controller that can make the ego car maintain a desired
velocity and stay in the middle of the center lane.

status = mpcverbosity('off');
mpcobj = mpc(dsys);

The prediction horizon is 25 steps, which is equivalent to 0.5 seconds.

mpcobj.PredictionHorizon = 25;
mpcobj.ControlHorizon = 5;

To prevent the ego car from accelerating or decelerating too quickly, add a hard
constraint of 0.2 (m^2/sec) on the throttle rate of change.

 Obstacle Avoidance Using Adaptive Model Predictive Control

6-51

mpcobj.ManipulatedVariables(1).RateMin = -0.2;
mpcobj.ManipulatedVariables(1).RateMax = 0.2;

Similarly, add a hard constraint of 6 degrees per sec on the steering angle rate of change.

mpcobj.ManipulatedVariables(2).RateMin = -pi/30;
mpcobj.ManipulatedVariables(2).RateMax = pi/30;

Scale the throttle and steering angle by their respective operating ranges.

mpcobj.ManipulatedVariables(1).ScaleFactor = 2;
mpcobj.ManipulatedVariables(2).ScaleFactor = 0.2;

Since there are only two manipulated variables, to achieve zero steady-state offset, you
can choose only two outputs for perfect tracking. In this example, choose the Y position
and velocity by setting the weights of the other two outputs (X and theta) to zero. Doing
so lets the values of these other outputs float.

mpcobj.Weights.OutputVariables = [0 1 0 1];

Update the controller with the nominal operating condition. For a discrete-time plant:

• U = u0
• X = x0
• Y = Cd*x0 + Dd*u0
• DX = Ad*X0 + Bd*u0 - x0

mpcobj.Model.Nominal = struct('U',U,'Y',Y,'X',X,'DX',DX);

Specify Mixed I/O Constraints for Obstacle Avoidance Maneuver

There are different strategies to make the ego car avoid an obstacle on the road. For
example, a real-time path planner can compute a new path after an obstacle is detected
and the controller follows this path.

In this example, use a different approach that takes advantage of the ability of MPC to
handle constraints explicitly. When an obstacle is detected, it defines an area on the road
(in terms of constraints) that the ego car must not enter during the prediction horizon. At
the next control interval, the area is redefined based on the new positions of the ego car
and obstacle until passing is completed.

To define the area to avoid, use the following mixed input/output constraints:

6 Adaptive MPC Design

6-52

E*u + F*y <= G

where u is the manipulated variable vector and y is the output variable vector. You can
update the constraint matrices E, F, and G when the controller is running.

The first constraint is an upper bound on (on this three-lane road).

E1 = [0 0];
F1 = [0 1 0 0];
G1 = laneWidth*lanes/2;

The second constraint is a lower bound on (on this three-lane road).

E2 = [0 0];
F2 = [0 -1 0 0];
G2 = laneWidth*lanes/2;

The third constraint is for obstacle avoidance. Even though no obstacle is detected at the
nominal operating condition, you must add a "fake" constraint here because you cannot
change the dimensions of the constraint matrices at run time. For the fake constraint, use
a constraint with the same form as the second constraint.

E3 = [0 0];
F3 = [0 -1 0 0];
G3 = laneWidth*lanes/2;

Specify the mixed input/output constraints in the controller using the setconstraint
function.

setconstraint(mpcobj,[E1;E2;E3],[F1;F2;F3],[G1;G2;G3]);

Simulate Controller

In this example, you use an adaptive MPC controller because it handles the nonlinear
vehicle dynamics more effectively than a traditional MPC controller. A traditional MPC
controller uses a constant plant model. However, adaptive MPC allows you to provide a
new plant model at each control interval. Because the new model describes the plant
dynamics more accurately at the new operating condition, an adaptive MPC controller
performs better than a traditional MPC controller.

Also, to enable the controller to avoid the safe zone surrounding the obstacle, you update
the third mixed constraint at each control interval. Basically, the ego car must be above
the line formed from the ego car to the upper left corner of the safe zone. For more
details, open obstacleComputeCustomConstraint.

 Obstacle Avoidance Using Adaptive Model Predictive Control

6-53

Use a constant reference signal.

refSignal = [0 0 0 V];

Initialize plant and controller states.

x = x0;
u = u0;
egoStates = mpcstate(mpcobj);

The simulation time is 4 seconds.

T = 0:Ts:4;

Log simulation data for plotting.

saveSlope = zeros(length(T),1);
saveIntercept = zeros(length(T),1);
ympc = zeros(length(T),size(Cd,1));
umpc = zeros(length(T),size(Bd,2));

Run the simulation.

for k = 1:length(T)
 % Obtain new plant model and output measurements for interval |k|.
 [Ad,Bd,Cd,Dd,U,Y,X,DX] = obstacleVehicleModelDT(Ts,x,u);
 measurements = Cd * x + Dd * u;
 ympc(k,:) = measurements';

 % Determine whether the vehicle sees the obstacle, and update the mixed
 % I/O constraints when obstacle is detected.
 detection = obstacleDetect(x,obstacle,laneWidth);
 [E,F,G,saveSlope(k),saveIntercept(k)] = ...
 obstacleComputeCustomConstraint(x,detection,obstacle,laneWidth,lanes);

 % Prepare new plant model and nominal conditions for adaptive MPC.
 newPlant = ss(Ad,Bd,Cd,Dd,'Ts',Ts);
 newNominal = struct('U',U,'Y',Y,'X',X,'DX',DX);

 % Prepare new mixed I/O constraints.
 options = mpcmoveopt;
 options.CustomConstraint = struct('E',E,'F',F,'G',G);

 % Compute optimal moves using the updated plant, nominal conditions,
 % and constraints.

6 Adaptive MPC Design

6-54

 [u,Info] = mpcmoveAdaptive(mpcobj,egoStates,newPlant,newNominal,...
 measurements,refSignal,[],options);
 umpc(k,:) = u';

 % Update the plant state for the next iteration |k+1|.
 x = Ad * x + Bd * u;
end

mpcverbosity(status);

Analyze Results

Plot the trajectory of the ego car (black line) and the third mixed I/O constraints (dashed
green lines) during the obstacle avoidance maneuver.

figure(f)
for k = 1:length(saveSlope)
 X = [0;50;100];
 Y = saveSlope(k)*X + saveIntercept(k);
 line(X,Y,'LineStyle','--','Color','g')
end
plot(ympc(:,1),ympc(:,2),'-k');
axis([0 ympc(end,1) -laneWidth*lanes/2 laneWidth*lanes/2]) % reset axis

 Obstacle Avoidance Using Adaptive Model Predictive Control

6-55

The MPC controller successfully completes the task without human intervention.

Simulate Controller in Simulink

Open the Simulink model. The obstacle avoidance system contains multiple components:

• Plant Model Generator - Produce new plant model and nominal values
• Obstacle Detector - Detect obstacle (lidar sensor not included)
• Constraint Generator - Produce new mixed I/O constraints
• Adaptive MPC - Control obstacle avoidance maneuver

6 Adaptive MPC Design

6-56

mdl = 'mpc_ObstacleAvoidance';
open_system(mdl)
sim(mdl)

 Obstacle Avoidance Using Adaptive Model Predictive Control

6-57

6 Adaptive MPC Design

6-58

 Obstacle Avoidance Using Adaptive Model Predictive Control

6-59

The simulation result is identical to the command-line result. To support a rapid
prototyping workflow, you can generate C/C++ code for the blocks in the obstacle
avoidance system.

bdclose(mdl)

See Also
Blocks
Adaptive MPC Controller

Functions
mpcmoveAdaptive | mpcmoveopt

More About
• “Adaptive MPC” on page 6-2
• “Update Constraints at Run Time” on page 5-30
• “Automated Driving Using Model Predictive Control” on page 11-2

6 Adaptive MPC Design

6-60

Time-Varying MPC

When to Use Time-Varying MPC
To adapt to changing operating conditions, adaptive MPC supports updating the
prediction model and its associated nominal conditions at each control interval. However,
the updated model and conditions remain constant over the prediction horizon. If you can
predict how the plant and nominal conditions vary in the future, you can use time-varying
MPC to specify a model that changes over the prediction horizon. Such a linear time-
varying (LTV) model is useful when controlling periodic systems or nonlinear systems that
are linearized around a time-varying nominal trajectory.

To use time-varying MPC, specify arrays for the Plant and Nominal input arguments of
mpcmoveAdaptive. For an example of time-varying MPC, see “Time-Varying MPC Control
of a Time-Varying Plant” on page 6-65.

Time-Varying Prediction Models
Consider the LTV prediction model

x k A k x k B k u k B k v k

y k C k x k D k v k

u v

v

+() = () () + () () + () ()

() = () () + () ()

1

where A, Bu, Bv, C, and D are discrete-time state-space matrices that can vary with time.
The other model parameters are:

• k — Current control interval time index
• x — Plant model states
• u — Manipulated variables
• v — Measured disturbance inputs
• y — Measured and unmeasured plant outputs

Since time-varying MPC extends adaptive MPC, the plant model requirements are the
same; that is, for each model in the Plant array:

• Sample time (Ts) is constant and identical to the MPC controller sample time.
• Any time delays are absorbed as discrete states.

 Time-Varying MPC

6-61

• The input and output signal configuration remains constant.
• There is no direct feed-through from the manipulated variables to the plant outputs.

For more information, see “Plant Model” on page 6-2.

The prediction of future trajectories for p steps into the future, where p is the prediction
horizon, is the same as for the adaptive MPC case:

y

y p

S x S u S

u

u p

x u u

1

0 1

0

1

1

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= () + -() +

()

-()

È

Î

Í
Í
Í

˘

˚

M M

D

D

˙̇
˙
˙

+

()

()

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

H

v

v p

v

0

M

However, for an LTV prediction model, the matrices Sx, Su1, Su, and Hv are:

S

C A

C A A

C p A i

S

C

x

i

p

u

=

() ()
() () ()

() ()

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

=

-
’

1 0

2 1 0

0

1

1

M

11 0

2 1 1 0

1

1

() ()
() () + () ()ÈÎ ˘̊

() ()() ()È
= +

-
’

B

C B A B

C p A i B k

u

u u

i k

p
u

M

ÎÎÍ
˘
˚̇

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
() ()

()

=

-
Âk

p

u

u u

S

S C B

C p A i

0

1

1

0 0 0

2 1 0 0

L

L

M

(()() ()È
ÎÍ

˘
˚̇

() -()

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙

= +

-

=

- ’Â i k

p
uk

p
uB k C p B p

1

1

1

1
1L L

˙̇
˙
˙

=

() () ()
() () () () () ()

H

C B D

C A B C B D

C

v

v v

v v v

1 0 1 0 0

2 1 0 2 1 2 0

L

L

M M M M

pp A i B C p B p D p
i

p
v v v() ()() () () -() ()

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙=

-
’ 1

1
0 1L L

6 Adaptive MPC Design

6-62

where A i A k A k A k
i k

k
() () -() ()

=’
1

2

2 2 11@ … if k k
2 1

≥ , or I otherwise.

For more information on the prediction matrices for implicit MPC and adaptive MPC, see
“QP Matrices” on page 2-14.

Time-Varying Nominal Conditions
Linear models are often obtained by linearizing nonlinear dynamics around time-varying
nominal trajectories. For example, consider the following LTI model, obtained by
linearizing a nonlinear system at the time-varying nominal offsets xoff, uoff, voff, and yoff:

x k x k A k x k x k B k u k u k

B

off off u off

v

+() - +() = () () - ()() + () () - ()()

+

1 1

kk v k v k x k

y k y k C k x k x k

off off

off off

() () - ()() + ()

() - () = () () - ()()

D

++ () () - ()()D k v k v kv off

If we define

x x u u

v v y y

off off

off off

@ @

@ @

0 0

0 0

() ()

() ()

,

,

as standard nominal values that remain constant over the prediction horizon, we can
transform the LTI model into the following LTV model:

x k x A k x k x B k u k u B k v k voff off u off v of+() - = () () -() + () () -() + () () -1 ff v

off off v off v

B k

y k y C k x k x D k v k v D k

() + ()

() - = () () -() + () () -() + ()

where

B k x k x k x A k x x k B k u uv off off off off off u off() () + () - + () - ()() + () -@ D ooff

v off off

v off off off

k

B k v v k

D k y k y C k x x

()()
+ () - ()()

() () - + () -@ ooff v off offk D k v v k()() + () - ()()

 Time-Varying MPC

6-63

If the original linearized model is already LTV, the same transformation applies.

State Estimation
As with adaptive MPC, time-varying MPC uses a time-varying Kalman filter based on A(0),
B(0), C(0), and D(0) from the initial prediction step; that is, the current time at which the
state is estimated. For more information, see “State Estimation” on page 6-4.

See Also
mpcmoveAdaptive

More About
• “Adaptive MPC” on page 6-2
• “Optimization Problem” on page 2-9
• “Time-Varying MPC Control of a Time-Varying Plant” on page 6-65

6 Adaptive MPC Design

6-64

Time-Varying MPC Control of a Time-Varying Plant
This example shows how the Model Predictive Control Toolbox™ can use time-varying
prediction models to achieve better performance when controlling a time-varying plant.

The following MPC controllers are compared:

1 Linear MPC controller based on a time-invariant average model
2 Linear MPC controller based on a time-invariant model, which is updated at each

time step.
3 Linear MPC controller based on a time-varying prediction model.

Time-Varying Linear Plant

In this example, the plant is a single-input-single-output 3rd order time-varying linear
system with poles, zeros and gain that vary periodically with time.

The plant poles move between being stable and unstable at run time, which leads to a
challenging control problem.

Generate an array of plant models at t = 0, 0.1, 0.2, ..., 10 seconds.

Models = tf;
ct = 1;
for t = 0:0.1:10
 Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);
 ct = ct + 1;
end

Convert the models to state-space format and discretize them with a sample time of 0.1
second.

Ts = 0.1;
Models = ss(c2d(Models,Ts));

MPC Controller Design

The control objective is to track a step change in the reference signal. First, design an
MPC controller for the average plant model. The controller sample time is 0.1 second.

 Time-Varying MPC Control of a Time-Varying Plant

6-65

sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % prediction model
p = 3; % prediction horizon
m = 3; % control horizon
mpcobj = mpc(sys,Ts,p,m);

Set hard constraints on the manipulated variable and specify tuning weights.

mpcobj.MV = struct('Min',-2,'Max',2);
mpcobj.Weights = struct('MV',0,'MVRate',0.01,'Output',1);

Set the initial plant states to zero.

x0 = zeros(size(sys.B));

Closed-Loop Simulation with Implicit MPC

Run a closed-loop simulation to examine whether the designed implicit MPC controller
can achieve the control objective without updating the plant model used in prediction.

Set the simulation duration to 5 seconds.

Tstop = 5;

Use the mpcmove command in a loop to simulate the closed-loop response.

yyMPC = [];
uuMPC = [];
x = x0;
xmpc = mpcstate(mpcobj);
fprintf('Simulating MPC controller based on average LTI model.\n');
for ct = 1:(Tstop/Ts+1)
 % Get the real plant.
 real_plant = Models(:,:,ct);
 % Update and store the plant output.
 y = real_plant.C*x;
 yyMPC = [yyMPC,y];
 % Compute and store the MPC optimal move.
 u = mpcmove(mpcobj,xmpc,y,1);
 uuMPC = [uuMPC,u];
 % Update the plant state.
 x = real_plant.A*x + real_plant.B*u;
end

Simulating MPC controller based on average LTI model.

6 Adaptive MPC Design

6-66

Closed-Loop Simulation with Adaptive MPC

Run a second simulation to examine whether an adaptive MPC controller can achieve the
control objective.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response.
Update the plant model for each control interval, and use the updated model to compute
the optimal control moves. The mpcmoveAdaptive command uses the same prediction
model across the prediction horizon.

yyAMPC = [];
uuAMPC = [];
x = x0;
xmpc = mpcstate(mpcobj);
nominal = mpcobj.Model.Nominal;
fprintf('Simulating MPC controller based on LTI model, updated at each time step t.\n');
for ct = 1:(Tstop/Ts+1)
 % Get the real plant.
 real_plant = Models(:,:,ct);
 % Update and store the plant output.
 y = real_plant.C*x;
 yyAMPC = [yyAMPC, y];
 % Compute and store the MPC optimal move.
 u = mpcmoveAdaptive(mpcobj,xmpc,real_plant,nominal,y,1);
 uuAMPC = [uuAMPC,u];
 % Update the plant state.
 x = real_plant.A*x + real_plant.B*u;
end

Simulating MPC controller based on LTI model, updated at each time step t.

Closed-Loop Simulation with Time-Varying MPC

Run a third simulation to examine whether a time-varying MPC controller can achieve the
control objective.

The controller updates the prediction model at each control interval and also uses time-
varying models across the prediction horizon, which gives MPC controller the best
knowledge of plant behavior in the future.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response.
Specify an array of plant models rather than a single model. The controller uses each
model in the array at a different prediction horizon step.

 Time-Varying MPC Control of a Time-Varying Plant

6-67

yyLTVMPC = [];
uuLTVMPC = [];
x = x0;
xmpc = mpcstate(mpcobj);
Nominals = repmat(nominal,3,1); % Nominal conditions are constant over the prediction horizon.
fprintf('Simulating MPC controller based on time-varying model, updated at each time step t.\n');
for ct = 1:(Tstop/Ts+1)
 % Get the real plant.
 real_plant = Models(:,:,ct);
 % Update and store the plant output.
 y = real_plant.C*x;
 yyLTVMPC = [yyLTVMPC, y];
 % Compute and store the MPC optimal move.
 u = mpcmoveAdaptive(mpcobj,xmpc,Models(:,:,ct:ct+p),Nominals,y,1);
 uuLTVMPC = [uuLTVMPC,u];
 % Update the plant state.
 x = real_plant.A*x + real_plant.B*u;
end

Simulating MPC controller based on time-varying model, updated at each time step t.

Performance Comparison of MPC Controllers

Compare the closed-loop responses.

t = 0:Ts:Tstop;
figure
subplot(2,1,1);
plot(t,yyMPC,'-.',t,yyAMPC,'--',t,yyLTVMPC);
grid
legend('Implicit MPC','Adaptive MPC','Time-Varying MPC','Location','SouthEast')
title('Plant Output');
subplot(2,1,2)
plot(t,uuMPC,'-.',t,uuAMPC,'--',t,uuLTVMPC)
grid
title('Control Moves');

6 Adaptive MPC Design

6-68

Only the time-varying MPC controller is able to bring the plant output close enough to the
desired setpoint.

Closed-Loop Simulation of Time-Varying MPC in Simulink

To simulate time-varying MPC control in Simulink, pass the time-varying plant models to
model inport of the Adaptive MPC Controller block.

xmpc = mpcstate(mpcobj);
mdl = 'mpc_timevarying';
open_system(mdl);

 Time-Varying MPC Control of a Time-Varying Plant

6-69

Run the simulation.

sim(mdl,Tstop);
fprintf('Simulating MPC controller based on LTV model in Simulink.\n');

Simulating MPC controller based on LTV model in Simulink.

Plot the MATLAB and Simulink time-varying simulation results.

figure
subplot(2,1,1)
plot(t,yyLTVMPC,t,ysim,'o');
grid
legend('mpcmoveAdaptive','Simulink','Location','SouthEast')
title('Plant Output');
subplot(2,1,2)
plot(t,uuLTVMPC,t,usim,'o')
grid
title('Control Moves');

6 Adaptive MPC Design

6-70

The closed-loop responses in MATLAB and Simulink are identical.

bdclose(mdl);

See Also
Adaptive MPC Controller | mpcmoveAdaptive

More About
• “Time-Varying MPC” on page 6-61

 See Also

6-71

Time-Varying MPC Control of an Inverted Pendulum on a
Cart

This example shows how to control an inverted pendulum on a cart using a linear time-
varying model predictive controller (LTV MPC).

Product Requirement

This example requires Simulink® software to simulate the nonlinear pendulum model.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink (R) is required to run this example.')
 return
end

Pendulum/Cart Assembly

The plant for this example is the following pendulum/cart assembly, where z is the cart
position and theta is the pendulum angle.

6 Adaptive MPC Design

6-72

The manipulated variable for this system is a variable force F acting on the cart. The
range of the force is between -100 and 100. The controller needs to keep the pendulum
upright while moving the cart to a new position or when the pendulum is nudged forward
by an impulse disturbance dF applied at the upper end of the inverted pendulum.

Control Objectives

Assume the following initial conditions for the pendulum/cart assembly:

• The cart is stationary at z = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

 Time-Varying MPC Control of an Inverted Pendulum on a Cart

6-73

The control objectives are:

• Cart can be moved to a new position between -20 and 20 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 10 percent (for robustness).

• When an impulse disturbance of magnitude of 4 is applied to the pendulum, the cart
and pendulum should return to its original position with small displacement.

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

The Choice of Time-Varying MPC

In “Control of an Inverted Pendulum on a Cart”, a single MPC controller is able to move
the cart to a new position between -10 and 10. However, if you increase the step setpoint
change to 20, the pendulum fails to recover its upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle, such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the
prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.

To avoid the pendulum falling, a simple workaround is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To move the cart to a new position between -20 and 20 while maintaining the same rise
time, the controller needs to have more accurate models at different angles so that the
controller can use them for better prediction. Adaptive MPC allows you to solve a
nonlinear control problem by updating linear time-varying plant models at run time.

6 Adaptive MPC Design

6-74

Control Structure

For this example, use a single LTV MPC controller with:

• One manipulated variable: Variable force F.
• Two measured outputs: Cart position z and pendulum angle theta.

mdlMPC = 'mpc_pendcartLTVMPC';
open_system(mdlMPC);

Because all the plant states are measurable, they are directly used as custom estimated
states in the Adaptive MPC block.

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Time-Varying Plant Models

At each control interval, LTV MPC requires a linear plant model for each prediction step,
from current time k to time k+p, where p is the prediction horizon.

 Time-Varying MPC Control of an Inverted Pendulum on a Cart

6-75

In this example, the cart and pendulum dynamic system is described by a first principle
model. This model consists of a set of differential and algebraic equations (DAEs), defined
in the pendulumCT function. For more details, see pendulumCT.m.

The Successive Linearizer block in the Simulink model generates the LTV models at run
time. At each prediction step, the block obtains state-space matrices A, B, C, and D using a
Jacobian in continuous-time, and then converts them into discrete-time values. The initial
plant states x(k) are directly measured from the plant. The plant input sequence contains
the optimal moves generated by the MPC controller in the previous control interval.

Adaptive MPC Design

The MPC controller is designed at its nominal equilibrium operating point.

x0 = zeros(4,1);
u0 = zeros(1,1);

Analytically obtain a linear plant model using the ODEs.

[~,~,A,B,C,D] = pendulumCT(x0, u0);
plant = ss(A,B,C([1 3],:),D([1 3],:)); % position and angle

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;
PredictionHorizon = 60;
ControlHorizon = 3;

Create the MPC controller.

mpcobj = mpc(c2d(plant,Ts),Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

There is a limitation on how much force can be applied to the cart, which is specified
using hard constraints on the manipulated variable F.

6 Adaptive MPC Design

6-76

mpcobj.MV.Min = -100;
mpcobj.MV.Max = 100;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position z, and the second weight is associated with angle
theta.

mpcobj.Weights.OV = [0.6 1.2];

Use a gain as the output disturbance model for the pendulum angle. This represents rapid
short-term variability.

setoutdist(mpcobj,'model',[0;tf(1)]);

Use custom state estimation since all the plant states are measurable.

setEstimator(mpcobj,'custom');

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope']);
sim(mdlMPC)

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Time-Varying MPC Control of an Inverted Pendulum on a Cart

6-77

6 Adaptive MPC Design

6-78

In the nonlinear simulation, all the control objectives are successfully achieved.

bdclose(mdlMPC);

See Also
Adaptive MPC Controller

More About
• “Time-Varying MPC” on page 6-61

 See Also

6-79

Explicit MPC Design

• “Explicit MPC” on page 7-2
• “Design Workflow for Explicit MPC” on page 7-4
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

on page 7-30
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 7-41

7

Explicit MPC
A traditional model predictive controller solves a quadratic program (QP) at each control
interval to determine the optimal manipulated variable (MV) adjustments. These
adjustments are the solution of the implicit nonlinear function u=f(x).

The vector x contains the current controller state and other independent variables
affecting the QP solution, such as the current output reference values. The Model
Predictive Control Toolbox software imposes restrictions that force a unique QP solution.

Finding the optimal MV adjustments can be time consuming, and the required time can
vary significantly from one control interval to the next. In applications that require a
solution within a certain consistent time, which could be on the order of microseconds,
the implicit MPC approach can be unsuitable.

As shown in “Optimization Problem” on page 2-9, if no QP inequality constraints are
active for a given x vector, then the optimal MV adjustments become a linear function of
x:

u Fx G= + .

where, F and G are constants. Similarly, if x remains in a region where a fixed subset of
inequality constraints is active, the QP solution is also a linear function of x, but with
different F and G constants.

Explicit MPC uses offline computations to determine all polyhedral regions where the
optimal MV adjustments are a linear function of x, and the corresponding control-law
constants. When the controller operates in real time, the explicit MPC controller performs
the following steps at each control instant, k:

1 Estimate the controller state using available measurements, as in traditional MPC.
2 Form x(k) using the estimated state and the current values of the other independent

variables.
3 Identify the region in which x(k) resides.
4 Looks up the predetermined F and G constants for this region.
5 Evaluate the linear function u(k) = Fx(k) + G.

You can establish a tight upper bound for the time required in each step. If the number of
regions is not too large, the total computational time can be small. However, as the

7 Explicit MPC Design

7-2

number of regions increases, the time required in step 3 dominates. Also, the memory
required to store all the linear control laws and polyhedral regions becomes excessive.
The number of regions characterizing u = f(x) depends primarily on the QP inequality
constraints that could be active at the solution. If an explicit MPC controller has many
constraints, and thus requires significant computational effort or memory, a traditional
implicit implementation may be preferable.

See Also

More About
• “Design Workflow for Explicit MPC” on page 7-4
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on

page 7-30

 See Also

7-3

Design Workflow for Explicit MPC
To create an explicit MPC controller, you must first design a traditional (implicit) MPC
controller. You then generate an explicit MPC controller based on the traditional
controller design.

Traditional (Implicit) MPC Design
First design a traditional (implicit) MPC for your application and test it in simulations.
Key considerations are as follows:

• The Model Predictive Control Toolbox software currently supports the following as
independent variables for explicit MPC:

• nxc controller state variables (plant, disturbance, and measurement noise model
states).

• ny (≥ 1) output reference values, where ny is the number of plant output variables.
• nv (≥ 0) measured plant disturbance signals.

Thus, you must fix most MPC design parameters before creating an explicit MPC
controller. Fixed parameters include prediction models (plant, disturbance and
measurement noise), scale factors, horizons, penalty weights, manipulated variable
targets, and constraint bounds.

For information about designing a traditional MPC controller, see “Controller
Creation”.

For information about tuning traditional MPC controllers, see “Refinement”.
• Reference and measured disturbance previewing are not supported. At each control

interval, the current ny reference and nv measured disturbance signals apply for the
entire prediction horizon.

• To limit the number of regions needed by explicit MPC, include only essential
constraints.

• When including a constraint on a manipulated variable (MV), use a short control
horizon or MV blocking. See “Choose Sample Time and Horizons” on page 1-2.

• Avoid constraints on plant outputs. If such a constraint is essential, consider
imposing it for selected prediction horizon steps rather than the entire prediction
horizon.

7 Explicit MPC Design

7-4

• Establish upper and lower bounds for each of the nx = nxc + ny + nv independent
variables. You might know some of these bounds a priori. However, you must run
simulations that record at least the nxc controller states as the system operates over
the range of expected conditions. It is important that you do not underestimate this
range, because the explicit MPC control function is not defined for independent
variables outside the range.

For information about specifying bounds, see generateExplicitRange.

For information about simulating a traditional MPC controller, see “Simulation”.

Explicit MPC Generation
Given the constant MPC design parameters and the nx upper and lower bounds on the
independent variables of the control law, that is,

x x k xl u£ £() ,

the generateExplicitMPC command determines nr regions. Each of these regions is
defined by an inequality constraint and the corresponding control law constants:

H x k K i n

u k F x k G i n

i i r

i i r

() £ =

() = () + =

, ,

, , .

1

1

The Explicit MPC Controller object contains the constants Hi, Ki, Fi, and Gi for each
region. The Explicit MPC Controller object also holds the original (implicit) design and
independent variable bounds. As long as x(k) stays within the specified bounds and you
retain all nr regions, the explicit MPC object provides the same optimal MV adjustments,
u(k), as the equivalent implicit MPC object.

For details about explicit MPC, see [1]. For details about how the explicit MPC controller
is generated, see [2].

Explicit MPC Simplification
Even a relatively simple explicit MPC controller might require many regions (nr >> 100)
to characterize the QP solution completely. If the number of regions is large, consider the
following:

 Design Workflow for Explicit MPC

7-5

• Visualize the solution using the plotSection command.
• Use the simplify command to reduce the number of regions. Sometimes, this

reduction can be done with no (or negligible) impact on control law optimality. For
example, pairs of adjacent regions might employ essentially the same Fi and Ki
constants. If so, and if the union of the two regions forms a convex set, they can be
merged into a single region.

Alternatively, you can eliminate relatively small regions or retain selected regions only.
During operation, if the current x(k) is not contained in any of the retained regions,
the explicit MPC returns a suboptimal u(k), as follows:

u k F x k Gj j() = () + .

Here, j is the index of the region whose bounding constraint, Hjx(k) ≤ Kj, is least
violated.

Implementation
During operation, for a given x(k), the explicit MPC controller performs the following
steps:

1 Verifies that x(k) satisfies the specified bounds, xl ≤ x(k) ≤ xu. If not, the controller
returns an error status and sets u(k) = u(k–1).

2 Beginning with region i = 1, tests the regions one by one to determine whether x(k)
belongs. If Hix(k) ≤ Ki, then x(k) belongs to region i. If x(k) belongs to region i, then
the controller:

• Obtains Fi and Gi from memory, and computes u(k) = Fix(k) + Gi.
• Signals successful completion, by returning a status code and the index i.
• Returns without testing the remaining regions.

If x(k) does not belong to region i, the controller:

• Computes the violation term vi, which is the largest (positive) component of the
vector (Hix(k) – Ki).

• If vi is the minimum violation for this x(k), the controller sets j = i, and sets vmin =
vi.

• The controller then increments i and tests the next region.

7 Explicit MPC Design

7-6

3 If all regions have been tested and x(k) does not belong to any region (for example,
due to a numerical precision issue), the controller:

• Obtains Fj and Gj from memory, and computes u(k) = Fjx(k) + Gj.
• Sets status to indicate a suboptimal solution and returns.

Thus, the maximum computational time per control interval is the time required to test
each region, computing the violation term in each case and then calculating the
suboptimal control adjustment.

Simulation
You can perform command-line simulations using the sim or mpcmoveExplicit
commands.

You can use the Explicit MPC Controller block to connect an explicit MPC to a plant
modeled in Simulink.

References
[1] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos, "The explicit linear quadratic

regulator for constrained systems," Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[2] A. Bemporad, "A multi-parametric quadratic programming algorithm with polyhedral
computations based on nonnegative least squares," 2014, Submitted for
publication.

See Also
Explicit MPC Controller | generateExplicitMPC | mpcmoveExplicit

More About
• “Explicit MPC” on page 7-2
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on

page 7-30

 See Also

7-7

Explicit MPC Control of a Single-Input-Single-Output
Plant

This example shows how to control a double integrator plant under input saturation in
Simulink® using explicit MPC.

See also MPCDOUBLEINT.

Define Plant Model

The linear open-loop dynamic model is a double integrator:

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1;
p = 10;
m = 3;
mpcobj = mpc(plant, Ts, p, m);

Specify actuator saturation limits as MV constraints.

mpcobj.MV = struct('Min',-1,'Max',1);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional MPC,
you must specify range for each controller state, reference signal, manipulated variable
and measured disturbance so that the multi-parametric quadratic programming problem
is solved in the parameter space defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify range for each parameter afterwards.

range = generateExplicitRange(mpcobj);

Specify ranges for controller states

7 Explicit MPC Design

7-8

MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least as
large as the practical range.

range.Reference.Min = -2;
range.Reference.Max = 2;

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

range.ManipulatedVariable.Min = -1.1;
range.ManipulatedVariable.Max = 1.1;

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit);

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 19
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.

 Explicit MPC Control of a Single-Input-Single-Output Plant

7-9

Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Use simplify command with the "exact" method to join pairs of regions whose
corresponding gains are the same and whose union is a convex set. This practice can
reduce memory footprint of the Explicit MPC controller without sacrifice any
performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');
display(mpcobjExplicitSimplified);

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 15
Number of parameters: 4
Is solution simplified: Yes
State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.
Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.
Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each solution.

The number of piecewise affine region has been reduced.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.

params = generatePlotParameters(mpcobjExplicitSimplified);

Specify parameters for a 2-D plot

In this example, you plot the 1th state variable vs. the 2nd state variable. All the other
parameters must be fixed at a value within its range.

7 Explicit MPC Design

7-10

params.State.Index = [];
params.State.Value = [];

Fix other reference signals

params.Reference.Index = 1;
params.Reference.Value = 0;

Fix manipulated variables

params.ManipulatedVariable.Index = 1;
params.ManipulatedVariable.Value = 0;

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicitSimplified, params);
axis([-4 4 -4 4]);
grid
xlabel('State #1');
ylabel('State #2');

 Explicit MPC Control of a Single-Input-Single-Output Plant

7-11

Simulate Using MPCMOVE Command

Compare closed-loop simulation between tradition MPC (as referred as Implicit MPC) and
Explicit MPC using mpcmove and mpcmoveExplicit commands respectively.

Prepare to store the closed-loop MPC responses.

Tf = round(5/Ts);
YY = zeros(Tf,1);
YYExplicit = zeros(Tf,1);
UU = zeros(Tf,1);
UUExplicit = zeros(Tf,1);

Prepare the real plant used in simulation

7 Explicit MPC Design

7-12

sys = c2d(ss(plant),Ts);
xsys = [0;0];
xsysExplicit = xsys;

Use MPCSTATE object to specify the initial states for both controllers

xmpc = mpcstate(mpcobj);
xmpcExplicit = mpcstate(mpcobjExplicitSimplified);

Simulate closed-loop response in each iteration.

for t = 0:Tf
 % update plant measurement
 ysys = sys.C*xsys;
 ysysExplicit = sys.C*xsysExplicit;
 % compute traditional MPC action
 u = mpcmove(mpcobj,xmpc,ysys,1);
 % compute Explicit MPC action
 uExplicit = mpcmoveExplicit(mpcobjExplicit,xmpcExplicit,ysysExplicit,1);
 % store signals
 YY(t+1)=ysys;
 YYExplicit(t+1)=ysysExplicit;
 UU(t+1)=u;
 UUExplicit(t+1)=uExplicit;
 % update plant state
 xsys = sys.A*xsys + sys.B*u;
 xsysExplicit = sys.A*xsysExplicit + sys.B*uExplicit;
end
fprintf('\nDifference between traditional and Explicit MPC responses using MPCMOVE command is %g\n',norm(UU-UUExplicit)+norm(YY-YYExplicit));

Difference between traditional and Explicit MPC responses using MPCMOVE command is 1.78199e-13

Simulate Using SIM Command

Compare closed-loop simulation between tradition MPC and Explicit MPC using sim
commands respectively.

Tf = 5/Ts; % simulation iterations
[y1,t1,u1] = sim(mpcobj,Tf,1); % simulation with tradition MPC
[y2,t2,u2] = sim(mpcobjExplicitSimplified,Tf,1); % simulation with Explicit MPC

The simulation results are identical.

fprintf('\nDifference between traditional and Explicit MPC responses using SIM command is %g\n',norm(u2-u1)+norm(y2-y1));

 Explicit MPC Control of a Single-Input-Single-Output Plant

7-13

Difference between traditional and Explicit MPC responses using SIM command is 1.78084e-13

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate with traditional MPC controller in Simulink. Controller "mpcobj" is specified in
the block dialog.

mdl = 'mpc_doubleint';
open_system(mdl);
sim(mdl);

7 Explicit MPC Design

7-14

 Explicit MPC Control of a Single-Input-Single-Output Plant

7-15

Simulate with Explicit MPC controller in Simulink. Controller "mpcobjExplicitSimplified"
is specified in the block dialog.

mdlExplicit = 'empc_doubleint';
open_system(mdlExplicit);
sim(mdlExplicit);

7 Explicit MPC Design

7-16

 Explicit MPC Control of a Single-Input-Single-Output Plant

7-17

7 Explicit MPC Design

7-18

The closed-loop responses are identical.

fprintf('\nDifference between traditional and Explicit MPC responses in Simulink is %g\n',norm(uExplicit-u)+norm(yExplicit-y));

Difference between traditional and Explicit MPC responses in Simulink is 1.69399e-13

bdclose(mdl)
bdclose(mdlExplicit)

See Also

More About
• “Explicit MPC” on page 7-2
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on

page 7-30

 See Also

7-19

Explicit MPC Control of an Aircraft with Unstable Poles
This example shows how to control an unstable aircraft with saturating actuators using
explicit model predictive control.

For an example that controls the same plant using a traditional MPC controller, see
“Aircraft with Unstable Poles”.

Define Aircraft Model

The linear open-loop dynamic model of the aircraft has the following state-space matrices:

A = [-0.0151 -60.5651 0 -32.174;
 -0.0001 -1.3411 0.9929 0;
 0.00018 43.2541 -0.86939 0;
 0 0 1 0];
B = [-2.516 -13.136;
 -0.1689 -0.2514;
 -17.251 -1.5766;
 0 0];
C = [0 1 0 0;
 0 0 0 1];
D = [0 0;
 0 0];

Create the plant, and specify the initial states as zero.

plant = ss(A,B,C,D);
x0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles. The attack and pitch
angles are measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

ans =

 -7.6636 + 0.0000i
 5.4530 + 0.0000i
 -0.0075 + 0.0556i
 -0.0075 - 0.0556i

7 Explicit MPC Design

7-20

Design MPC Controller

To obtain an Explicit MPC controller, you must first design a traditional (implicit) model
predictive controller that is able to achieve your control objectives.

MV Constraints

Both manipulated variables are constrained between +/- 25 degrees. Since the plant
inputs and outputs are of different orders of magnitude, you also use scale factors to
facilitate MPC tuning. Typical choices of scale factor are the upper/lower limit or the
operating range.

MV = struct('Min',{-25,-25},'Max',{25,25},'ScaleFactor',{50,50});

OV Constraints

Both plant outputs have constraints to limit undershoots at the first prediction horizon.
You also specify scale factors for outputs.

OV = struct('Min',{[-0.5;-Inf],[-100;-Inf]},'Max',{[0.5;Inf],[100;Inf]},'ScaleFactor',{1,200});

Weights

The control task is to get zero offset for piecewise-constant references, while avoiding
instability due to input saturation. Because both MV and OV variables are already scaled
in MPC controller, MPC weights are dimensionless and applied to the scaled MV and OV
values. In this example, you penalize the two outputs equally with the same OV weights.

Weights = struct('MV',[0 0],'MVRate',[0.1 0.1],'OV',[10 10]);

Construct Traditional MPC Controller

Create an MPC controller with the specified plant model, sample time, and horizons.

Ts = 0.05; % Sample time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC controller. To generate an explicit MPC controller
from a traditional MPC controller, you must specify the range for each controller state,

 Explicit MPC Control of an Aircraft with Unstable Poles

7-21

reference signal, manipulated variable and measured disturbance. Doing so ensures that
the multi-parametric quadratic programming problem is solved in the parameter space
defined by these ranges.

Obtain a range structure for initialization

To obtain a range structure where you can specify range for each parameter afterwards,
use the generateExplicitRange command.

range = generateExplicitRange(mpcobj);

Specify Ranges for Controller States

MPC controller states include states from the plant model, disturbance model, and noise
model, in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:) = -10000;
range.State.Max(:) = 10000;

Specify Ranges for Reference Signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate an explicit MPC controller must
be at least as large as the practical range.

range.Reference.Min = [-1;-11];
range.Reference.Max = [1;11];

Specify Ranges for Manipulated Variables

If manipulated variables are constrained, the ranges used to generate an explicit MPC
controller must be at least as large as these limits.

range.ManipulatedVariable.Min = [MV(1).Min; MV(2).Min] - 1;
range.ManipulatedVariable.Max = [MV(1).Max; MV(2).Max] + 1;

Construct Explicit MPC Controller

Use generateExplicitMPC command to obtain the explicit MPC controller with the
parameter ranges previously specified.

7 Explicit MPC Design

7-22

mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit)

Explicit MPC Controller

Controller sample time: 0.05 (seconds)
Polyhedral regions: 483
Number of parameters: 10
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

To join pairs of regions whose corresponding gains are the same and whose union is a
convex set, use the simplify command with the 'exact' method. This practice can
reduce the memory footprint of the explicit MPC controller without sacrificing
performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');
display(mpcobjExplicitSimplified)

Explicit MPC Controller

Controller sample time: 0.05 (seconds)
Polyhedral regions: 471
Number of parameters: 10
Is solution simplified: Yes
State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.
Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.
Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each solution.

The number of piecewise affine regions has been reduced.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

 Explicit MPC Control of an Aircraft with Unstable Poles

7-23

Obtain a plot parameter structure for initialization

To obtain a parameter structure where you can specify which 2-D section to plot, use the
generatePlotParameters function.

params = generatePlotParameters(mpcobjExplicitSimplified);

Specify parameters for a 2-D plot

In this example, you plot the pitch angle (the 4th state variable) vs. its reference (the 2nd
reference signal). All the other parameters must be fixed at values within their respective
ranges.

Fix other state variables.

params.State.Index = [1 2 3 5 6];
params.State.Value = [0 0 0 0 0];

Fix other reference signals.

params.Reference.Index = 1;
params.Reference.Value = 0;

Fix manipulated variables.

params.ManipulatedVariable.Index = [1 2];
params.ManipulatedVariable.Value = [0 0];

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicitSimplified,params);
axis([-10 10 -10 10])
grid
xlabel('Pitch angle (x_4)')
ylabel('Reference on pitch angle (r_2)')

7 Explicit MPC Design

7-24

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink. To do so, for the MPC
Controller block, set the Explicit MPC Controller property to
mpcobjExplicitSimplified.

 Explicit MPC Control of an Aircraft with Unstable Poles

7-25

mdl = 'empc_aircraft';
open_system(mdl)
sim(mdl)

7 Explicit MPC Design

7-26

 Explicit MPC Control of an Aircraft with Unstable Poles

7-27

The closed-loop response is identical to the traditional MPC controller designed in
“Aircraft with Unstable Poles”.

References

[1] P. Kapasouris, M. Athans, and G. Stein, "Design of feedback control systems for
unstable plants with saturating actuators", Proc. IFAC Symp. on Nonlinear Control
System Design, Pergamon Press, pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear
systems via predictive reference management", IEEE® Trans. Automatic Control, vol.
AC-42, no. 3, pp. 340-349, 1997.

7 Explicit MPC Design

7-28

bdclose(mdl)

See Also

More About
• “Explicit MPC” on page 7-2
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on

page 7-30

 See Also

7-29

Explicit MPC Control of DC Servomotor with Constraint
on Unmeasured Output

This example shows how to use Explicit MPC to control DC servomechanism under
voltage and shaft torque constraints.

Reference

[1] A. Bemporad and E. Mosca, ''Fulfilling hard constraints in uncertain linear systems by
reference managing,'' Automatica, vol. 34, no. 4, pp. 451-461, 1998.

See also MPCMOTOR.

Define DC-Servo Motor Model

The linear open-loop dynamic model is defined in "plant". Variable "tau" is the maximum
admissible torque to be used as an output constraint.

[plant, tau] = mpcmotormodel;

Design MPC Controller

Specify input and output signal types for the MPC controller. The second output, torque,
is unmeasurable.

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

MV Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs and
outputs are of different orders of magnitude, you also use scale factors to facilitate MPC
tuning. Typical choices of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

OV Constraints

Torque constraints are only imposed during the first three prediction steps to limit the
complexity of the explicit MPC design.

OV = struct('Min',{Inf, [-tau;-tau;-tau;-Inf]},'Max',{Inf, [tau;tau;tau;Inf]},'ScaleFactor',{2*pi, 2*tau});

Weights

7 Explicit MPC Design

7-30

The control task is to get zero tracking offset for the angular position. Since you only have
one manipulated variable, the shaft torque is allowed to float within its constraint by
setting its weight to zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

Construct MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.1; % Sampling time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional MPC,
you must specify the range for each controller state, reference signal, manipulated
variable and measured disturbance so that the multi-parametric quadratic programming
problem is solved in the parameter sets defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify the range for each parameter afterwards.

range = generateExplicitRange(mpcobj);

Specify ranges for controller states

MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:) = -1000;
range.State.Max(:) = 1000;

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least as

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

7-31

large as the practical range. Note that the range for torque reference is fixed at 0
because it has zero weight.

range.Reference.Min = [-5;0];
range.Reference.Max = [5;0];

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

range.ManipulatedVariable.Min = MV.Min - 1;
range.ManipulatedVariable.Max = MV.Max + 1;

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit);

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 75
Number of parameters: 6
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.

7 Explicit MPC Design

7-32

params = generatePlotParameters(mpcobjExplicit);

Specify parameters for a 2-D plot

In this example, you plot the 1th state variable vs. the 2nd state variable. All the other
parameters must be fixed at a value within its range.

Fix other state variables

params.State.Index = [3 4];
params.State.Value = [0 0];

Fix reference signals

params.Reference.Index = [1 2];
params.Reference.Value = [pi 0];

Fix manipulated variables

params.ManipulatedVariable.Index = 1;
params.ManipulatedVariable.Value = 0;

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicit, params);
axis([-.3 .3 -2 2]);
grid
title('Section of partition [x3(t)=0, x4(t)=0, u(t-1)=0, r(t)=pi]')
xlabel('x1(t)');
ylabel('x2(t)');

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

7-33

Simulate Using SIM Command

Compare closed-loop simulation between traditional MPC (as referred as Implicit MPC)
and Explicit MPC

Tstop = 8; % seconds
Tf = round(Tstop/Ts); % simulation iterations
r = [pi 0]; % reference signal
[y1,t1,u1] = sim(mpcobj,Tf,r); % simulation with traditional MPC
[y2,t2,u2] = sim(mpcobjExplicit,Tf,r); % simulation with Explicit MPC

The simulation results are identical.

fprintf('SIM command: Difference between QP-based and Explicit MPC trajectories = %g\n',norm(u2-u1)+norm(y2-y1));

7 Explicit MPC Design

7-34

SIM command: Difference between QP-based and Explicit MPC trajectories = 8.68909e-12

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate closed-loop control of the linear plant model in Simulink, using the Explicit MPC
Controller block. Controller "mpcobjExplicit" is specified in the block dialog.

mdl = 'empc_motor';
open_system(mdl)
sim(mdl);

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

7-35

7 Explicit MPC Design

7-36

The closed-loop response is identical to the traditional MPC controller designed in the
"mpcmotor" example.

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

7-37

Control Using Sub-optimal Explicit MPC

To reduce the memory footprint, you can use simplify command to reduce the number
of piecewise affine solution regions. For example, you can remove regions whose
Chebychev radius is smaller than .08. However, the price you pay is that the controller
performance now becomes sub-optimal.

Use simplify command to generate Explicit MPC with sub-optimal solutions.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'radius', 0.08);
disp(mpcobjExplicitSimplified);

 explicitMPC with properties:

 MPC: [1x1 mpc]
 Range: [1x1 struct]
 OptimizationOptions: [1x1 struct]
 PiecewiseAffineSolution: [1x38 struct]
 IsSimplified: 1

The number of piecewise affine regions has been reduced.

Compare closed-loop simulation between sub-optimal Explicit MPC and Explicit MPC.

[y3,t3,u3] = sim(mpcobjExplicitSimplified, Tf, r);

The simulation results are not the same.

fprintf('SIM command: Difference between exact and suboptimal MPC trajectories = %g\n',norm(u3-u2)+norm(y3-y2));

SIM command: Difference between exact and suboptimal MPC trajectories = 439.399

Plot results.

figure;
subplot(3,1,1)
plot(t1,y1(:,1),t3,y3(:,1),'o');
grid
title('Angle (rad)')
legend('Explicit','sub-optimal Explicit')
subplot(3,1,2)
plot(t1,y1(:,2),t3,y3(:,2),'o');
grid
title('Torque (Nm)')

7 Explicit MPC Design

7-38

legend('Explicit','sub-optimal Explicit')
subplot(3,1,3)
plot(t1,u1,t3,u3,'o');
grid
title('Voltage (V)')
legend('Explicit','sub-optimal Explicit')

The simulation result with the sub-optimal Explicit MPC is slightly worse.

 Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

7-39

bdclose(mdl)

See Also

More About
• “Explicit MPC” on page 7-2
• “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
• “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20

7 Explicit MPC Design

7-40

Explicit MPC Control of an Inverted Pendulum on a Cart
This example uses an explicit model predictive controller (explicit MPC) to control an
inverted pendulum on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.

 Explicit MPC Control of an Inverted Pendulum on a Cart

7-41

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';
load_system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'],'force')

7 Explicit MPC Design

7-42

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -10 and 10 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart
should return to its original position with a maximum displacement of 1. The

 Explicit MPC Control of an Inverted Pendulum on a Cart

7-43

pendulum should also return to the upright position with a peak angle displacement of
15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

Control Structure

For this example, use a single MPC controller with:

• One manipulated Variable: variable force F.
• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartExplicitMPC';
open_system(mdlMPC)

Although cart velocity x_dot and pendulum angular velocity theta_dot are available from
the plant model, to make the design case more realistic, they are excluded as MPC
measurements.

7 Explicit MPC Design

7-44

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction,
linearize the Simulink plant model at the initial operating point.

Specify linearization input and output points

io(1) = linio([mdlPlant '/dF'],1,'openinput');
io(2) = linio([mdlPlant '/F'],1,'openinput');
io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

Create operating point specifications for the plant initial conditions.

opspec = operspec(mdlPlant);

The first state is cart position x, which has a known initial state of 0.

opspec.States(1).Known = true;
opspec.States(1).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;
opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);
op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);
plant.InputName = {'dF';'F'};
plant.OutputName = {'x';'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =

 Explicit MPC Control of an Inverted Pendulum on a Cart

7-45

 0
 -11.9115
 -3.2138
 5.1253

The plant has an integrator and an unstable pole.

bdclose(mdlPlant)

Traditional (Implicit) MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is
specified as an unmeasured disturbance used by the MPC controller for better
disturbance rejection. Set the plant signal types.

plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;
PredictionHorizon = 50;
ControlHorizon = 5;
mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

There is a limitation on how much force we can apply to the cart, which is specified as
hard constraints on manipulated variable F.

mpcobj.MV.Min = -200;
mpcobj.MV.Max = 200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

7 Explicit MPC Design

7-46

mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by
multiplying the default disturbance model gains by a factor of 10.

Update the input disturbance model.

disturbance_model = getindist(mpcobj);
setindist(mpcobj,'model',disturbance_model*10);

Update the output disturbance model.

disturbance_model = getoutdist(mpcobj);
setoutdist(mpcobj,'model',disturbance_model*10);

Explicit MPC Generation

A simple implicit MPC controller, without the need for constraint or weight changes at
run-time, can be converted into an explicit MPC controller with the same control
performance. The key benefit of using Explicit MPC is that it avoids real-time
optimization, and as a result, is suitable for industrial applications that demand fast
sample time. The tradeoff is that explicit MPC has a high memory footprint because
optimal solutions for all feasible regions are pre-computed offline and stored for run-time
access.

To generate an explicit MPC controller from an implicit MPC controller, define the ranges
for parameters such as plant states, references, and manipulated variables. These ranges
should cover the operating space for which the plant and controller are designed, to your
best knowledge.

range = generateExplicitRange(mpcobj);
range.State.Min(:) = -20; % largest range comes from cart position x
range.State.Max(:) = 20;
range.Reference.Min = -20; % largest range comes from cart position x
range.Reference.Max = 20;
range.ManipulatedVariable.Min = -200;
range.ManipulatedVariable.Max = 200;

 Explicit MPC Control of an Inverted Pendulum on a Cart

7-47

Generate an explicit MPC controller for the defined ranges.

mpcobjExplicit = generateExplicitMPC(mpcobj,range);

To use the explicit MPC controller in Simulink, specify it in the Explicit MPC Controller
block dialog in your Simulink model.

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)

7 Explicit MPC Design

7-48

 Explicit MPC Control of an Inverted Pendulum on a Cart

7-49

In the nonlinear simulation, all the control objectives are successfully achieved.

Comparing with the results from “Control of an Inverted Pendulum on a Cart”, the
implicit and explicit MPC controllers deliver identical performance as expected.

Discussion

It is important to point out that the designed MPC controller has its limitations. For
example, if you increase the step setpoint change to 15, the pendulum fails to recover its
upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the

7 Explicit MPC Design

7-50

prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate
models at different angle to improve prediction. Another example “Gain-Scheduled MPC
Control of an Inverted Pendulum on a Cart” shows how to use gain scheduling MPC to
achieve the longer distances.

Remove the example file folder from the MATLAB path, and close the Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdlMPC)

See Also

More About
• “Explicit MPC” on page 7-2
• “Control of an Inverted Pendulum on a Cart” on page 1-137
• “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-66

 See Also

7-51

Gain Scheduling MPC Design

• “Gain-Scheduled MPC” on page 8-2
• “Schedule Controllers at Multiple Operating Points” on page 8-5
• “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-26
• “Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System”

on page 8-48
• “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-66

8

Gain-Scheduled MPC
Gain-scheduled model predictive control switches between a predefined set of MPC
controllers, in a coordinated fashion, to control a nonlinear plant over a wide range of
operating conditions. Use this approach if the plant operating characteristics change in a
predictable way and the change is such that a single prediction model cannot provide
adequate controller performance. This approach is comparable to the use of gain
scheduling in conventional feedback control.

To improve efficiency, inactive controllers do not compute optimal control moves.
However, to provide bumpless transfer between controllers, the inactive controllers
continue to perform state estimation. Bumpless transfer prevents sudden changes in the
manipulated variables when the controller switching occurs.

You can design and simulate MPC controllers both in Simulink and at the command line.
The Multiple MPC Controllers and Multiple Explicit MPC Controllers blocks enable you to
switch between a defined set of MPC Controllers in Simulink. You can perform command-
line simulations using the mpcmoveMultiple command. However, mpcmoveMultiple
does not support explicit MPC controllers.

Design Workflow
To implement gain-scheduled MPC, first design a traditional model predictive controller
for each operating point, and then design a scheduling signal that switches controllers at
run time.

General Design Steps

• Define and tune a nominal MPC controller for the most likely (or average) operating
conditions. For more information, see “MPC Design”.

• Use simulations to determine an operating condition at which the nominal controller
loses robustness. For more information, see “Simulation”.

• Identify a measurement (or combination of measurements) that indicates when to
replace the nominal controller.

• Determine a plant prediction model for the new operating conditions. Its input and
output variables must be the same as in the nominal case.

• Define a new MPC controller based on the new prediction model. Use the nominal
controller settings as a starting point, and test and retune controller settings if
necessary.

8 Gain Scheduling MPC Design

8-2

• If two controllers are inadequate to provide robustness over the full operational range,
consider dividing the range into smaller regions and adding more controllers.
Alternatively, you can use an adaptive MPC controller, which has a smaller memory
footprint. For more information, see “Adaptive MPC Design”.

• (optional) Consider creating an explicit MPC controller for each traditional MPC
controller. Explicit MPC controllers require fewer run-time computations than
traditional (implicit) model predictive controllers and are therefore useful for
applications that require small sample times. For more information, see “Explicit
MPC” on page 7-2.

• In your Simulink model, configure either the Multiple MPC Controllers or Multiple
Explicit MPC Controllers block, and specify the switching criterion.

• To verify robustness and bumpless switching, test the controllers over the full
operating range using closed-loop simulations.

Tips

• In practice, it is recommended to allow a warm-up period during which the plant
operates under manual control while the controller initializes its state estimates. This
initialization typically requires 10–20 control intervals. A warm-up is especially
important for the Multiple MPC Controllers and Multiple Explicit MPC Controllers
blocks. Without an adequate warm-up period, switching between controllers can cause
sudden changes in the manipulated variables. Switching on the controllers when the
plant is operating far from any of the gain-scheduled operating points can also cause
sudden manipulated variable changes.

• If you use custom state estimation, all your gain-scheduled MPC controllers must have
the same state dimension. This requirement places implicit restrictions on plant and
disturbance models.

See Also
Functions
mpcmoveMultiple

Blocks
Multiple Explicit MPC Controllers | Multiple MPC Controllers

 See Also

8-3

More About
• “Schedule Controllers at Multiple Operating Points” on page 8-5

8 Gain Scheduling MPC Design

8-4

Schedule Controllers at Multiple Operating Points
If your plant is nonlinear, a controller designed to operate in a particular target region
may perform poorly in other regions. A common way to compensate is to create multiple
controllers, each designed for a particular combination of operating conditions. You can
then switch between the controllers in real time as conditions change. For more
information, see “Gain-Scheduled MPC” on page 8-2.

The following example shows how to coordinate multiple model predictive controllers for
this purpose.

Plant Model

The plant contains two masses, M1 and M2, connected to two springs. A spring with spring
constant k1 pulls mass M1 to the right, and a spring with spring constant k2 pulls mass
M2 to the left. The manipulated variable is a force pulling mass M1 to the left, shown as a
red arrow in the following figure.

 Schedule Controllers at Multiple Operating Points

8-5

Both masses move freely until they collide. The collision is inelastic, and the masses stick
together until a change in the applied force separates them. Therefore, there are two
operating conditions for the system with different dynamics.

The control objective is to make the position of M1 track a reference signal, shown as a
blue triangle in the previous image. Only the position of M1 and a contact sensor are
available for feedback.

Define the model parameters.

M1 = 1; % masses
M2 = 5;
k1 = 1; % spring constants
k2 = 0.1;
b1 = 0.3; % friction coefficients
b2 = 0.8;

8 Gain Scheduling MPC Design

8-6

yeq1 = 10; % wall mount positions
yeq2 = -10;

Create a state-space model for when the masses are not in contact; that is when mass M1
is moving freely.

A1 = [0 1; -k1/M1 -b1/M1];
B1 = [0 0; -1/M1 k1*yeq1/M1];
C1 = [1 0];
D1 = [0 0];
sys1 = ss(A1,B1,C1,D1);
sys1 = setmpcsignals(sys1,'MV',1,'MD',2);

Create a state-space model for when the masses are connected.

A2 = [0 1; -(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];
B2 = [0 0; -1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];
C2 = [1 0];
D2 = [0 0];
sys2 = ss(A2,B2,C2,D2);
sys2 = setmpcsignals(sys2,'MV',1,'MD',2);

For both models, the:

• States are the position and velocity of M1.
• Inputs are the applied force, which is the manipulated variable (MV), and a spring

constant calibration signal, which is a measured disturbance (MD).
• Output is the position of M1.

Design MPC Controllers

Design one MPC controller for each of the plant models. Both controllers are identical
except for their internal prediction models.

Define the same sample time, Ts, prediction horizon, p, and control horizon, m, for both
controllers.

Ts = 0.2;
p = 20;
m = 1;

Create default MPC controllers for each plant model.

 Schedule Controllers at Multiple Operating Points

8-7

MPC1 = mpc(sys1,Ts,p,m);
MPC2 = mpc(sys2,Ts,p,m);

Define constraints for the manipulated variable. Since the applied force cannot change
direction, set the lower bound to zero. Also, set a maximum rate of change for the input
force. These constraints are the same for both controllers.

MPC1.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10);
MPC2.MV = MPC1.MV;

Simulate Gain-Scheduled Controllers

Simulate the performance of the controllers using the MPC Controller block.

Open the Simulink model.

mdl = 'mpc_switching';
open_system(mdl)

8 Gain Scheduling MPC Design

8-8

In the model, the Mass M1 subsystem simulates the motion of mass M1, both when
moving freely and when connected to M2. The Mass M2 subsystem simulates the motion
of mass M2 when it is moving freely. The mode selection and velocity reset subsystems
coordinate the collision and separation of the masses.

 Schedule Controllers at Multiple Operating Points

8-9

The model contains switching logic that detects when the positions of M1 and M2 are the
same. The resulting switching signal connects to the switch inport of the Multiple MPC
Controllers block, and controls which MPC controller is active.

Specify the initial position for each mass.

y1initial = 0;
y2initial = 10;

To specify the gain-scheduled controllers, double-click the Multiple MPC Controllers
block. In the Block Parameters dialog box, specify the controllers as a cell array of
controller names. Set the initial states for each controller to their respective nominal
value by specifying the states as {'[],'[]'}.

8 Gain Scheduling MPC Design

8-10

 Schedule Controllers at Multiple Operating Points

8-11

Click OK.

Run the simulation.

sim(mdl)

To view the simulation results, open the signals scope.

open_system([mdl '/signals'])

8 Gain Scheduling MPC Design

8-12

 Schedule Controllers at Multiple Operating Points

8-13

Initially, MPC1 moves mass M1 to the reference setpoint. At about 13 seconds, M2 collides
with M1. The switching signal changes from 1 to 2, which switches control to MPC2.

The collision moves M1 away from its setpoint and MPC2 quickly returns the combined
masses to the reference point.

During the subsequent reference signal transitions, when the masses separate and collide
the Multiple MPC Controllers block switches between MPC1 and MPC2 accordingly. As a
result, the combined masses settle rapidly to the reference points.

Compare with Single MPC Controller

To demonstrate the benefit of using two MPC controllers for this application, simulate the
system using just MPC2.

Change MPC1 to match MPC2.

MPC1save = MPC1;
MPC1 = MPC2;

Run the simulation.

sim(mdl)

8 Gain Scheduling MPC Design

8-14

 Schedule Controllers at Multiple Operating Points

8-15

When the masses are not connected, MPC2 applies excessive force since it expects a
larger mass. This aggressive control action produces oscillatory behavior. Once the
masses connect, the control performance improves, since the controller is designed for
this condition.

Alternatively, changing MPC2 to match MPC1 results in sluggish control actions and long
settling times when the masses are connected.

Set MPC1 back to its original configuration.

MPC1 = MPC1save;

Create Explicit MPC Controllers

To reduce online computational effort, you can create an explicit MPC controller for each
operating condition, and implement gain-scheduled explicit MPC control using the
Multiple Explicit MPC Controllers block. For more information on explicit MPC
controllers, see “Explicit MPC” on page 7-2.

8 Gain Scheduling MPC Design

8-16

To create an explicit MPC controller, first define the operating ranges for the controller
states, input signals, and reference signals.

Create an explicit MPC range object using the corresponding traditional controller, MPC1.

range = generateExplicitRange(MPC1);

Specify the ranges for the controller states. Both MPC1 and MPC2 contain states for:

• The position and velocity of mass M1.
• An integrator from the default output disturbance model.

When possible, use your knowledge of the plant to define the state ranges. For example,
the first state corresponds to the position of M1, which has a range between -10 and 10.

Setting the range of a state variable can be difficult when the state does not correspond
to a physical parameter, such as for the output disturbance model state. In that case,
collect range information using simulations with typical reference and disturbance
signals. For this system, you can activate the optional est.state outport of the Multiple
MPC Controllers block, and view the estimated states using a scope. When simulating the
controller responses, use a reference signal that covers the expected operating range.

 Schedule Controllers at Multiple Operating Points

8-17

Define the state ranges for the explicit MPC controllers based on the ranges of the
estimated states.

range.State.Min(:) = [-10;-8;-3];
range.State.Max(:) = [10;8;3];

Define the range for the reference signal. Select a reference range that is smaller than
the M1 position range.

range.Reference.Min = -8;
range.Reference.Max = 8;

Specify the manipulated variable range using the defined MV constraints.

range.ManipulatedVariable.Min = 0;
range.ManipulatedVariable.Max = 30;

Define the range for the measured disturbance signal. Since the measured disturbance is
constant, specify a small range around the constant value, 1.

range.MeasuredDisturbance.Min = 0.9;
range.MeasuredDisturbance.Max = 1.1;

Create an explicit MPC controller that corresponds to MPC1 using the specified range
object.

expMPC1 = generateExplicitMPC(MPC1,range);

Create an explicit MPC controller that corresponds to MPC2. Since MPC1 and MPC2
operate over the same state and input ranges, and have the same constraints, you can use
the same range object.

expMPC2 = generateExplicitMPC(MPC2,range);

In general, the explicit MPC ranges of different controllers may not match. For example,
the controllers may have different constraints or state ranges. In such cases, create a
separate explicit MPC range object for each controller.

Validate Explicit MPC Controllers

It is good practice to validate the performance of each explicit MPC controller before
implementing gain-scheduled explicit MPC. For example, to compare the performance of
MPC1 and expMPC1, simulate the closed-loop response of each controller using sim.

8 Gain Scheduling MPC Design

8-18

r = [zeros(30,1); 5*ones(160,1); -5*ones(160,1)];
[Yimp,Timp,Uimp] = sim(MPC1,350,r,1);
[Yexp,Texp,Uexp] = sim(expMPC1,350,r,1);

Compare the plant output and manipulated variable sequences for the two controllers.

figure
subplot(2,1,1)
plot(Timp,Yimp,'b-',Texp,Yexp,'r--')
grid on
xlabel('Time (s)')
ylabel('Output')
title('Explicit MPC Validation')
legend('Implicit MPC','Explicit MPC')
subplot(2,1,2)
plot(Timp,Uimp,'b-',Texp,Uexp,'r--')
grid on
ylabel('MV')
xlabel('Time (s)')

 Schedule Controllers at Multiple Operating Points

8-19

The closed-loop responses and manipulated variable sequences of the implicit and explicit
controllers match. Similarly, you can validate the performance of expMPC2 against that of
MPC2.

If the responses of the implicit and explicit controllers do not match, adjust the explicit
MPC ranges, and create a new explicit MPC controller.

Simulate Gain-Scheduled Explicit MPC

To implement gain-scheduled explicit MPC control, replace the Multiple MPC Controllers
block with the Multiple Explicit MPC Controllers block.

expModel = 'mpc_switching_explicit';
open_system(expModel)

8 Gain Scheduling MPC Design

8-20

To specify the explicit MPC controllers, double-click the Multiple Explicit MPC Controllers
block. In the Block Parameters dialog box, specify the controllers as a cell array of
controller names. Set the initial states for each controller to their respective nominal
value by specifying the states as {'[],'[]'}.

 Schedule Controllers at Multiple Operating Points

8-21

8 Gain Scheduling MPC Design

8-22

Click OK.

If you previously validated the your explicit MPC controllers, then substituting and
configuring the Multiple Explicit MPC Controllers block should produce the same results
as the Multiple MPC Controllers block.

Run the simulation.

sim(expModel)

To view the simulation results, open the signals scope.

open_system([expModel '/signals'])

 Schedule Controllers at Multiple Operating Points

8-23

8 Gain Scheduling MPC Design

8-24

The gain-scheduled explicit MPC controllers provide the same performance as the gain-
scheduled implicit MPC controllers.

bdclose('all')

See Also
Multiple Explicit MPC Controllers | Multiple MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2
• “Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System” on page

8-48

 See Also

8-25

Gain-Scheduled MPC Control of Nonlinear Chemical
Reactor

This example shows how to use multiple MPC controllers to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

Multiple MPC Controllers are designed at different operating conditions and then
implemented with the Multiple MPC Controller block in Simulink. At run time, a
scheduling signal is used to switch controller from one to another.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

8 Gain Scheduling MPC Design

8-26

This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A, at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to
high conversion rate. The coolant temperature is the manipulated variable used by the
MPC controller to track the reference. The inlet feed stream concentration and
temperature are assumed to be constant. The Simulink model mpc_cstr_plant
implements the nonlinear CSTR plant.

About Gain Scheduled Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

• If a linear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-27

on a desired scheduling strategy, as discussed in this example. Use this approach when
the plant models have different orders or time delays.

(2) Design one MPC controller offline at a nominal operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System” for more details. Use this approach when all the
plant models have the same order and time delay.

• If a linear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an LPV
system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To run this example, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design(R) is required to run this example.')
 return
end

First, a linear plant model is obtained at the initial operating condition, CAi is 10 kgmol/
m^3, Ti and Tc are 298.15 K. Functions from Simulink Control Design such as operspec,
findop, and linearize, are used to generate the linear state-space system from the
Simulink model.

Create operating point specification.

8 Gain Scheduling MPC Design

8-28

plant_mdl = 'mpc_cstr_plant';
op = operspec(plant_mdl);

Feed concentration is known at the initial condition.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point,op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0 = [op_report.States(1).x; op_report.States(2).x];
y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 8.57 dx: -6.87e-12 (0)

Inputs:

(1.) mpc_cstr_plant/CAi
 u: 10

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-29

(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 298

Outputs:

(1.) mpc_cstr_plant/T
 y: 311 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 8.57 [-Inf Inf]

Obtain linear model at the initial condition.

plant = linearize(plant_mdl,op_point);

Verify that the linear model is open-loop stable at this condition.

eig(plant)

ans =

 -0.5223
 -0.8952

Design MPC Controller for Initial Operating Condition

You design an MPC at the initial operating condition.

Ts = 0.5;

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

plant.InputGroup.UnmeasuredDisturbances = [1 2];
plant.InputGroup.ManipulatedVariables = 3;
plant.OutputGroup.Measured = [1 2];
plant.InputName = {'CAi','Ti','Tc'};
plant.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant,Ts);

8 Gain Scheduling MPC Design

8-30

Set nominal values in the controller. Note that nominal values for unmeasured
disturbance must be zero.

mpcobj.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y',y0,'DX',[0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude.

Uscale = [10;30;50];
Yscale = [50;10];
mpcobj.DV(1).ScaleFactor = Uscale(1);
mpcobj.DV(2).ScaleFactor = Uscale(2);
mpcobj.MV.ScaleFactor = Uscale(3);
mpcobj.OV(1).ScaleFactor = Yscale(1);
mpcobj.OV(2).ScaleFactor = Yscale(2);

The goal will be to track a specified transition in the reactor concentration. The reactor
temperature will be measured and used in state estimation but the controller will not
attempt to regulate it directly. It will vary as needed to regulate the concentration. Thus,
set its MPC weight to zero.

mpcobj.Weights.OV = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes
integrated white noise with unit magnitude at these inputs when configuring the state
estimator. Try increasing the state estimator signal-to-noise by a factor of 10 to improve
disturbance rejection performance.

Dist = ss(getindist(mpcobj));
Dist.B = eye(2)*10;
setindist(mpcobj,'model',Dist);

All other MPC parameters are at their default values.

Test the Controller With a Step Disturbance in Feed Concentration

"mpc_cstr_single" contains a Simulink® model with CSTR and MPC Controller blocks in a
feedback configuration.

mpc_mdl = 'mpc_cstr_single';
open_system(mpc_mdl)

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-31

Note that the MPC Controller block is configured to look ahead at (preview) setpoint
changes in the future; that is, anticipating the setpoint transition. This generally improves
setpoint tracking.

Define a constant setpoint for the output.

CSTR_Setpoints.time = [0; 60];
CSTR_Setpoints.signals.values = [y0 y0]';

Test the response to a 5% increase in feed concentration.

set_param([mpc_mdl '/Feed Concentration'],'Value','10.5');

Set plot scales and simulate the response.

open_system([mpc_mdl '/Measurements'])
open_system([mpc_mdl '/Coolant Temperature'])
set_param([mpc_mdl '/Measurements'],'Ymin','305~8','Ymax','320~9')

8 Gain Scheduling MPC Design

8-32

set_param([mpc_mdl '/Coolant Temperature'],'Ymin','295','Ymax','305')
sim(mpc_mdl,10);

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-33

The closed-loop response is satisfactory.

Simulate Designed MPC Controller Using Full Transition

First, define the desired setpoint transition. After a 10-minute warm-up period, ramp the
concentration setpoint downward at a rate of 0.25 per minute until it reaches 2.0 kmol/
m^3.

CSTR_Setpoints.time = [0 10 11:39]';
CSTR_Setpoints.signals.values = [y0(1)*ones(31,1),[y0(2);y0(2);(y0(2):-0.25:2)';2;2]];

Remove the 5% increase in feed concentration used previously.

set_param([mpc_mdl '/Feed Concentration'],'Value','10')

Set plot scales and simulate the response.

set_param([mpc_mdl '/Measurements'],'Ymin','300~0','Ymax','400~10')
set_param([mpc_mdl '/Coolant Temperature'],'Ymin','240','Ymax','360')

8 Gain Scheduling MPC Design

8-34

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-35

Simulate model.

sim(mpc_mdl,60)

8 Gain Scheduling MPC Design

8-36

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-37

The closed-loop response is unacceptable. Performance along the full transition can be
improved if other MPC controllers are designed at different operating conditions along
the transition path. In the next two section, two additional MPC controllers are design at
intermediate and final transition stages respectively.

Design MPC Controller for Intermediate Operating Condition

Create operating point specification.

op = operspec(plant_mdl);

Feed concentration is known.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known.

8 Gain Scheduling MPC Design

8-38

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Reactor concentration is known.

op.Outputs(2).y = 5.5;
op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point,op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0 = [op_report.States(1).x; op_report.States(2).x];
y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 339 dx: 3.42e-08 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 5.5 dx: -2.87e-09 (0)

Inputs:

(1.) mpc_cstr_plant/CAi
 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 298 [-Inf Inf]

Outputs:

(1.) mpc_cstr_plant/T
 y: 339 [-Inf Inf]
(2.) mpc_cstr_plant/CA

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-39

 y: 5.5 (5.5)

Obtain linear model at the initial condition.

plant_intermediate = linearize(plant_mdl,op_point);

Verify that the linear model is open-loop unstable at this condition.

eig(plant_intermediate)

ans =

 0.4941
 -0.8357

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

plant_intermediate.InputGroup.UnmeasuredDisturbances = [1 2];
plant_intermediate.InputGroup.ManipulatedVariables = 3;
plant_intermediate.OutputGroup.Measured = [1 2];
plant_intermediate.InputName = {'CAi','Ti','Tc'};
plant_intermediate.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons.

mpcobj_intermediate = mpc(plant_intermediate,Ts);

Set nominal values, scale factors and weights in the controller.

mpcobj_intermediate.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y',y0,'DX',[0 0]);
Uscale = [10;30;50];
Yscale = [50;10];
mpcobj_intermediate.DV(1).ScaleFactor = Uscale(1);
mpcobj_intermediate.DV(2).ScaleFactor = Uscale(2);
mpcobj_intermediate.MV.ScaleFactor = Uscale(3);
mpcobj_intermediate.OV(1).ScaleFactor = Yscale(1);
mpcobj_intermediate.OV(2).ScaleFactor = Yscale(2);
mpcobj_intermediate.Weights.OV = [0 1];
Dist = ss(getindist(mpcobj_intermediate));
Dist.B = eye(2)*10;
setindist(mpcobj_intermediate,'model',Dist);

8 Gain Scheduling MPC Design

8-40

Design MPC Controller for Final Operating Condition

Create operating point specification.

op = operspec(plant_mdl);

Feed concentration is known.

op.Inputs(1).u = 10;
op.Inputs(1).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Reactor concentration is known.

op.Outputs(2).y = 2;
op.Outputs(2).Known = true;

Find steady-state operating condition.

[op_point,op_report] = findop(plant_mdl,op);
% Obtain nominal values of x, y and u.
x0 = [op_report.States(1).x; op_report.States(2).x];
y0 = [op_report.Outputs(1).y; op_report.Outputs(2).y];
u0 = [op_report.Inputs(1).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

 Operating point search report:

 Operating point search report for the Model mpc_cstr_plant.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr_plant/CSTR/Integrator
 x: 373 dx: 5.57e-11 (0)
(2.) mpc_cstr_plant/CSTR/Integrator1
 x: 2 dx: -4.6e-12 (0)

Inputs:

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-41

(1.) mpc_cstr_plant/CAi
 u: 10
(2.) mpc_cstr_plant/Ti
 u: 298
(3.) mpc_cstr_plant/Tc
 u: 305 [-Inf Inf]

Outputs:

(1.) mpc_cstr_plant/T
 y: 373 [-Inf Inf]
(2.) mpc_cstr_plant/CA
 y: 2 (2)

Obtain linear model at the initial condition.

plant_final = linearize(plant_mdl,op_point);

Verify that the linear model is again open-loop stable at this condition.

eig(plant_final)

ans =

 -1.1077 + 1.0901i
 -1.1077 - 1.0901i

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

plant_final.InputGroup.UnmeasuredDisturbances = [1 2];
plant_final.InputGroup.ManipulatedVariables = 3;
plant_final.OutputGroup.Measured = [1 2];
plant_final.InputName = {'CAi','Ti','Tc'};
plant_final.OutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons.

mpcobj_final = mpc(plant_final,Ts);

Set nominal values, scale factors and weights in the controller.

8 Gain Scheduling MPC Design

8-42

mpcobj_final.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y',y0,'DX',[0 0]);
Uscale = [10;30;50];
Yscale = [50;10];
mpcobj_final.DV(1).ScaleFactor = Uscale(1);
mpcobj_final.DV(2).ScaleFactor = Uscale(2);
mpcobj_final.MV.ScaleFactor = Uscale(3);
mpcobj_final.OV(1).ScaleFactor = Yscale(1);
mpcobj_final.OV(2).ScaleFactor = Yscale(2);
mpcobj_final.Weights.OV = [0 1];
Dist = ss(getindist(mpcobj_final));
Dist.B = eye(2)*10;
setindist(mpcobj_final,'model',Dist);

Control the CSTR Plant With the Multiple MPC Controllers Block

The following model uses the Multiple MPC Controllers block to implement three MPC
controllers across the operating range.

mmpc_mdl = 'mpc_cstr_multiple';
open_system(mmpc_mdl);

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-43

Note that it has been configured to use the three controllers in a sequence: mpcobj,
mpcobj_intermediate and mpcobj_final.

open_system([mmpc_mdl '/Multiple MPC Controllers']);

Note also that the two switches specify when to switch from one controller to another.
The rules are: 1. If CSTR concentration >= 8, use "mpcobj" 2. If 3 <= CSTR
concentration < 8, use "mpcobj_intermediate" 3. If CSTR concentration < 3, use
"mpcobj_final"

Simulate with the Multiple MPC Controllers block

open_system([mmpc_mdl '/Measurements']);
open_system([mmpc_mdl '/MV']);
sim(mmpc_mdl)

8 Gain Scheduling MPC Design

8-44

 Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

8-45

The transition is now well controlled. The major improvement is in the transition through
the open-loop unstable region. The plot of the switching signal shows when controller
transitions occur. The MV character changes at these times because of the change in
dynamic characteristics introduced by the new prediction model.

8 Gain Scheduling MPC Design

8-46

bdclose(plant_mdl)
bdclose(mpc_mdl)
bdclose(mmpc_mdl)

See Also
MPC Controller | Multiple MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2
• “Schedule Controllers at Multiple Operating Points” on page 8-5
• “Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System” on page

8-48

 See Also

8-47

Gain Scheduled Implicit and Explicit MPC Control of
Mass-Spring System

This example shows how to use an Multiple MPC Controllers block and an Multiple
Explicit MPC Controllers block to implement gain scheduled MPC control of a nonlinear
plant.

System Description

The system is composed by two masses M1 and M2 connected to two springs k1 and k2
respectively. The collision is assumed completely inelastic. Mass M1 is pulled by a force F,
which is the manipulated variable. The objective is to make mass M1's position y1 track a
given reference r.

The dynamics are twofold: when the masses are detached, M1 moves freely. Otherwise,
M1+M2 move together. We assume that only M1 position and a contact sensor are
available for feedback. The latter is used to trigger switching the MPC controllers. Note
that position and velocity of mass M2 are not controllable.

 /-----\ k1 ||
 F <--- | M1 |----/\/\/\-------------[|| wall
 || | |---/ ||
 || k2 \-/ /----\ ||
wall||]--/\/\/\-------------------| M2 | ||
 || \----/ ||
 || ||
----yeq2------------------ y1 ------ y2 ----------------yeq1----> y axis

The model is a simplified version of the model proposed in the following reference:

A. Bemporad, S. Di Cairano, I. V. Kolmanovsky, and D. Hrovat, "Hybrid modeling and
control of a multibody magnetic actuator for automotive applications," in Proc. 46th
IEEE® Conf. on Decision and Control, New Orleans, LA, 2007.

Model Parameters

M1 = 1; % mass
M2 = 5; % mass
k1 = 1; % spring constant
k2 = 0.1; % spring constant
b1 = 0.3; % friction coefficient
b2 = 0.8; % friction coefficient

8 Gain Scheduling MPC Design

8-48

yeq1 = 10; % wall mount position
yeq2 = -10; % wall mount position

State Space Models

states: position and velocity of mass M1; manipulated variable: pull force F measured
disturbance: a constant value of 1 which provides calibrates spring force to the right
value measured output: position of mass M1

State-space model of M1 when masses are not in contact.

A1 = [0 1;-k1/M1 -b1/M1];
B1 = [0 0;-1/M1 k1*yeq1/M1];
C1 = [1 0];
D1 = [0 0];
sys1 = ss(A1,B1,C1,D1);
sys1 = setmpcsignals(sys1,'MD',2);

State-space model when the two masses are in contact.

A2 = [0 1;-(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];
B2 = [0 0;-1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];
C2 = [1 0];
D2 = [0 0];
sys2 = ss(A2,B2,C2,D2);
sys2 = setmpcsignals(sys2,'MD',2);

Design MPC Controllers

Common parameters

Ts = 0.2; % sampling time
p = 20; % prediction horizon
m = 1; % control horizon

Design first MPC controller for the case when mass M1 detaches from M2.

MPC1 = mpc(sys1,Ts,p,m);
MPC1.Weights.OV = 1;

Specify constraints on the manipulated variable.

MPC1.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10);

Design second MPC controller for the case when mass M1 and M2 are together.

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-49

MPC2 = mpc(sys2,Ts,p,m);
MPC2.Weights.OV = 1;

Specify constraints on the manipulated variable.

MPC2.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10);

Simulate Gain Scheduled MPC in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Simulate gain scheduled MPC control with Multiple MPC Controllers block.

y1initial = 0; % Initial position of M1
y2initial = 10; % Initial position of M2
mdl = 'mpc_switching';
open_system(mdl);
if exist('animationmpc_switchoff','var') && animationmpc_switchoff
 close_system([mdl '/Animation']);
 clear animationmpc_switchoff
end

8 Gain Scheduling MPC Design

8-50

disp('Start simulation by switching control between MPC1 and MPC2 ...');
disp('Control performance is satisfactory.');
open_system([mdl '/signals']);
sim(mdl);

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-51

MPC1saved = MPC1;
MPC2saved = MPC2;

Start simulation by switching control between MPC1 and MPC2 ...
Control performance is satisfactory.

8 Gain Scheduling MPC Design

8-52

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-53

Use of two controllers provides good performance under all conditions.

Repeat Simulation Using MPC1 Only (Assumes Masses Never in Contact)

disp('Now repeat simulation by using only MPC1 ...');
disp('When two masses stick together, control performance deteriorates.');
MPC1 = MPC1saved;
MPC2 = MPC1saved;
sim(mdl);

Now repeat simulation by using only MPC1 ...
When two masses stick together, control performance deteriorates.

8 Gain Scheduling MPC Design

8-54

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-55

In this case, performance degrades whenever the two masses join.

Repeat Simulation Using MPC2 Only (Assumes Masses Always in Contact)

disp('Now repeat simulation by using only MPC2 ...');
disp('When two masses are detached, control performance deteriorates.');
MPC1 = MPC2saved;
MPC2 = MPC2saved;
sim(mdl);

Now repeat simulation by using only MPC2 ...
When two masses are detached, control performance deteriorates.

8 Gain Scheduling MPC Design

8-56

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-57

In this case, performance degrades when the masses separate, causing the controller to
apply excessive force.

bdclose(mdl);
close(findobj('Tag','mpc_switching_demo'));

Design Explicit MPC Controllers

To reduce online computational effort, you can create an explicit MPC controller for each
operating condition, and implement gain-scheduled explicit MPC control using the
Multiple Explicit MPC Controllers block.

To create an explicit MPC controller, first define the operating ranges for the controller
states, input signals, and reference signals. Create an explicit MPC range object using the
corresponding traditional controller, MPC1.

range = generateExplicitRange(MPC1saved);

8 Gain Scheduling MPC Design

8-58

Specify the ranges for the controller states. Both MPC1 and MPC2 contain states for: *
The position and velocity of mass M1 * An integrator from the default output disturbance
model

range.State.Min(:) = [-10;-8;-3];
range.State.Max(:) = [10;8;3];

When possible, use your knowledge of the plant to define the state ranges. However, it
can be difficult when the state does not correspond to a physical parameter, such as for
the output disturbance model state. In that case, collect range information using
simulations with typical reference and disturbance signals. For this system, you can
activate the optional est.state outport of the Multiple MPC Controllers block, and view the
estimated states using a scope. When simulating the controller responses, use a reference
signal that covers the expected operating range.

Define the range for the reference signal. Select a reference range that is smaller than
the M1 position range.

range.Reference.Min = -8;
range.Reference.Max = 8;

Specify the manipulated variable range using the defined MV constraints.

range.ManipulatedVariable.Min = 0;
range.ManipulatedVariable.Max = 30;

Define the range for the measured disturbance signal. Since the measured disturbance is
constant, specify a small range around the constant value, 1.

range.MeasuredDisturbance.Min = 0.9;
range.MeasuredDisturbance.Max = 1.1;

Create an explicit MPC controller that corresponds to MPC1 using the specified range
object.

expMPC1 = generateExplicitMPC(MPC1saved,range);

Create an explicit MPC controller that corresponds to MPC2. Since MPC1 and MPC2
operate over the same state and input ranges, and have the same constraints, you can use
the same range object.

expMPC2 = generateExplicitMPC(MPC2saved,range);

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-59

In general, the explicit MPC ranges of different controllers may not match. For example,
the controllers may have different constraints or state ranges. In such cases, create a
separate explicit MPC range object for each controller.

Validate Explicit MPC Controllers

It is good practice to validate the performance of each explicit MPC controller before
implementing gain-scheduled explicit MPC. For example, to compare the performance of
MPC1 and expMPC1, simulate the closed-loop response of each controller using sim.

r = [zeros(30,1); 5*ones(160,1); -5*ones(160,1)];
[Yimp,Timp,Uimp] = sim(MPC1saved,350,r,1);
[Yexp,Texp,Uexp] = sim(expMPC1,350,r,1);

Compare the plant output and manipulated variable sequences for the two controllers.

figure
subplot(2,1,1)
plot(Timp,Yimp,'b-',Texp,Yexp,'r--')
grid on
xlabel('Time (s)')
ylabel('Output')
title('Explicit MPC Validation')
legend('Implicit MPC','Explicit MPC')
subplot(2,1,2)
plot(Timp,Uimp,'b-',Texp,Uexp,'r--')
grid on
ylabel('MV')
xlabel('Time (s)')

8 Gain Scheduling MPC Design

8-60

The closed-loop responses and manipulated variable sequences of the implicit and explicit
controllers match. Similarly, you can validate the performance of expMPC2 against that of
MPC2.

If the responses of the implicit and explicit controllers do not match, adjust the explicit
MPC ranges, and create a new explicit MPC controller.

Simulate Gain-Scheduled Explicit MPC

To implement gain-scheduled explicit MPC control, replace the Multiple MPC Controllers
block with the Multiple Explicit MPC Controllers block.

expModel = 'mpc_switching_explicit';
open_system(expModel);

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-61

Run the simulation.

sim(expModel);

8 Gain Scheduling MPC Design

8-62

To view the simulation results, open the signals scope.

open_system([expModel '/signals']);

 Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System

8-63

8 Gain Scheduling MPC Design

8-64

The gain-scheduled explicit MPC controllers provide the same performance as the gain-
scheduled implicit MPC controllers.

bdclose(expModel);
close(findobj('Tag','mpc_switching_demo'));

See Also
Multiple Explicit MPC Controllers | Multiple MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2
• “Schedule Controllers at Multiple Operating Points” on page 8-5
• “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-26

 See Also

8-65

Gain-Scheduled MPC Control of an Inverted Pendulum
on a Cart

This example uses a gain-scheduled model predictive controller to control an inverted
pendulum on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
 disp('Simulink Control Design is required to run this example.')
 return
end

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.

8 Gain Scheduling MPC Design

8-66

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc_pendcartPlant';
load_system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'],'force')

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-67

Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

• The cart is stationary at x = 0.

• The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

• Cart can be moved to a new position between -15 and 15 with a step setpoint change.

• When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

• When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart
should return to its original position with a maximum displacement of 1. The

8 Gain Scheduling MPC Design

8-68

pendulum should also return to the upright position with a peak angle displacement of
15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

The Choice of Gain-Scheduled MPC

In “Control of an Inverted Pendulum on a Cart”, a single MPC controller is able to move
the cart to a new position between -10 and 10. However, if you increase the step setpoint
change to 15, the pendulum fails to recover its upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the
prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.OV(2).Min = -pi/2;
mpcobj.OV(2).Max = pi/2;
mpcobj.Weights.ECR = 100;

However, with these new controller settings it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To move the cart to a new position between -15 and 15 while maintaining the same rise
time, the controller needs to have more accurate models at different angles so that the
controller can use them for better prediction. Gain-scheduled MPC allows you to solve a
nonlinear control problem by designing multiple MPC controllers at different operating
points and switching between them at run time.

Control Structure

For this example, use a single MPC controller with:

• One manipulated variable: Variable force F.

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-69

• Two measured outputs: Cart position x and pendulum angle theta.
• One unmeasured disturbance: Impulse disturbance dF.

mdlMPC = 'mpc_pendcartGSMPC';
open_system(mdlMPC)

Although cart velocity x_dot and pendulum angular velocity theta_dot are available from
the plant model, to make the design case more realistic, they are excluded as MPC
measurements.

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction,
linearize the Simulink plant model at three different operating points.

Specify linearization input and output points

io(1) = linio([mdlPlant '/dF'],1,'openinput');
io(2) = linio([mdlPlant '/F'],1,'openinput');
io(3) = linio([mdlPlant '/Pendulum and Cart System'],1,'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3,'openoutput');

8 Gain Scheduling MPC Design

8-70

Create specifications for the following three operating points where both cart and
pendulum are stationary:

• Pendulum is at 80 degrees, pointing right (theta = -4*pi/9)
• Pendulum is upright (theta = 0)
• Pendulum is at 80 degrees, pointing left (theta = 4*pi/9)

angles = [-4*pi/9 0 4*pi/9];
for ct=1:length(angles)

Create operating point specification.

 opspec(ct) = operspec(mdlPlant);

The first state is cart position x.

 opspec(ct).States(1).Known = true;
 opspec(ct).States(1).x = 0;

The second state is cart velocity x_dot (not at steady state).

 opspec(ct).States(2).SteadyState = false;

The third state is pendulum angle theta.

 opspec(ct).States(3).Known = true;
 opspec(ct).States(3).x = angles(ct);

The fourth state is angular velocity theta_dot (not at steady state).

 opspec(ct).States(4).SteadyState = false;

end

Compute operating point using these specifications.

options = findopOptions('DisplayReport',false);
[op,opresult] = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating points.

plants = linearize(mdlPlant,op,io);

bdclose(mdlPlant)

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-71

Multiple MPC Designs

At each operating point, design an MPC controller with the corresponding linear plant
model.

status = mpcverbosity('off');
for ct=1:length(angles)

Get a single plant model.

 plant = plants(:,:,ct);
 plant.InputName = {'dF'; 'F'};
 plant.OutputName = {'x'; 'theta'};

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is
specified as an unmeasured disturbance used by the MPC controller for prediction. Set
the plant signal types.

 plant = setmpcsignals(plant,'ud',1,'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

 Ts = 0.01;
 PredictionHorizon = 50;
 ControlHorizon = 5;
 mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

Specify nominal input and output values based on the operating point.

 mpcobj.Model.Nominal.Y = [0;opresult(ct).States(3).x];
 mpcobj.Model.Nominal.X = [0;0;opresult(ct).States(3).x;0];
 mpcobj.Model.Nominal.DX = [0;opresult(ct).States(2).dx;0;opresult(ct).States(4).dx];

There is a limitation on how much force we can apply to the cart, which is specified as
hard constraints on manipulated variable F.

 mpcobj.MV.Min = -200;
 mpcobj.MV.Max = 200;

8 Gain Scheduling MPC Design

8-72

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

 mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

 mpcobj.Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

 mpcobj.Weights.OV = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by
multiplying the default disturbance model gains by a factor of 10.

Update the input disturbance model.

 disturbance_model = getindist(mpcobj);
 setindist(mpcobj,'model',disturbance_model*10);

Update the output disturbance model.

 disturbance_model = getoutdist(mpcobj);
 setoutdist(mpcobj,'model',disturbance_model*10);

Save the MPC controller to the MATLAB workspace.

 assignin('base',['mpc' num2str(ct)],mpcobj);

end
mpcverbosity(status);

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)

 Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart

8-73

8 Gain Scheduling MPC Design

8-74

In the nonlinear simulation, all the control objectives are successfully achieved.

Remove example file folder from MATLAB path, and close Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdlMPC)

See Also
Multiple MPC Controllers

More About
• “Gain-Scheduled MPC” on page 8-2

 See Also

8-75

• “Control of an Inverted Pendulum on a Cart” on page 1-137
• “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 7-41

8 Gain Scheduling MPC Design

8-76

Code Generation

• “Generate Code and Deploy Controller to Real-Time Targets” on page 9-2
• “Simulation and Code Generation Using Simulink Coder” on page 9-8
• “Simulation and Structured Text Generation Using PLC Coder” on page 9-18
• “Using MPC Controller Block Inside Function-Call and Triggered Subsystems”

on page 9-24
• “Generate Code To Compute Optimal MPC Moves in MATLAB” on page 9-39
• “Solve Custom MPC Quadratic Programming Problem and Generate Code”

on page 9-47
• “Simulate and Generate Code for MPC Controller with Custom QP Solver”

on page 9-61
• “Real-Time Control with OPC Toolbox” on page 9-71

9

Generate Code and Deploy Controller to Real-Time
Targets

Model Predictive Control Toolbox software provides code generation functionality for
controllers designed in Simulink and MATLAB.

Code Generation in Simulink
After designing a controller in Simulink using any of the MPC blocks, you can generate
code and deploy it for real-time control. You can deploy controllers to all targets
supported by the following products:

• Simulink Coder
• Embedded Coder®

• Simulink PLC Coder
• Simulink Real-Time™

You can generate code for any of the Model Predictive Control Toolbox Simulink blocks:

• MPC Controller
• Multiple MPC Controllers
• Explicit MPC Controller
• Multiple Explicit MPC Controllers
• Adaptive MPC Controller
• Adaptive Cruise Control System
• Lane Keeping Assist System

For more information, see “Simulation and Code Generation Using Simulink Coder” on
page 9-8 and “Simulation and Structured Text Generation Using PLC Coder” on page 9-
18.

Note The MPC Controller, Explicit MPC Controller, and Adaptive MPC Controller blocks
are implemented using the MATLAB Function block. To see the structure, right-click the
block, and select Mask > Look Under Mask. Then, open the MPC subsystem
underneath.

9 Code Generation

9-2

Code Generation in MATLAB
After designing an MPC controller in MATLAB, you can generate C code using MATLAB
Coder and deploy it for real-time control.

To generate code for computing optimal MPC control moves:

1 Generate data structures from an MPC or explicit MPC controller using
getCodeGenerationData.

2 To verify that your controller produces the expected closed-loop results, simulate it
using mpcmoveCodeGeneration in place of mpcmove.

3 Generate code for mpcmoveCodeGeneration using codegen. This step requires
MATLAB Coder software.

For more information, see “Generate Code To Compute Optimal MPC Moves in MATLAB”
on page 9-39.

Sampling Rate in Real-Time Environment
The sampling rate that a controller can achieve in a real-time environment is system-
dependent. For example, for a typical small MIMO control application running on
Simulink Real-Time, the sample time can go as low as 1–10 ms. To determine the sample
time, first test a less-aggressive controller whose sampling rate produces acceptable
performance on the target. Next, decrease the sample time and monitor the execution
time of the controller. You can further decrease the sample time as long as the
optimization safely completes within each sampling period under normal plant operating
conditions. To reduce the sample time, you can also consider using:

• Explicit MPC. While explicit MPC controllers have a faster execution time, they also
have a larger memory footprint, since they store precomputed control laws. For more
information, see “Explicit MPC Design”.

• A suboptimal QP solution after a specified number of maximum solver iterations. For
more information, see “Suboptimal QP Solution” on page 2-23.

Tip A lower controller sample time does not necessarily provide better performance. In
fact, you want to choose a sample time that is small enough to give you good performance
but no smaller. For the same prediction time, smaller sample times result in larger
prediction steps, which in turn produces a larger memory footprint and more complex
optimization problem.

 Generate Code and Deploy Controller to Real-Time Targets

9-3

QP Problem Construction for Generated C Code
At each control interval, an MPC controller constructs a new QP problem, which is
defined as:

Min fx Hx x
x

()
1

2

œ œ

+

subject to the linear inequality constraints

Ax b≥

where

• x is the solution vector.
• H is the Hessian matrix.
• A is a matrix of linear constraint coefficients.
• f and b are vectors.

In generated C code, the following matrices are used to provide H, A, f, and b. Depending
on the type and configuration of the MPC controller, these matrices are either constant or
regenerated at each control interval.

Cons
tant
Matri
x

Size Purpose Implicit MPC Implicit MPC
with Online
Weight
Tuning

Adaptive
MPC or LTV
MPC

Hinv NM-by-NM Inverse of the
Hessian
matrix, H

Constant Regenerated Regenerated

Linv NM-by-NM Inverse of the
lower-
triangular
Cholesky
decomposition
of H

9 Code Generation

9-4

Cons
tant
Matri
x

Size Purpose Implicit MPC Implicit MPC
with Online
Weight
Tuning

Adaptive
MPC or LTV
MPC

Ac NC-by-NM Linear
constraint
coefficients, A

Constant

Kx Nxqp-by-(NM–1) Used to
generate f

Regenerated
Kr p*Ny-by-(NM–1)
Ku1 Nmv-by-(NM–1)
Kv (Nmd+1)*(p

+1)-by-(NM–1)
Kut p*Nmv-by-(NM–

1)
Mlim NC-by-1 Used to

generate b
Constant Constant,

except when
there are
custom
constraints

Mx NC-by-Nxqp Regenerated
Mu1 NC-by-Nmv

Mv NC-by-(Nmd
+1)*(p+1)

Here

• p is the prediction horizon.
• Nmv is the number of manipulated variables.
• Nmd is the number of measured disturbances.
• Ny is the number of output variables.
• NM is the number of optimization variables (m*Nmv+1, where m is the control horizon).
• Nxqp is the number of states used for the QP problem; that is, the total number of the

plant states and disturbance model states.
• NC is the total number of constraints.

 Generate Code and Deploy Controller to Real-Time Targets

9-5

At each control interval, the generated C code computes f and b as:

f ux r m vq p l p t= ** + * + * + * +Kx Kr Ku1 Kv Kut
œ œ œ œ œ

b x m vq l p= - + * + * + *()Mlim Mx Mu1 Mv

where

• xq is the vector of plant and disturbance model states estimated by the Kalman filter.
• ml is the manipulated variable move from the previous control interval.
• ut is the manipulated variable target.
• vp is the sequence of measured disturbance signals across the prediction horizon.
• rp is the sequence of reference signals across the prediction horizon.

Note When generating code in MATLAB, the getCodeGenerationData command
generates these matrices and returns them in configData.

Code Generation for Custom QP Solvers
You can generate code for MPC controllers that use a custom QP solver written in either
C or Embedded MATLAB®. The controller calls this solver in place of the built-in QP
solver at each control interval.

For an example, see “Simulate and Generate Code for MPC Controller with Custom QP
Solver” on page 9-61. For more information on custom QP solvers, see “Custom QP
Solver” on page 2-24.

See Also
Functions
mpcmoveCodeGeneration | review

Blocks
Adaptive MPC Controller | Explicit MPC Controller | MPC Controller | Multiple Explicit
MPC Controllers | Multiple MPC Controllers

9 Code Generation

9-6

More About
• “Simulation and Code Generation Using Simulink Coder” on page 9-8
• “Simulation and Structured Text Generation Using PLC Coder” on page 9-18
• “Generate Code To Compute Optimal MPC Moves in MATLAB” on page 9-39

 See Also

9-7

Simulation and Code Generation Using Simulink Coder
This example shows how to simulate and generate real-time code for an MPC Controller
block with Simulink Coder. Code can be generated in both single and double precisions.

Required Products

To run this example, Simulink® and Simulink® Coder™ are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('simulinkcoder')
 disp('Simulink(R) Coder(TM) is required to run this example.');
 return
end

Setup Environment

You must have write-permission to generate the relevant files and the executable. So,
before starting simulation and code generation, change the current directory to a
temporary directory.

cwd = pwd;
tmpdir = tempname;
mkdir(tmpdir);
cd(tmpdir);

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sampling time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints
OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

9 Code Generation

9-8

Simulate and Generate Code in Double-Precision

By default, MPC Controller blocks use double-precision in simulation and code
generation.

Simulate the model in Simulink.

mdl1 = 'mpc_rtwdemo';
open_system(mdl1)
sim(mdl1)

The controller effort and the plant output are saved into base workspace as variables u
and y, respectively.

Build the model with the rtwbuild command.

disp('Generating C code... Please wait until it finishes.')
set_param(mdl1,'RTWVerbose','off')
rtwbuild(mdl1);

Generating C code... Please wait until it finishes.
Starting build procedure for model: mpc_rtwdemo
Successful completion of build procedure for model: mpc_rtwdemo

 Simulation and Code Generation Using Simulink Coder

9-9

On a Windows system, an executable file named "mpc_rtwdemo.exe" appears in the
temporary directory after the build process finishes.

Run the executable.

if ispc
 disp('Running executable...')
 status = system(mdl1);
else
 disp('The example only runs the executable on Windows system.')
end

Running executable...

** starting the model **
** created mpc_rtwdemo.mat **

After the executable completes successfully (status=0), a data file named
"mpc_rtwdemo.mat" appears in the temporary directory.

Compare the responses from the generated code (rt_u and rt_y) with the responses from
the previous simulation in Simulink (u and y).

9 Code Generation

9-10

 Simulation and Code Generation Using Simulink Coder

9-11

They are numerically equal.

Simulate and Generate Code in Single-Precision

You can also configure the MPC block to use single-precision in simulation and code
generation.

9 Code Generation

9-12

mdl2 = 'mpc_rtwdemo_single';
open_system(mdl2)

To do that, open the MPC block dialog and select "single" as the "output data type" at the
bottom of the dialog.

open_system([mdl2 '/MPC Controller'])

Simulate the model in Simulink.

close_system([mdl2 '/MPC Controller'])
sim(mdl2)

The controller effort and the plant output are saved into base workspace as variables u1
and y1, respectively.

Build the model with the rtwbuild command.

disp('Generating C code... Please wait until it finishes.')
set_param(mdl2,'RTWVerbose','off')
rtwbuild(mdl2);

Generating C code... Please wait until it finishes.
Starting build procedure for model: mpc_rtwdemo_single
Successful completion of build procedure for model: mpc_rtwdemo_single

 Simulation and Code Generation Using Simulink Coder

9-13

On a Windows system, an executable file named "mpc_rtwdemo_single.exe" appears in
the temporary directory after the build process finishes.

Run the executable.

if ispc
 disp('Running executable...')
 status = system(mdl2);
else
 disp('The example only runs the executable on Windows system.')
end

Running executable...

** starting the model **
** created mpc_rtwdemo_single.mat **

After the executable completes successfully (status=0), a data file named
"mpc_rtwdemo_single.mat" appears in the temporary directory.

Compare the responses from the generated code (rt_u1 and rt_y1) with the responses
from the previous simulation in Simulink (u1 and y1).

9 Code Generation

9-14

 Simulation and Code Generation Using Simulink Coder

9-15

They are numerically equal.

Close the Simulink model.

bdclose(mdl1)
bdclose(mdl2)

9 Code Generation

9-16

cd(cwd)

See Also

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 9-2

 See Also

9-17

Simulation and Structured Text Generation Using PLC
Coder

This example shows how to simulate and generate Structured Text for an MPC Controller
block using PLC Coder software. The generated code uses single-precision.

Required Products

To run this example, Simulink® and Simulink® PLC Coder™ are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('plccoder')
 disp('Simulink(R) PLC Coder(TM) is required to run this example.');
 return
end

Setup Environment

You must have write-permission to generate the relevant files and the executable. So,
before starting simulation and code generation, change the current directory to a
temporary directory.

cwd = pwd;
tmpdir = tempname;
mkdir(tmpdir);
cd(tmpdir);

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sampling time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints

9 Code Generation

9-18

OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate and Generate Structured Text

Open the Simulink model.

mdl = 'mpc_plcdemo';
open_system(mdl)

To generate structured text for the MPC Controller block, complete the following two
steps:

• Configure the MPC block to use single precision. Select "single" in the "Output data
type" combo box in the MPC block dialog.

open_system([mdl '/Control System/MPC Controller'])

 Simulation and Structured Text Generation Using PLC Coder

9-19

• Put MPC block inside a subsystem block and treat the subsystem block as an atomic
unit. Select the "Treat as atomic unit" checkbox in the subsystem block dialog.

Simulate the model in Simulink.

close_system([mdl '/Control System/MPC Controller'])
open_system([mdl '/Outputs//References'])
open_system([mdl '/Inputs'])
sim(mdl)

9 Code Generation

9-20

 Simulation and Structured Text Generation Using PLC Coder

9-21

To generate code with the PLC Coder, use the plcgeneratecode command.

disp('Generating PLC structure text... Please wait until it finishes.')
plcgeneratecode([mdl '/Control System']);

Generating PLC structure text... Please wait until it finishes.
PLC code generation successful for 'mpc_plcdemo/Control System'.

Generated files:
plcsrc\mpc_plcdemo.exp

The Message Viewer dialog box shows that PLC code generation was successful.

9 Code Generation

9-22

Close the Simulink model.

bdclose(mdl)

cd(cwd)

See Also

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 9-2

 See Also

9-23

Using MPC Controller Block Inside Function-Call and
Triggered Subsystems

This example shows how to configure and simulate MPC Controller blocks placed inside
Function-Call and Triggered subsystems.

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sampling time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints
OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Configure and Simulate MPC Controller Block Inside Function-Call Subsystem

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Function-Call subsystem is invoked directly by another block during simulation. To ensure
that the MPC controller works properly inside a Function-Call subsystem, you must
configure the MPC Controller block to use inherited sample time and invoke the Function-
Call subsystem periodically with the same sample time defined in the MPC controller
object.

Open the model.

mdl1 = 'mpc_rtwdemo_functioncall';
open_system(mdl1);

9 Code Generation

9-24

Configure the MPC block to use inherited sample time (-1).

Double-click the MPC block. Select the "Block uses inherited sample time (-1)" checkbox.

open_system([mdl1 '/MPC in Function-Call Subsystem/MPC Controller']);

Invoke the Function-Call subsystem periodically with the correct sample time.

For this example, since the controller has a sample time of 0.1 seconds, configure the
trigger block inside the Function-Call subsystem to use the same sample time.

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

9-25

For this example, use the "Function-Call Generator" block to execute the Function-Call
subsystem at the sample rate as 0.1 seconds.

9 Code Generation

9-26

Simulate the model.

close_system([mdl1 '/MPC in Function-Call Subsystem/MPC Controller']);
open_system([mdl1 '/Inputs']);
open_system([mdl1 '/Outputs//References']);
sim(mdl1);

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

9-27

9 Code Generation

9-28

The controller effort and the plant output are saved into base workspace as variables u_fc
and y_fc, respectively.

Close the Simulink model.

bdclose(mdl1);

Configure and Simulate MPC Controller Block Inside Triggered Subsystem

Triggered subsystem executes each time a trigger event occurs. To ensure that the MPC
controller works properly inside a Triggered subsystem, you must configure the MPC
Controller block to use inherited sample time and invoke the Triggered subsystem
periodically with the same sample time defined in the MPC controller object.

Open the model.

mdl2 = 'mpc_rtwdemo_triggered';
open_system(mdl2);

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

9-29

Configure the MPC block to use inherited sample time (-1) as you did earlier.

open_system([mdl2 '/MPC in Triggered Subsystem/MPC Controller']);

Execute the Triggered subsystem periodically with the correct sample time.

For this example, configure the trigger block inside the Triggered subsystem to use either
a falling trigger type.

9 Code Generation

9-30

For this example, use the "Pulse Generator" block to provide a periodic triggering signal
at the sample rate as 0.1 seconds.

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

9-31

9 Code Generation

9-32

Simulate the model.

close_system([mdl2 '/MPC in Triggered Subsystem/MPC Controller']);
open_system([mdl2 '/Inputs']);
open_system([mdl2 '/Outputs//References']);
sim(mdl2);

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

9-33

The controller effort and the plant output are saved into base workspace as variables u_tr
and y_tr, respectively.

Close the Simulink model.

bdclose(mdl2);

Compare Responses

Compare the simulation results from the Function-Call subsystem and the Triggered
subsystem with the result generated by an MPC Controller block that is not placed inside
a subsystem and does not inherit sample time.

mdl = 'mpc_rtwdemo';
open_system(mdl);
sim(mdl);

9 Code Generation

9-34

Compare the responses of manipulated variable.

f1 = figure;
plot(t,u,'b-',t,u_fc,'ro',t(1:end-1),u_tr,'k.');
title('Manipulated Variable');
legend('No Subsystem','Function-Call','Triggered');

 Using MPC Controller Block Inside Function-Call and Triggered Subsystems

9-35

Compare the responses the plant output.

f2 = figure;
plot(t,y,'b-',t,y_fc,'ro',t(1:end-1),y_tr,'k.');
title('Plant Output');
legend('No Subsystem','Function-Call','Triggered');

9 Code Generation

9-36

The results of all three models are numerically equal.

Close the Simulink model.

bdclose(mdl);

See Also
Function-Call Subsystem | Triggered Subsystem

 See Also

9-37

More About
• “Choose Sample Time and Horizons” on page 1-2

9 Code Generation

9-38

Generate Code To Compute Optimal MPC Moves in
MATLAB

This example shows how to use the mpcmoveCodeGeneration command to generate C
code to compute optimal MPC control moves for real-time applications.

Plant Model

The plant is a single-input, single-output, stable, 2nd order linear plant.

plant = tf(5,[1 0.8 3]);

Convert the plant to discrete-time, state-space form, and specify a zero initial states
vector.

Ts = 1;
plant = ss(c2d(plant,Ts));
x0 = zeros(size(plant.B,1),1);

Design MPC Controller

Create an MPC controller with default horizons.

mpcobj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify controller tuning weights.

mpcobj.Weights.MV = 0;
mpcobj.Weights.MVrate = 0.5;
mpcobj.Weights.OV = 1;

Specify initial constraints on the manipulated variable and plant output. These constraints
will be updated at run time.

mpcobj.MV.Min = -1;
mpcobj.MV.Max = 1;
mpcobj.OV.Min = -1;
mpcobj.OV.Max = 1;

 Generate Code To Compute Optimal MPC Moves in MATLAB

9-39

Simulate Online Constraint Changes with mpcmove Command

In the closed-loop simulation, constraints are updated and fed into the mpcmove
command at each control interval.

yMPCMOVE = [];
uMPCMOVE = [];

Set the simulation time.

Tsim = 20;

Initialize the online constraint data.

MVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
MVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
OVMinData = -0.2-[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];
OVMaxData = 0.2+[1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 ...
 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];

Initialize plant states.

x = x0;

Initialize MPC states.

xmpc = mpcstate(mpcobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Run a closed-loop simulation by calling mpcmove in a loop.

options = mpcmoveopt;
for ct = 1:round(Tsim/Ts)+1
 % Update and store plant output.
 y = plant.C*x;
 yMPCMOVE = [yMPCMOVE y];
 % Update constraints.
 options.MVMin = MVMinData(ct);
 options.MVMax = MVMaxData(ct);
 options.OutputMin = OVMinData(ct);

9 Code Generation

9-40

 options.OutputMax = OVMaxData(ct);
 % Compute control actions.
 u = mpcmove(mpcobj,xmpc,y,1,[],options);
 % Update and store plant state.
 x = plant.A*x + plant.B*u;
 uMPCMOVE = [uMPCMOVE u];
end

Validate Simulation Results with mpcmoveCodeGeneration Command

To prepare for generating code that computes optimal control moves from MATLAB, it is
recommended to reproduce the same control results with the mpcmoveCodeGeneration
command before using the codegen command from the MATLAB Coder product.

yCodeGen = [];
uCodeGen = [];

Initialize plant states.

x = x0;

Create data structures to use with mpcmoveCodeGeneration using
getCodeGenerationData.

[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj);

Run a closed-loop simulation by calling mpcmoveCodeGeneration in a loop.

for ct = 1:round(Tsim/Ts)+1
 % Update and store plant output.
 y = plant.C*x;
 yCodeGen = [yCodeGen y];
 % Update measured output in online data.
 onlinedata.signals.ym = y;
 % Update reference in online data.
 onlinedata.signals.ref = 1;
 % Update constraints in online data.
 onlinedata.limits.umin = MVMinData(ct);
 onlinedata.limits.umax = MVMaxData(ct);
 onlinedata.limits.ymin = OVMinData(ct);
 onlinedata.limits.ymax = OVMaxData(ct);
 % Compute control actions.
 [u,statedata] = mpcmoveCodeGeneration(coredata,statedata,onlinedata);
 % Update and store plant state.
 x = plant.A*x + plant.B*u;

 Generate Code To Compute Optimal MPC Moves in MATLAB

9-41

 uCodeGen = [uCodeGen u];
end

The simulation results are identical to those using mpcmove.

t = 0:Ts:Tsim;
figure;
subplot(1,2,1)
plot(t,yMPCMOVE,'--*',t,yCodeGen,'o');
grid
legend('mpcmove','codegen')
title('Plant Output')
subplot(1,2,2)
plot(t,uMPCMOVE,'--*',t,uCodeGen,'o');
grid
legend('mpcmove','codegen')
title('Controller Moves')

9 Code Generation

9-42

Generate MEX Function From mpcmoveCodeGeneration Command

To generate C code from the mpcmoveCodeGeneration command, use the codegen
command from the MATLAB Coder product. In this example, generate a MEX function
mpcmoveMEX to reproduce the simulation results in MATLAB. You can change the code
generation target to C/C++ static library, dynamic library, executable, etc. by using a
different set of coder.config settings.

When generating C code for the mpcmoveCodeGeneration command:

• Since no data integrity checks are performed on the input arguments, you must make
sure that all the input data has the correct types, dimensions, and values.

 Generate Code To Compute Optimal MPC Moves in MATLAB

9-43

• You must define the first input argument, mpcmove_struct, as a constant when using
the codegen command.

• The second input argument, mpcmove_state, is updated by the command and
returned as the second output. In most cases, you do not need to modify its contents
and should simply pass it back to the command in the next control interval. The only
exception is when custom state estimation is enabled, in which case you must provide
the current state estimation using this argument.

if ~license ('test', 'MATLAB_Coder')
 disp('MATLAB Coder(TM) is required to run this example.')
 return
end

Generate MEX function.

fun = 'mpcmoveCodeGeneration';
funOutput = 'mpcmoveMEX';
Cfg = coder.config('mex');
Cfg.DynamicMemoryAllocation = 'off';
codegen('-config',Cfg,fun,'-o',funOutput,'-args',...
 {coder.Constant(coredata),statedata,onlinedata});

Initialize data storage.

yMEX = [];
uMEX = [];

Initialize plant states.

x = x0;

Use getCodeGenerationData to create data structures to use with
mpcmoveCodeGeneration.

[coredata,statedata,onlinedata] = getCodeGenerationData(mpcobj);

Run a closed-loop simulation by calling the generated mpcmoveMEX functions in a loop.

for ct = 1:round(Tsim/Ts)+1
 % Update and store the plant output.
 y = plant.C*x;
 yMEX = [yMEX y];
 % Update measured output in online data.
 onlinedata.signals.ym = y;

9 Code Generation

9-44

 % Update reference in online data.
 onlinedata.signals.ref = 1;
 % Update constraints in online data.
 onlinedata.limits.umin = MVMinData(ct);
 onlinedata.limits.umax = MVMaxData(ct);
 onlinedata.limits.ymin = OVMinData(ct);
 onlinedata.limits.ymax = OVMaxData(ct);
 % Compute control actions.
 [u,statedata] = mpcmoveMEX(coredata,statedata,onlinedata);
 % Update and store the plant state.
 x = plant.A*x + plant.B*u;
 uMEX = [uMEX u];
end

The simulation results are identical to those using mpcmove.

figure
subplot(1,2,1)
plot(t,yMPCMOVE,'--*',t,yMEX,'o')
grid
legend('mpcmove','mex')
title('Plant Output')
subplot(1,2,2)
plot(t,uMPCMOVE,'--*',t,uMEX,'o')
grid
legend('mpcmove','mex')
title('Controller Moves')

 Generate Code To Compute Optimal MPC Moves in MATLAB

9-45

See Also
getCodeGenerationData | mpcmoveCodeGeneration

More About
• “Generate Code and Deploy Controller to Real-Time Targets” on page 9-2

9 Code Generation

9-46

Solve Custom MPC Quadratic Programming Problem and
Generate Code

This example shows how to use the built-in QP solver to implement a custom MPC control
algorithm that supports C code generation in MATLAB.

Define Plant Model

The plant model is a discrete-time state-space system and it is open-loop unstable. We
assume that all the plant states are measurable. Therefore, we avoid the need for
designing a state estimator, which is beyond the scope of this example.

A = [1.1 2; 0 0.95];
B = [0; 0.0787];
C = [-1 1];
D = 0;
Ts = 1;
sys = ss(A,B,C,D,Ts);
x0 = [0.5;-0.5]; % initial states at [0.5 -0.5]

Design Unconstrained Linear Quadratic Regulator (LQR)

Design an unconstrained LQR with output weighting. This controller serves as the
baseline to compare with the custom MPC algorithm. The LQ control law is u(k) = -
K_lqr*x(k).

Qy = 1;
R = 0.01;
K_lqr = lqry(sys,Qy,R);

Run a simulation with initial states at [0.5 -0.5]. The closed-loop response is stable.

t_unconstrained = 0:1:10;
u_unconstrained = zeros(size(t_unconstrained));
Unconstrained_LQR = tf([-1 1])*feedback(ss(A,B,eye(2),0,Ts),K_lqr);
lsim(Unconstrained_LQR,'-',u_unconstrained,t_unconstrained,x0);
hold on;

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-47

Design Custom MPC Controller with Terminal Weight

Design a custom MPC controller with the terminal weight applied at the last prediction
step.

The predicted state sequences, X(k), generated by the linear model and input sequence,
U(k), can be formulated as: X(k) = M*x(k) + CONV*U(k). In this example, use four
prediction steps (N = 4).

M = [A;A^2;A^3;A^4];
CONV = [B zeros(2,1) zeros(2,1) zeros(2,1);...
 A*B B zeros(2,1) zeros(2,1);...
 A^2*B A*B B zeros(2,1);...
 A^3*B A^2*B A*B B];

9 Code Generation

9-48

The MPC objective function is J(k) = sum(x(k)'*Q*x(k) + u(k)'*R*u(k) + x(k+N)'*Q_bar*x(k
+N)). To ensure that the MPC objective function has the same quadratic cost as the
infinite horizon quadratic cost used by LQR, terminal weight Q_bar is obtained by solving
the following Lyaponov equation:

Q = C'*C;
Q_bar = dlyap((A-B*K_lqr)', Q+K_lqr'*R*K_lqr);

Convert the MPC problem into a standard QP problem, which has the objective function
J(k) = U(k)'*H*U(k) + 2*x(k)'*F'*U(k).

Q_hat = blkdiag(Q,Q,Q,Q_bar);
R_hat = blkdiag(R,R,R,R);
H = CONV'*Q_hat*CONV + R_hat;
F = CONV'*Q_hat*M;

When there are no constraints, the optimal predicted input sequence U(k) generated by
MPC controller is -K*x, where K = inv(H)*F.

K = H\F;

In practice, only the first control move u(k) = -K_mpc*x(k) is applied to the plant
(receding horizon control).

K_mpc = K(1,:);

Run a simulation with initial states at [0.5 -0.5]. The closed-loop response is stable.

Unconstrained_MPC = tf([-1 1])*feedback(ss(A,B,eye(2),0,Ts),K_mpc);
lsim(Unconstrained_MPC,'*',u_unconstrained,t_unconstrained,x0)
legend show

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-49

LQR and MPC controllers produce the same result because the control laws are the same.

K_lqr
K_mpc

K_lqr =

 4.3608 18.7401

K_mpc =

9 Code Generation

9-50

 4.3608 18.7401

LQR Control Performance Deteriorates When Applying Constraints

Restrict the controller output, u(k), to be between -1 and 1. The LQR controller generates
a slow and oscillatory closed-loop response due to saturation.

x = x0;
t_constrained = 0:40;
for ct = t_constrained
 uLQR(ct+1) = -K_lqr*x;
 uLQR(ct+1) = max(-1,min(1,uLQR(ct+1)));
 x = A*x+B*uLQR(ct+1);
 yLQR(ct+1) = C*x;
end
figure
subplot(2,1,1)
plot(t_constrained,uLQR)
xlabel('time')
ylabel('u')
subplot(2,1,2)
plot(t_constrained,yLQR)
xlabel('time')
ylabel('y')
legend('Constrained LQR')

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-51

MPC Controller Solves QP Problem Online When Applying Constraints

One of the major benefits of using MPC controller is that it handles input and output
constraints explicitly by solving an optimization problem at each control interval.

Use the built-in KWIK QP solver, mpcqpsolver, to implement the custom MPC controller
designed above. The constraint matrices are defined as Ac*x>=b0.

Ac = -[1 0 0 0;...
 -1 0 0 0;...
 0 1 0 0;...
 0 -1 0 0;...
 0 0 1 0;...
 0 0 -1 0;...

9 Code Generation

9-52

 0 0 0 1;...
 0 0 0 -1];
b0 = -[1;1;1;1;1;1;1;1];

The mpcqpsolver function requires the first input to be the inverse of the lower-
triangular Cholesky decomposition of the Hessian matrix H.

L = chol(H,'lower');
Linv = L\eye(size(H,1));

Run a simulation by calling mpcqpsolver at each simulation step. Initially all the
inequalities are inactive (cold start).

x = x0;
iA = false(size(b0));
opt = mpcqpsolverOptions;
opt.IntegrityChecks = false;
for ct = t_constrained
 [u, status, iA] = mpcqpsolver(Linv,F*x,Ac,b0,[],zeros(0,1),iA,opt);
 uMPC(ct+1) = u(1);
 x = A*x+B*uMPC(ct+1);
 yMPC(ct+1) = C*x;
end
figure
subplot(2,1,1)
plot(t_constrained,uMPC)
xlabel('time')
ylabel('u')
subplot(2,1,2)
plot(t_constrained,yMPC)
xlabel('time')
ylabel('y')
legend('Constrained MPC')

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-53

The MPC controller produces a closed-loop response with faster settling time and less
oscillation.

Simulate Custom MPC Using MATLAB Function Block in Simulink

mpcqpsolver can be used inside a MATLAB Function block to provide simulation and
code generation in the Simulink environment.

mdl = 'mpc_customqp';
open_system(mdl)

9 Code Generation

9-54

The Custom MPC Controller block is the MATLAB Function block. Double-click it to
examine the MATLAB code. Since Linv, F, Ac, b0 matrices, and opt structure are
constant, they are passed into the MATLAB Function block as parameters.

Run a simulation in Simulink. The closed-responses of LQR and MPC controllers are
identical to their counterparts in the MATLAB simulation.

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-55

open_system([mdl '/u_lqr'])
open_system([mdl '/y_lqr'])
open_system([mdl '/u_mpc'])
open_system([mdl '/y_mpc'])
sim(mdl)

9 Code Generation

9-56

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-57

9 Code Generation

9-58

Code Generation in MATLAB

mpcqpsolver supports C code generation with MATLAB Coder. Assume you have a
function mycode that is compatible with the code generation standard.

function [x,iter,iA1,lam] = mycode()
%#codegen
n = 5;
m = 10;
q = 2;
H = diag(10*rand(n,1));
f = randn(n,1);
A = randn(m,n);
b = randn(m,1);
Aeq = randn(q,n);
beq = randn(q,1);
Linv = chol(H,'lower')\eye(n);
iA = false(m,1);

 Solve Custom MPC Quadratic Programming Problem and Generate Code

9-59

Opt = mpcqpsolverOptions();
[x,iter,iA1,lam] = mpcqpsolver(Linv,f,-A,-b,Aeq,beq,iA,Opt);

You can use following command to generate C code with MATLAB Coder:

fun = 'mycode';
Cfg = coder.config('mex'); % or 'lib', 'dll', etc.
codegen('-config',Cfg,fun,'-o',fun);

Acknowledgment

This example is inspired by Professor Mark Cannon's lecture notes for the Model
Predictive Control class at University of Oxford. The plant model is the same one used in
Example 2.1 in the "Prediction and optimization" section.

bdclose(mdl)

See Also
mpcqpsolver | mpcqpsolverOptions

More About
• “QP Solver” on page 2-22

9 Code Generation

9-60

Simulate and Generate Code for MPC Controller with
Custom QP Solver

This example shows how to simulate and generate code for a model predictive controller
that uses a custom quadratic programming (QP) solver. The plant for this example is a dc-
servo motor in Simulink®.

DC-Servo Motor Model

The dc-servo motor model is a linear dynamic system described in [1]. plant is the
continuous-time state-space model of the motor. tau is the maximum admissible torque,
which you use as an output constraint.

[plant,tau] = mpcmotormodel;

Design MPC Controller

The plant has one input, the motor input voltage. The MPC controller uses this input as a
manipulated variable (MV). The plant has two outputs, the motor angular position and
shaft torque. The angular position is a measured output (MO), and the shaft torque is
unmeasured (UO).

plant = setmpcsignals(plant,'MV',1,'MO',1,'UO',2);

Constrain the manipulated variable to be between +/- 220 volts. Since the plant inputs
and outputs are of different orders of magnitude, to facilitate tuning, use scale factors.
Typical choices of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',-220,'Max',220,'ScaleFactor',440);

There is no constraint on the angular position. Specify upper and lower bounds on shaft
torque during the first three prediction horizon steps. To define these bounds, use tau.

OV = struct('Min',{-Inf, [-tau;-tau;-tau;-Inf]},...
 'Max',{Inf, [tau;tau;tau;Inf]},'ScaleFactor',{2*pi, 2*tau});

The control task is to achieve zero tracking error for the angular position. Since you only
have one manipulated variable, allow shaft torque to float within its constraint by setting
its tuning weight to zero.

Weights = struct('MV',0,'MVRate',0.1,'OV',[0.1 0]);

 Simulate and Generate Code for MPC Controller with Custom QP Solver

9-61

Specify the sample time and horizons, and create the MPC controller, using plant as the
predictive model.

Ts = 0.1; % Sample time
p = 10; % Prediction horizon
m = 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate in Simulink with Built-In QP Solver

To run the remaining example, Simulink is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end

Open a Simulink model that simulates closed-loop control of the dc-servo motor using the
MPC controller. By default, MPC uses a built-in QP solver that uses the KWIK algorithm.

mdl = 'mpc_customQPcodegen';
open_system(mdl)

9 Code Generation

9-62

Run the simulation

sim(mdl)

Store the plant input and output signals in the MATLAB workspace.

uKWIK = u;
yKWIK = y;

Simulate in Simulink with a Custom QP Solver

To examine how the custom solver behaves under the same conditions, enable the custom
solver in the MPC controller.

mpcobj.Optimizer.CustomSolver = true;

 Simulate and Generate Code for MPC Controller with Custom QP Solver

9-63

You must also provide a MATLAB® function that satisfies the following requirements:

• Function name must be mpcCustomSolver.
• Input and output arguments must match the arguments in the template file.
• Function must be on the MATLAB path.

In this example, use the custom QP solver defined in the template file
mpcCustomSolverCodeGen_TemplateEML.txt, which implements the dantzig
algorithm and is suitable for code generation. Save the function in your working folder as
mpcCustomSolver.m.

src = which('mpcCustomSolverCodeGen_TemplateEML.txt');
dest = fullfile(pwd,'mpcCustomSolver.m');
copyfile(src,dest,'f')

Simulate closed-loop control of the dc-servo motor, and save the plant input and output.

sim(mdl)
uDantzigSim = u;
yDantzigSim = y;

Generate Code with Custom QP Solver

To run the remaining example, Simulink Coder product is required.

if ~mpcchecktoolboxinstalled('simulinkcoder')
 disp('Simulink(R) Coder(TM) is required to run this example.')
 return
end

To generate code from an MPC Controller block that uses a custom QP solver, enable the
custom solver for code generation option in the MPC controller.

mpcobj.Optimizer.CustomSolverCodeGen = true;

You must also provide a MATLAB® function that satisfies all the following requirements:

• Function name must be mpcCustomSolverCodeGen.
• Input and output arguments must match the arguments in the template file.
• Function must be on the MATLAB path.

9 Code Generation

9-64

In this example, use the same custom solver defined in
mpcCustomSolverCodeGen_TemplateEML.txt. Save the function in your working
folder as mpcCustomSolverCodeGen.m.

src = which('mpcCustomSolverCodeGen_TemplateEML.txt');
dest = fullfile(pwd,'mpcCustomSolverCodeGen.m');
copyfile(src,dest,'f')

Review the saved mpcCustomSolverCodeGen.m file.

function [x, status] = mpcCustomSolverCodeGen(H, f, A, b, x0)
%#codegen
% mpcCustomSolverCodeGen allows the user to specify a custom (QP) solver
% written in Embedded MATLAB to be used by MPC controller in code generation.
%
% Workflow:
% (1) Copy this template file to your work folder and rename it to
% "mpcCustomSolverCodeGen.m". The work folder must be on the path.
% (2) Modify the "mpcCustomSolverCodeGen.m" to use your solver.
% Note that your Embedded MATLAB solver must use only fixed-size data.
% (3) Set "mpcobj.Optimizer.CustomSolverCodeGen = true" to tell the MPC
% controller to use the solver in code generation.
% To generate code:
% In MATLAB, use "codegen" command with "mpcmoveCodeGeneration" (require MATLAB Coder)
% In Simulink, generate code with MPC and Adaptive MPC blocks (require Simuink coder products)
%
% To use this solver for simulation in MATLAB and Simulink, you need to:
% (1) Copy "mpcCustomSolver.txt" template file to your work folder and
% rename it to "mpcCustomSolver.m". The work folder must be on the path.
% (2) Modify the "mpcCustomSolver.m" to use your solver.
% (3) Set "mpcobj.Optimizer.CustomSolver = true" to tell the MPC
% controller to use the solver in simulation.
%
% The MPC QP problem is defined as follows:
%
% min J(x) = 0.5*x'*H*x + f'*x, s.t. A*x >= b.
%
% Inputs (provided by MPC controller at run-time):
% H: a n-by-n Hessian matrix, which is symmetric and positive definite.
% f: a n-by-1 column vector.
% A: a m-by-n matrix of inequality constraint coefficients.
% b: a m-by-1 vector of the right-hand side of inequality constraints.
% x0: a n-by-1 vector of the initial guess of the optimal solution.
%

 Simulate and Generate Code for MPC Controller with Custom QP Solver

9-65

% Outputs (sent back to MPC controller at run-time):
% x: must be a n-by-1 vector of optimal solution.
% status: must be an integer of:
% positive value: number of iterations used in computation
% 0: maximum number of iterations reached
% -1: QP is infeasible
% -2: Failed to find a solution due to other reasons
% Note that:
% (1) When solver fails to find an optimal solution (status<=0), "x"
% still needs to be returned.
% (2) To use sub-optimal QP solution in MPC, return the sub-optimal "x"
% with "status = 0". In addition, you need to set
% "mpcobj.Optimizer.UseSuboptimalSolution = true" in MPC controller.
%
% DO NOT CHANGE LINES ABOVE

% This template implements a showcase QP solver using "Dantzig" algorithm
% by G. B. Dantzig, A. Orden, and P. Wolfe, "The generalized simplex method
% for minimizing a linear form under linear inequality constraints",
% Pacific J. of Mathematics, 5:183–195, 1955.
%
% User is expected to modify this template and plug in own custom QP solver
% that replaces the "Dantzig" algorithm.

ZERO = zeros('like',H);
ONE = ones('like',H);
% xmin is a constant term that adds to the initial basis because "dantzig"
% requires positive optimization variables. A fixed "xmin" does not work
% for all MPC problems.
xmin = -1e3*ones(size(f(:)))*ONE;

maxiter = 200*ONE;
nvar = length(f);
ncon = length(b);
a = -H*xmin(:);
H = H\eye(nvar);
rhsc = A*xmin(:) - b(:);
rhsa = a-f(:);
TAB = -[H H*A';A*H A*H*A'];
basisi = [H*rhsa; rhsc + A*H*rhsa];
ibi = -(1:nvar+ncon)'*ONE;
ili = -ibi*ONE;
%% Call EML function "qpdantzg"
[basis,ib,il,iter] = qpdantzg(TAB,basisi,ibi,ili,maxiter); %#ok<ASGLU>

9 Code Generation

9-66

%% status
if iter > maxiter
 status = ZERO;
elseif iter < ZERO
 status = -ONE;
else
 status = iter;
end
%% optimal variable
x = zeros(nvar,1,'like',H);
for j = 1:nvar
 if il(j) <= ZERO
 x(j) = xmin(j);
 else
 x(j) = basis(il(j))+xmin(j);
 end
end

Generate executable code from the Simulink model using the rtwbuild command from
Simulink Coder.

rtwbuild(mdl)

Starting build procedure for model: mpc_customQPcodegen
Successful completion of build procedure for model: mpc_customQPcodegen

On a Windows system, after the build process finishes, the software adds the executable
file mpc_customQPcodegen.exe to your working folder.

Run the executable. After the executable completes successfully (status = 0), the
software adds the data file mpc_customQPcodegen.mat to your working folder. Load the
data file into the MATLAB workspace, and obtain the plant input and output signals
generated by the executable.

if ispc
 status = system(mdl);
 load(mdl)
 uDantzigCodeGen = u;
 yDantzigCodeGen = y;
else
 disp('The example only runs the executable on Windows system.');
end

 Simulate and Generate Code for MPC Controller with Custom QP Solver

9-67

** starting the model **
** created mpc_customQPcodegen.mat **

Compare Simulation Results

Compare the plant input and output signals from all the simulations.

if ispc
 figure
 subplot(2,1,1)
 plot(u.time,uKWIK.signals.values,u.time,uDantzigSim.signals.values,...
 '+',u.time,uDantzigCodeGen.signals.values,'o')
 subplot(2,1,2)
 plot(y.time,yKWIK.signals.values,y.time,yDantzigSim.signals.values,...
 '+',y.time,yDantzigCodeGen.signals.values,'o')
 legend('KWIK','Dantzig Simu','Dantzig CodeGen','Location','northwest')
else
 figure
 subplot(2,1,1)
 plot(u.time,uKWIK.signals.values,u.time,uDantzigSim.signals.values,'+')
 subplot(2,1,2)
 plot(y.time,yKWIK.signals.values,y.time,yDantzigSim.signals.values,'+')
 legend('KWIK','Dantzig Simu','Location','northwest')
end

9 Code Generation

9-68

The signals from all the simulations are identical.

References

[1] Bemporad, A. and Mosca, E. "Fulfilling hard constraints in uncertain linear systems by
reference managing." Automatica, Vol. 34, Number 4, pp. 451-461, 1998.

bdclose(mdl)

See Also
Functions
mpc

 See Also

9-69

Blocks
MPC Controller

More About
• “QP Solver” on page 2-22

9 Code Generation

9-70

Real-Time Control with OPC Toolbox
This example shows how to implement an online model predictive controller application
using the OPC client supplied with the OPC Toolbox™.

The example uses the Matrikon™ Simulation OPC server to simulate the behavior of an
industrial process on Windows® operating system.

Download the Matrikon™ OPC Simulation Server from "www.matrikon.com"

Download and install the server and set it running either as a service or as an application.

This example needs OPC Toolbox™.

if ~mpcchecktoolboxinstalled('opc')
 disp('The example needs OPC Toolbox(TM).')
end

The example needs OPC Toolbox(TM).

Establish a Connection to the OPC Server

Use OPC Toolbox commands to connect to the Matrikon OPC Simulation Server.

if mpcchecktoolboxinstalled('opc')
 % Clear any existing opc connections.
 opcreset
 % Flush the callback persistent variables.
 clear mpcopcPlantStep;
 clear mpcopcMPCStep;
 try
 h = opcda('localhost','Matrikon.OPC.Simulation.1');
 connect(h);
 catch ME
 disp('The Matrikon(TM) OPC Simulation Server must be running on the local machine.')
 return
 end
end

Set up the Plant OPC I/O

In practice the plant would be a physical process, and the OPC tags which define its I/O
would already have been created on the OPC server. However, since in this case a
simulation OPC server is being used, the plant behavior must be simulated. This is

 Real-Time Control with OPC Toolbox

9-71

achieved by defining tags for the plant manipulated and measured variables and creating
a callback (mpcopcPlantStep) to simulate plant response to changes in the manipulated
variables. Two OPC groups are required, one to represent the two manipulated variables
to be read by the plant simulator and another to write back the two measured plant
outputs storing the results of the plant simulation.

if mpcchecktoolboxinstalled('opc')
 % Build an opc group for 2 plant inputs and initialize them to zero.
 plant_read = addgroup(h,'plant_read');
 imv1 = additem(plant_read,'Bucket Brigade.Real8', 'double');
 writeasync(imv1,0);
 imv2 = additem(plant_read,'Bucket Brigade.Real4', 'double');
 writeasync(imv2,0);
 % Build an opc group for plant outputs.
 plant_write = addgroup(h,'plant_write');
 opv1 = additem(plant_write,'Bucket Brigade.Time', 'double');
 opv2 = additem(plant_write,'Bucket Brigade.Money', 'double');
 plant_write.WriteAsyncFcn = []; % Suppress command line display.
end

Specify the MPC Controller Which Will Control the Simulated Plant

Create plant model.

plant_model = ss([-.2 -.1; 0 -.05],eye(2,2),eye(2,2),zeros(2,2));
disc_plant_model = c2d(plant_model,1);
% We assume no model mismatch, a control horizon 6 samples and
% prediction horizon 20 samples.
mpcobj = mpc(disc_plant_model,1,20,6);
mpcobj.weights.ManipulatedVariablesRate = [1 1];
% Build an internal MPC object structure so that the MPC object
% is not rebuilt each callback execution.
state = mpcstate(mpcobj);
y1 = mpcmove(mpcobj,state,[1;1]',[1 1]');

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

9 Code Generation

9-72

Build the OPC I/O for the MPC Controller

Build two OPC groups, one to read the two measured plant outputs and the other to write
back the two manipulated variables.

if mpcchecktoolboxinstalled('opc')
 % Build an opc group for MPC inputs.
 mpc_read = addgroup(h,'mpc_read');
 impcpv1 = additem(mpc_read,'Bucket Brigade.Time', 'double');
 writeasync(impcpv1,0);
 impcpv2 = additem(mpc_read,'Bucket Brigade.Money', 'double');
 writeasync(impcpv2,0);
 impcref1 = additem(mpc_read,'Bucket Brigade.Int2', 'double');
 writeasync(impcref1,1);
 impcref2 = additem(mpc_read,'Bucket Brigade.Int4', 'double');
 writeasync(impcref2,1);
 % Build an opc group for mpc outputs.
 mpc_write = addgroup(h,'mpc_write');
 additem(mpc_write,'Bucket Brigade.Real8', 'double');
 additem(mpc_write,'Bucket Brigade.Real4', 'double');
 % Suppress command line display.
 mpc_write.WriteAsyncFcn = [];
end

Build OPC Groups to Trigger Execution of the Plant Simulator & Controller

Build two opc groups based on the same external opc timer to trigger execution of both
plant simulation and MPC execution when the contents of the OPC time tag changes.

if mpcchecktoolboxinstalled('opc')
 gtime = addgroup(h,'time');
 time_tag = additem(gtime,'Triangle Waves.Real8');
 gtime.UpdateRate = 1;
 gtime.DataChangeFcn = {@mpcopcPlantStep plant_read plant_write disc_plant_model};
 gmpctime = addgroup(h,'mpctime');
 additem(gmpctime,'Triangle Waves.Real8');
 gmpctime.UpdateRate = 1;
 gmpctime.DataChangeFcn = {@mpcopcMPCStep mpc_read mpc_write mpcobj};
end

Log Data from the Plant Measured Outputs

Log the plant measured outputs from tags 'Bucket Brigade.Money' and 'Bucket
Brigade.Money'.

 Real-Time Control with OPC Toolbox

9-73

if mpcchecktoolboxinstalled('opc')
 mpc_read.RecordsToAcquire = 40;
 start(mpc_read);
 while mpc_read.RecordsAcquired < mpc_read.RecordsToAcquire
 pause(3)
 fprintf('Logging data: Record %d / %d',mpc_read.RecordsAcquired,mpc_read.RecordsToAcquire)
 end
 stop(mpc_read);
end

Extract and Plot the Logged Data

if mpcchecktoolboxinstalled('opc')
 [itemID, value, quality, timeStamp, eventTime] = getdata(mpc_read,'double');
 plot((timeStamp(:,1)-timeStamp(1,1))*24*60*60,value)
 title('Measured Outputs Logged from Tags Bucket Brigade.Time,Bucket Brigade.Money')
 xlabel('Time (secs)');
end

9 Code Generation

9-74

See Also

 See Also

9-75

Nonlinear MPC

• “Nonlinear MPC” on page 10-2
• “Specify Prediction Model for Nonlinear MPC” on page 10-4
• “Specify Cost Function for Nonlinear MPC” on page 10-14
• “Specify Constraints for Nonlinear MPC” on page 10-23
• “Configure Optimization Solver for Nonlinear MPC” on page 10-34
• “Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC”

on page 10-40
• “Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control”

on page 10-54
• “Nonlinear Model Predictive Control of an Exothermic Chemical Reactor”

on page 10-67
• “Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver”

on page 10-75
• “Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant”

on page 10-85
• “Lane Following Using Nonlinear Model Predictive Control” on page 10-95
• “Economic MPC” on page 10-104
• “Economic MPC Control of Ethylene Oxide Production” on page 10-106

10

Nonlinear MPC
As in traditional linear MPC, nonlinear MPC calculates control actions at each control
interval using a combination of model-based prediction and constrained optimization. The
key differences are:

• The prediction model can be nonlinear and include time-varying parameters.
• The equality and inequality constraints can be nonlinear.
• The scalar cost function to be minimized can be a nonquadratic (linear or nonlinear)

function of the decision variables.

Using nonlinear MPC, you can:

• Simulate closed-loop control of nonlinear plants under nonlinear costs and constraints.
In this case, to reduce the number of decision variables, the control horizon is typically
shorter than the prediction horizon.

• Plan optimal trajectories by solving an open-loop constrained nonlinear optimization
problem. In this case, to maximize the number of decision variables, the control
horizon is typically equal to the prediction horizon.

To implement nonlinear MPC, create an nlmpc object, and specify:

• State and output functions that define your prediction model. For more information,
see “Specify Prediction Model for Nonlinear MPC” on page 10-4.

• A custom cost function that can replace or augment the standard MPC cost function.
For more information, see “Specify Cost Function for Nonlinear MPC” on page 10-14.

• Standard bounds on inputs, outputs, and states.
• Additional custom equality and inequality constraints, which can include linear and

nonlinear combinations of inputs, outputs, and states. For more information, see
“Specify Constraints for Nonlinear MPC” on page 10-23.

By default, nonlinear MPC controllers solve a nonlinear programming problem using the
fmincon function with the SQP algorithm, which requires Optimization
Toolbox™software. If you do not have Optimization Toolbox software you can specify your
own custom nonlinear solver. For more information on configuring the fmincon solver
and specifying a custom solver, see “Configure Optimization Solver for Nonlinear MPC”
on page 10-34.

You can simulate nonlinear MPC controllers:

10 Nonlinear MPC

10-2

• In Simulink using the Nonlinear MPC Controller block
• At the command line using nlmpcmove

Note A nonlinear MPC controller does not support:

• Code generation.
• Designing controllers using the MPC Designer app.

See Also
Functions
nlmpc | nlmpcmove

Blocks
Nonlinear MPC Controller

More About
• “Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC” on

page 10-40
• “Economic MPC” on page 10-104

 See Also

10-3

Specify Prediction Model for Nonlinear MPC
The prediction model of a nonlinear MPC controller consists of the following user-defined
functions:

• State function — Predicts how the plant states evolve over time
• Output function — Calculates plant outputs in terms of state and input variables

You can specify either a continuous-time or a discrete-time prediction model.

Before simulating your controller, it is best practice to validate your custom functions,
including the state function, output function, and their Jacobians, using the
validateFcns command.

State Function
You can specify either a continuous-time or a discrete-time state function. For a:

• Continuous-time prediction model, the state function is the state derivative function.

dx dt f x u= (),

• Discrete-time prediction model, the state function is the state update function.

x k f x k u k+() = () ()()1 ,

Since a nonlinear MPC controller is a discrete-time controller, if your state function is
continuous-time, the controller automatically discretizes the model using the implicit
trapezoidal rule. This method can handle moderately stiff models, and its prediction
accuracy depends on the controller sample time; that is, a large sample time can
potentially lead to inaccurate prediction.

If the default discretization method does not provide satisfactory prediction for your
application, you can specify your own discrete-time prediction model that uses a different
method. To do so, you can integrate a continuous-time state function from the given initial
condition, xk, to the next state, xk+1. When doing so numerically, avoid approaches that
require iterations, such as some variable-step-size methods, because these methods
introduce numerical noise that degrades solver performance. An explicit multistep Euler
method with sufficiently small step size is often the best method to try first. For an

10 Nonlinear MPC

10-4

example, see “Swing-up Control of a Pendulum Using Nonlinear Model Predictive
Control” on page 10-54.

You can specify your state function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Model.StateFcn = "myStateFunction";
• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myStateFunction;
• Anonymous function

Model.StateFcn = @(x,u,params) myStateFunction(x,u,params)

Your state function must have one of the following signatures:

• If your controller does not use optional parameters:

function z = myStateFunction(x,u)
• If your controller uses parameters. Here params is a comma-separated list of

parameters:

function z = myStateFunction(x,u,params)

This table describes the inputs and outputs of this function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nu is the number of inputs, including all manipulated variables, measured
disturbances, and unmeasured disturbances, and is equal to the
Dimensions.NumberOfInputs property of the controller

Argument Input/Output Description
x Input Current states, specified as a column vector of length Nx

u Input Current inputs, specified as a column vector of length Nu

 Specify Prediction Model for Nonlinear MPC

10-5

Argument Input/Output Description
params Input Optional parameters, specified as a comma-separated list

(for example p1,p2,p3). The same parameters are passed
to the prediction model, custom cost function, and custom
constraint functions of the controller.

If your model uses optional parameters, you must specify
the number of parameters using the
Model.NumberOfParameters property of the controller.

z Output State function output, returned as a column vector of
length Nx. For a continuous-time prediction model, z
contains the state derivatives, dx/dt, and for discrete-time
prediction models, z contains the next states, x(k+1).

As an example of a state function, consider the continuous-time model with the following
state equations:

&

&

&

&

&

x x

x x

x x

x u u u u x

x u u u u

1 4

2 5

3 6

4 1 2 3 4 3

5 1 2 3 4

=

=

=

= - + -() ()

= - + -(

cos

)) ()

= - - +()

sin

.

x

x u u u u

3

6 1 2 3 4
0 2&

You can specify the state function as follows:

z = zeros(6,1);
z(1) = x(4);
z(2) = x(5);
z(3) = x(6);
z(4) = (u(1) - u(2) + u(3) - u(4))*cos(x(3));
z(5) = (u(1) - u(2) + u(3) - u(4))*sin(x(3));
z(6) = 0.2*(u(1) - u(2) - u(3) + u(4));

State Function Jacobians

To improve computational efficiency, it is best practice to specify an analytical Jacobian
for your state function. If you do not specify a Jacobian, the controller computes the

10 Nonlinear MPC

10-6

Jacobian using numerical perturbation. To specify a Jacobian for your state function, set
the Jacobian.StateFcn property of the controller to one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Model.StateFcn = "myStateJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myStateJacobian;
• Anonymous function

Model.StateFcn = @(x,u,params) myStateJacobian(x,u,params)

Your state Jacobian function must have one of the following signatures:

• If your controller does not use optional parameters:

function [A,Bmv] = myStateJacobian(x,u)
• If your controller uses parameters. Here params is a comma-separated list of

parameters:

function [A,Bmv] = myStateJacobian(x,u,params)

The input arguments of the state Jacobian function are the same as the inputs of the state
function. This table describes the outputs of the Jacobian function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nu is the number of inputs, including all manipulated variables, measured
disturbances, and unmeasured disturbances, and is equal to the
Dimensions.NumberOfInputs property of the controller

Argument Description
A Jacobian of the state function output, z, with respect to x, returned as

an Nx-by-Nx array, where A z xi j i j,() = ∂ () ∂ () .

 Specify Prediction Model for Nonlinear MPC

10-7

Argument Description
Bmv Jacobian of the state function output with respect to the manipulated

variables, specified as an Nx-by-Nmv array, where
Bmv z ui j i MV j, /() = ∂ () ∂ ()() and MV(j) is the jth MV index in the
Dimensions.MVIndex controller property. Bmv contains the gradients
with respect to only the manipulated variables in u, since the
measured and unmeasured disturbances are not decision variables.

Consider again, the state function with the following state equations:

&

&

&

&

&

x x

x x

x x

x u u u u x

x u u u u

1 4

2 5

3 6

4 1 2 3 4 3

5 1 2 3 4

=

=

=

= - + -() ()

= - + -(

cos

)) ()

= - - +()

sin

.

x

x u u u u

3

6 1 2 3 4
0 2&

To find the Jacobians, compute the partial derivatives of the state equations with respect
to the states and manipulated variables, assuming that all four inputs are manipulated
variables.

A = zeros(6,6);
A(1,4) = 1;
A(2,5) = 1;
A(3,6) = 1;
A(4,3) = -(u(1) - u(2) + u(3) - u(4))*sin(x(3));
A(5,3) = (u(1) - u(2) + u(3) - u(4))*cos(x(3));
B = zeros(6,4);
B(4,:) = cos(x(3))*[1 -1 1 -1];
B(5,:) = sin(x(3))*[1 -1 1 -1];
B(6,:) = 0.2*[1 -1 -1 1];

Output Function
The output function of your prediction model relates the states and inputs at the current
control interval to the outputs. If the number of states and outputs of the prediction
model are the same, you can omit OutputFcn, which implies that all states are
measurable; that is, each output corresponds to one state.

10 Nonlinear MPC

10-8

Note OutputFcn cannot have direct feedthrough from any manipulated variable to any
output at any time; in other words, nonlinear MPC always assumes Dmv = 0.

You can specify your output function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Model.OutputFcn = "myOutputFunction";

• Handle to a function in the current working folder or on the MATLAB path

Model.OutputFcn = @myOutputFunction;

• Anonymous function

Model.OutputFcn = @(x,u,params) myOutputFunction(x,u,params)

Your output function must have one of the following signatures:

• If your controller does not use optional parameters:

function y = myOutputFunction(x,u)

• If your controller uses parameters. Here params is a comma-separated list of
parameters:

function y = myOutputFunction(x,u,params)

This table describes the inputs and outputs of this function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nu is the number of inputs, including all manipulated variables, measured
disturbances, and unmeasured disturbances, and is equal to the
Dimensions.NumberOfInputs of the controller

• NY is the number of outputs and is equal to the Dimensions.NumberOfOutputs
property of the controller

Argument Input/Output Description
x Input Current states, specified as a column vector of length Nx

u Input Current inputs, specified as a column vector of length Nu

 Specify Prediction Model for Nonlinear MPC

10-9

Argument Input/Output Description
params Input Optional parameters, specified as a comma-separated list

(for example p1,p2,p3). The same parameters are passed
to the prediction model, custom cost function, and custom
constraint functions of the controller.

If your model uses optional parameters, you must specify
the number of parameters using
Model.NumberOfParameters.

y Output Current outputs, returned as a column vector of length Ny

As an example of an output function, consider the model the following output equations.
Recall, that your output function cannot have direct feedthrough from any manipulated
variable to any output at any time.

y x

y x x

y x x

1 1

2 2 3

3 3 4

0 2

=

= +

= ◊

.

You can specify the output function as follows:

y = zeros(6,1);
y(1) = x(1);
y(2) = x(2)+0.2*x(3);
y(3) = x(3)*x(4);

Output Function Jacobians

To improve computational efficiency, it is best practice to specify an analytical Jacobian
for your output function. If you do not specify a Jacobian, the controller computes the
Jacobian using numerical perturbation. To specify a Jacobian for your output function, set
the Jacobian.OutputFcn property of the controller to one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Model.StateFcn = "myOutputJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myOutputJacobian;

10 Nonlinear MPC

10-10

• Anonymous function

Model.StateFcn = @(x,u,params) myOutputJacobian(x,u,params)

Your output Jacobian function must have one of the following signatures:

• If your controller does not use optional parameters:

function C = myOutputJacobian(x,u)
• If your controller uses parameters. Here params is a comma-separated list of

parameters:

function C = myOutputJacobian(x,u,params)

The input arguments of the output Jacobian function are the same as the inputs of the
output function. This table describes the output of the Jacobian function. Since the output
function cannot have direct feedthrough from any manipulated variable to any output, the
output Jacobian function returns only the gradients of the output function with respect to
the model states.

Argument Description
C Jacobian of the output function, returned as an Ny-by-Nx array, where

C y xi j i j,() = ∂ () ∂ ()

Consider again, the model with the following output equations:

y x

y x x

y x x

1 1

2 2 3

3 3 4

0 2

=

= +

= ◊

.

To find the Jacobians, compute the partial derivatives of the output equations with respect
to the states. Since the output function cannot have direct feedthrough from any
manipulated variable to any output at any time, you do not compute the Jacobian with
respect to the manipulated variables.

C = zeros(3,4);
C(1,1) = 1;
C(2,2) = 1;
C(2,3) = 0.2;
C(3,3) = x(4);
C(3,4) = x(3);

 Specify Prediction Model for Nonlinear MPC

10-11

Specify Optional Model Parameters
You can specify optional parameters for your nonlinear MPC prediction model, cost
function, and custom constraints. To do so, pass a comma-separated list of parameter
arguments to your custom functions (for example p1,p2,p3). These parameters must be
numerical values. Also, you must specify the number of model parameters using the
Model.NumberOfParameters property of the controller.

The same parameters are passed to the prediction model, custom cost function, custom
constraint functions, and their respective Jacobians. For example, even if the state
function uses only parameter p1, the constraint functions use only parameter p2, and the
cost function uses only parameter p3, you must still define three parameters. All of these
parameters are passed into all of these functions, and you must choose the correct
parameter to use in each function.

For an example that specifies the sample time of a discrete-time state function as a
parameter, see “Swing-up Control of a Pendulum Using Nonlinear Model Predictive
Control” on page 10-54.

Augment Prediction Model with Unmeasured Disturbances
You can augment your prediction model to include unmeasured disturbances. For
example, if your plant does not have an integrator and you want to reject a certain
unmeasured disturbance, augment your plan with a disturbance model. Doing so allows
the external state estimator to detect the disturbance and thus give the nonlinear MPC
controller enough information to reject it.

During simulation, the controller passes a zero to each unmeasured disturbance input
channel, since the signals are unmeasured and assumed to be zero-mean by default.

To augment your prediction model, you must designate one or more input signals as
unmeasured disturbances when creating a controller using nlmpc. For example, create a
controller where the first two inputs are manipulated variables and the third input is an
unmeasured disturbance (UD).

nlobj = nlmpc(nx,ny,'MV',[1 2],'UD',3);

Specify the unmeasured disturbance model in the state and output functions of your
prediction model. This unmeasured disturbance model can be any arbitrary model that
accurately captures the effect of the disturbance on your plant. For example:

10 Nonlinear MPC

10-12

• If you expect a step-like UD at a plant output, then specify the UD model as an
integrator in your state function, and add the integrator state to the plant output in
your output function.

• If you expect a ramp-like UD at a plant input, then specify the UD model as an
integrator and add the integrator output to the input signal in your state function.

Any states that you add when specifying the unmeasured disturbance model are included
in the prediction model state vector. The values in these unmeasured disturbance model
states reflect the disturbance behavior during simulation. This state vector corresponds to
the x input argument of your state function and the X input argument to your custom cost
and constraint functions.

For an example that augments the prediction model for random step-like output
disturbances, see “Nonlinear Model Predictive Control of an Exothermic Chemical
Reactor” on page 10-67.

See Also
nlmpc

More About
• “Nonlinear MPC” on page 10-2
• “Specify Cost Function for Nonlinear MPC” on page 10-14
• “Specify Constraints for Nonlinear MPC” on page 10-23

 See Also

10-13

Specify Cost Function for Nonlinear MPC
While traditional linear MPC controllers optimize control actions to minimize a quadratic
cost function, nonlinear MPC controllers support generic custom cost functions. For
example, you can specify your cost function as a combination of linear or nonlinear
functions of the system states and inputs. To improve computational efficiency, you can
also specify an analytical Jacobian for your custom cost function.

Using a custom cost function, you can, for example:

• Maximize profitability
• Minimize energy consumption

When you specify a custom cost function for your nonlinear MPC controller, you can
choose to either replace or augment the standard quadratic MPC cost function. By
default, an nlmpc controller replaces the standard cost function with your custom cost
function. In this case, the controller ignores the standard tuning weights in its Weights
property.

To use an objective function that is the sum of the standard costs and your custom costs,
set the Optimization.ReplaceStandardCost property of your nlmpc object to
false. In this case, the standard tuning weights specified in the Weights property of the
controller contribute to the cost function. However, you can eliminate any of the standard
cost function terms by setting the corresponding penalty weight to zero. For more
information on the standard MPC cost function, see “Standard Cost Function” on page 2-
9.

Before simulating your controller, it is best practice to validate your custom functions,
including the cost function and its Jacobian, using the validateFcns command.

Custom Cost Function
To configure your nonlinear MPC controller to use a custom cost function, set its
Optimization.CustomCostFcn property to one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Optimization.CustomCostFcn = "myCostFunction";
• Handle to a function in the current working folder or on the MATLAB path

10 Nonlinear MPC

10-14

Optimization.CustomCostFcn = @myCostFunction;
• Anonymous function

Optimization.CustomCostFcn = @(X,U,e,data,params) myCostFunction(X,U,e,data,params);

Your custom cost function must have one of the following signatures:

• If your controller does not use optional parameters:

function J = myCostFunction(X,U,e,data)
• If your controller uses parameters, where params is a comma-separated list of

parameters:

function J = myCostFunction(X,U,e,data,params)

This table describes the inputs and outputs of this function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nu is the number of inputs, including all manipulated variables, measured
disturbances, and unmeasured disturbances, and is equal to the
Dimensions.NumberOfInputs property of the controller

• p is the prediction horizon
• k is the current time

Argument Input/Output Description
X Input State trajectory from time k to time k+p, specified as a (p

+1)-by-Nx array. The first row of X contains the current
state values, which means that the solver does not use the
values in X(1,:) as decision variables during
optimization.

U Input Input trajectory from time k to time k+p, specified as a (p
+1)-by-Nu array. The final row of U is always a duplicate of
the preceding row; that is, U(end,:) = U(end-1,:).
Therefore, the values in the final row of U are not
independent decision variables during optimization.

 Specify Cost Function for Nonlinear MPC

10-15

Argument Input/Output Description
e Input Slack variable for constraint softening, specified as a

nonnegative scalar. e is zero if there are no soft constraints
in your controller.

If you have nonlinear soft constraints defined in your
inequality constraint function
(Model.CustomIneqConFcn), use a positive penalty
weight on e and make them part of the cost function.

10 Nonlinear MPC

10-16

Argument Input/Output Description
data Input Additional signals, specified as a structure with the

following fields:

Field Description
Ts Prediction model sample time, as

defined in the Ts property of the
controller

CurrentStates Current prediction model states, as
specified in the x input argument of
nlmpcmove

LastMV MV moves used in previous control
interval, as specified in the lastmv
input argument of nlmpcmove

References Reference values for plant outputs, as
specified in the ref input argument of
nlmpcmove

MVTarget Manipulated variable targets, as
specified in the MVTarget property of
an nlmpcmoveopt object

PredictionHor
izon

Prediction horizon, as defined in the
PredictionHorizon property of the
controller

NumOfStates Number of states, as defined in the
Dimensions.NumberOfStates
property of the controller

NumOfOutputs Number of outputs, as defined in the
Dimensions.NumberOfOutputs
property of the controller

NumOfInputs Number of inputs, as defined in the
Dimensions.NumberOfInputs
property of the controller

MVIndex Manipulated variables indices, as
defined in the Dimensions.MVIndex
property of the controller

 Specify Cost Function for Nonlinear MPC

10-17

Argument Input/Output Description
Field Description
MDIndex Measured disturbance indices, as

defined in the Dimensions.MDIndex
property of the controller

UDIndex Unmeasured disturbance indices, as
defined in the Dimensions.UDIndex
property of the controller

params Input Optional parameters, specified as a comma-separated list
(for example p1,p2,p3). The same parameters are passed
to the prediction model, custom cost function, and custom
constraint functions of the controller. For example, if the
state function uses only parameter p1, the constraint
functions use only parameter p2, and the cost function
uses only parameter p3, then all three parameters are
passed to all of these functions.

If your model uses optional parameters, you must specify
the number of parameters using the
Model.NumberOfParameters property of the controller.

J Output Computed cost, returned as a scalar

Your custom cost function must:

• Be a continuous, finite function of U, X, and e and have finite first derivatives
• Increase as the slack variable e increases or be independent of it.

To use output variable values in your cost function, you must first derive them from the
state and input arguments using the prediction model output function, as specified in the
Model.OutputFcn property of the controller. For example, to compute the output
trajectory Y from time k to time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end

For more information on the prediction model output function, see “Specify Prediction
Model for Nonlinear MPC” on page 10-4.

10 Nonlinear MPC

10-18

Typically, you optimize control actions to minimize the cost function across the prediction
horizon. Since the cost function value must be a scalar, you compute the cost function at
each prediction horizon step and add the results together. For example, suppose that the
stage cost function is:

J u x x= + +10 5
1

2

2

3

1

That is, you want to minimize the difference between the first output and its reference
value, and the product of the first manipulated variable and the second state. To compute
the total cost function across the prediction horizon, use:

p = data.PredictionHorizon;
U1 = U(1:p,data.MVIndex(1));
X1 = X(2:p+1,1);
X2 = X(2:p+1,2);
J = 10*sum(sum(U1.^2)) + 5*sum(sum(X2.^3) + sum(sum(X1));

In general, for cost functions, do not use the following values, since they are not part of
the decision variables used by the solver:

• U(end,:) — This row is a duplicate of the preceding row.
• X(1,:) — This row contains the current state values.

Since this example cost function is relatively simple, you can specify it using an
anonymous function handle.

For relatively simple costs, you can specify the cost function using an anonymous function
handle. For example, to specify an anonymous function that implements just the first term
of the preceding cost function, use:
Optimization.CustomCostFcn = @(X,U,data) 10*sum(sum((U(1:end-1,data.MVIndex(1)).^2));

Cost Function Jacobian
To improve computational efficiency, it is best practice to specify an analytical Jacobian
for your custom cost function. If you do not specify a Jacobian, the controller computes
the Jacobian using numerical perturbation. To specify a Jacobian for your cost function,
set the Jacobian.CustomCostFcn property of the controller to one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

 Specify Cost Function for Nonlinear MPC

10-19

Jacobian.CustomCostFcn = "myCostJacobian";

• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomCostFcn = @myCostJacobian;

• Anonymous function
Jacobian.CustomCostFcn = @(X,U,e,data,params) myCostJacobian(X,U,e,data,params)

Your cost Jacobian function must have one of the following signatures:

• If your controller does not use optional parameters:

function [G,Gmv,Ge] = myCostJacobian(X,U,e,data)

• If your controller uses parameters, where params is a comma-separated list of
parameters:

function [G,Gmv,Ge] = myCostJacobian(X,U,e,data,params)

The input arguments of the cost Jacobian function are the same as the inputs of the
custom cost function. This table describes the outputs of the Jacobian function, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nmv is the number of manipulated variables
• p is the prediction horizon

Argument Description
G Jacobian of the cost function with respect to the state trajectories,

returned as a p-by-Nx array, where G J Xi j i j, ,() = ∂ ∂ +()1 . Compute G
based on X from the second row to row p+1, ignoring the first row.

Gmv Jacobian of the cost function with respect to the manipulated variable
trajectories, returned as a p-by-Nmv array, where
Gmv J Ui j i MV j, / ,() = ∂ ∂ ()() and MV(j) is the jth MV index in
data.MVIndex.

Since the controller forces U(p+1,:) to equal U(p,:), if your cost
function uses U(p+1,:), you must include the impact of both U(p,:)
and U(p+1,:) in the Jacobian for U(p,:).

10 Nonlinear MPC

10-20

Argument Description
Ge Jacobian of the cost function with respect to the slack variable, e,

returned as a scalar, where Ge J e= ∂ ∂

To use output variable values and their Jacobians in your cost Jacobian function, you must
first derive them from the state and input arguments using the Jacobian of the prediction
model output function, as specified in the Jacobian.OutputFcn property of the
controller. For example, to compute the output variables Y and their Jacobians Yjacob
from time k to time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end
for i=1:p+1
 Yjacob(i,:) = myOutputJacobian(X(i,:)',U(i,:)',params)';
end

Since prediction model output functions do not support direct feedthrough from inputs to
outputs, the output function Jacobian contains partial derivatives with respect to only the
states in X. For more information on the output function Jacobian, see “Specify Prediction
Model for Nonlinear MPC” on page 10-4.

To find the Jacobians, compute the partial derivatives of the cost function with respect to
the state trajectories, manipulated variable trajectories, and slack variable. For example,
suppose that your cost function is as follows, where u1 is the first manipulated variable.

J u x x= + +10 5
1

2

2

3

1

To compute the Jacobian with respect to the state trajectories, use the following. Recall
that you compute G based on X from the second row to row p+1, ignoring the first row.

p = data.PredictionHorizon;
Nx = data.NumOfStates;
U1 = U(1:p,data.MVIndex(1));
X2 = X(2:p+1,2);

G = zeros(p,Nx);
G(1:p,1) = 1;
G(1:p,2) = 15*X2.^2;

To compute the Jacobian with respect to the manipulated variable trajectories, use:

 Specify Cost Function for Nonlinear MPC

10-21

Nmv = length(data.MVIndex);

Gmv = zeros(p,Nmv);
Gmv(1:p,1) = 20*U1;

In this case, the derivative with respect to the slack variable is Ge = 0.

See Also
nlmpc

More About
• “Nonlinear MPC” on page 10-2
• “Specify Prediction Model for Nonlinear MPC” on page 10-4
• “Specify Constraints for Nonlinear MPC” on page 10-23

10 Nonlinear MPC

10-22

Specify Constraints for Nonlinear MPC
When you create a nonlinear MPC controller using an nlmpc object, you can define any of
the following constraints:

• Standard linear constraints on states, outputs, manipulated variables, and
manipulated variable rates of change

• Custom equality constraints, specified as linear or nonlinear functions of the system
states, inputs, and outputs.

• Custom inequality constraints, specified as linear or nonlinear functions of the system
states, inputs, and outputs.

The controller optimizes its control moves to satisfy all of these constraints; that is, the
custom constraints supplement the standard linear constraints.

To improve computational efficiency, you can also specify analytical Jacobians for your
custom equality and inequality constraints.

By specifying custom equality or inequality constraints, you can, for example:

• Require the plant to reach a target state at the end of the prediction horizon
• Require cumulative resource consumption to stay within specified limits

Before simulating your controller, it is best practice to validate your custom functions,
including the constraint functions and their Jacobians, using the validateFcns
command.

Linear MPC controllers have properties for defining custom constraints on linear
combinations of inputs and outputs., as discussed in . These properties are not available
for nonlinear MPC controllers. instead, you implement such constraints within your
custom equality or inequality constraint functions.

Standard Linear Constraints
The following table shows the standard linear constraints supported by nonlinear MPC
controllers. For each of these constraints, you can specify a single bound that applies
across the entire prediction horizon, or you can vary each constraint over the prediction
horizon. For more information on setting controller linear constraint properties, see
nlmpc.

 Specify Constraints for Nonlinear MPC

10-23

To set this constraint Set this controller
property

For soft constraints

Lower bounds on state i States(i).Min > -Inf Not applicable. State
bounds are always hard.

Upper bounds on state i States(i).Max < Inf Not applicable. State
bounds are always hard.

Lower bounds on output
variable i

OutputVariables(i).Mi
n > -Inf

OutputVariables(i).Mi
nECR > 0

Default: 1 (soft)
Upper bounds on output
variable i

OutputVariables(i).Ma
x < Inf

OutputVariables(i).Ma
xECR > 0

Default: 1 (soft)
Lower bounds on
manipulated variable i

ManipulatedVariables(
i).Min > -Inf

ManipulatedVariables(
i).MinECR > 0

Default: 0 (hard)
Upper bounds on
manipulated variable i

ManipulatedVariables(
i).Max < Inf

ManipulatedVariables(
i).MaxECR > 0

Default: 0 (hard)
Lower bounds on
manipulated variable i rate
of change

ManipulatedVariables(
i).RateMin > -Inf

ManipulatedVariables(
i).RateMinECR > 0

Default: 0 (hard)
Lower bounds on
manipulated variable i rate
of change

ManipulatedVariables(
i).RateMax < Inf

ManipulatedVariables(
i).RateMaxECR > 0

Default: 0 (hard)

Custom Constraints
You can specify custom equality and inequality constraints for a nonlinear MPC controller.
To configure your nonlinear MPC controller to use custom equality or inequality
constraints, set its Optimization.CustomEqConFcn or

10 Nonlinear MPC

10-24

Optimization.CustomIneqConFcn respectively. To do so, specify the custom functions
as one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Optimization.CustomEqConFcn = "myEqConFunction";
Optimization.CustomIneqConFcn = "myIneqConFunction";

• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomEqConFcn = @myEqConFunction;
Optimization.CustomIneqConFcn = @myIneqConFunction;

• Anonymous function
Optimization.CustomEqConFcn = @(X,U,data,params) myEqConFunction(X,U,data,params);
Optimization.CustomIneqConFcn = @(X,U,e,data,params) myIneqConFunction(X,U,e,data,params);

Your constraint functions must have one of the following signatures:

• If your controller does not use optional parameters:

function ceq = myEqConFunction(X,U,data)
function cineq = myIneqConFunction(X,U,e,data)

• If your controller uses parameters, where params is a comma-separated list of
parameters:

function ceq = myEqConFunction(X,U,data,params)
function cineq = myIneqConFunction(X,U,e,data,params)

This table describes the inputs and outputs of these functions, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nu is the number of inputs, including all manipulated variables, measured
disturbances, and unmeasured disturbances, and is equal to the
Dimensions.NumberOfInputs property of the controller

• Nceq is the number of equality constraints
• Ncineq is the number of inequality constraints
• p is the prediction horizon
• k is the current time

 Specify Constraints for Nonlinear MPC

10-25

Argument Input/Output Description
X Input State trajectory from time k to time k+p, specified as a (p

+1)-by-Nx array. The first row of X contains the current
state values, which means that the solver does not use the
values in X(1,:) as decision variables during
optimization.

U Input Input trajectory from time k to time k+p, specified as a (p
+1)-by-Nu array. The final row of U is always a duplicate of
the preceding row; that is, U(end,:) = U(end-1,:).
Therefore, the values in the final row of U are not
independent decision variables during optimization.

e Input Slack variable for constraint softening, specified as a
positive scalar. Since all equality constraints are hard, this
input argument applies to only the inequality constraint
function.

10 Nonlinear MPC

10-26

Argument Input/Output Description
data Input Additional signals, specified as a structure with the

following fields:

Field Description
Ts Prediction model sample time, as

defined in the Ts property of the
controller

CurrentStates Current prediction model states, as
specified in the x input argument of
nlmpcmove

LastMV MV moves used in previous control, as
specified in the lastmv input
argument of nlmpcmove interval

References Reference values for plant outputs, as
specified in the ref input argument of
nlmpcmove

MVTarget Manipulated variable targets, as
specified in the MVTarget property of
an nlmpcmoveopt object

PredictionHor
izon

Prediction horizon, as defined in the
PredictionHorizon property of the
controller

NumOfStates Number of states, as defined in the
Dimensions.NumberOfStates
property of the controller

NumOfOutputs Number of outputs, as defined in the
Dimensions.NumberOfOutputs
property of the controller

NumOfInputs Number of inputs, as defined in the
Dimensions.NumberOfInputs
property of the controller

MVIndex Manipulated variables indices, as
defined in the Dimensions.MVIndex
property of the controller

 Specify Constraints for Nonlinear MPC

10-27

Argument Input/Output Description
Field Description
MDIndex Measured disturbance indices, as

defined in the Dimensions.MDIndex
property of the controller

UDIndex Unmeasured disturbance indices, as
defined in the Dimensions.UDIndex
property of the controller

params Input Optional parameters, specified as a comma-separated list
(for example p1,p2,p3). The same parameters are passed
to the prediction model, custom cost function, and custom
constraint functions of the controller. For example, if the
state function uses only parameter p1, the constraint
functions use only parameter p2, and the cost function
uses only parameter p3, then all three parameters are
passed to all of these functions.

If your model uses optional parameters, you must specify
the number of parameters using
Model.NumberOfParameters.

ceq Output Computed equality constraint values, returned as a column
vector of length Nceq. An equality constraint is satisfied
when the corresponding output is 0.

cineq Output Computed inequality constraint values, returned as a
column vector of length Ncineq. An inequality constraint is
satisfied when the corresponding output is less than or
equal to 0.

To use output variable values in your constraint functions, you must first derive them
from the state and input arguments using the prediction model output function, as
specified in the Model.OutputFcn property of the controller. For example, to compute
the output trajectory Y from time k to time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end

10 Nonlinear MPC

10-28

For more information on the prediction model output function, see “Specify Prediction
Model for Nonlinear MPC” on page 10-4.

In general:

• All equality constraints are hard.
• To define soft inequality constraints, use the slack variable input argument, e. For

more information on constraint softening in MPC, see “Constraint Softening” on page
1-8.

• Equality constraints should be continuous and have continuous first derivatives with
respect to the decision variables.

You can define custom constraints that apply across the entire prediction horizon. For
example, suppose that you want to satisfy the following inequality constraints across the
prediction horizon, where u1 is the first manipulated variable:

2 3 10 0

5 0

1
2

2

1
2

x x

u

- - £

- £

To define the constraint values across the prediction horizon, use:

p = data.PredictionHorizon;
U1 = U(1:p,data.MVIndex(1));
X1 = X(2:p+1,1);
X2 = X(2:p+1,2);

cineq = [2*X1.^2 - 3*X2 - 10;
 U1.^2 - 5];

Applying these two constraints across p prediction horizon steps produces a column
vector with 2*p inequality constraints. These inequality constraints are satisfied when the
corresponding element of cineq is less than or equal to zero.

Alternatively, you can define constraints that apply at specific prediction horizon steps.
For example, suppose that you want the states of a third-order plant to be:

x

x

x

1

2

3

5

3

0

=

= -

=

 Specify Constraints for Nonlinear MPC

10-29

To specify these state values as constraints on only the final prediction horizon step, use:

ceq = [X(p+1,1) - 5;
 X(p+1,2) + 3;
 X(p+1,3)];

These equality constraints are satisfied when the corresponding element of ceq is equal
to zero.

For relatively simple constraints, you can specify the constraint function using an
anonymous function handle. For example, to specify an anonymous function that
implements the equality constraints, use:
Optimization.CustomEqConFcn = @(X,U,data) [X(p+1,1) - 5; X(p+1,2) + 3; X(p+1,3)];

Custom Constraint Jacobians
To improve computational efficiency, it is best practice to specify analytical Jacobians for
your custom constraint functions. If you do not specify Jacobians, the controller computes
the Jacobians using numerical perturbation.

To specify a Jacobian for your equality or inequality constraint functions, set the
respective Jacobian.CustomEqConFcn or Jacobian.CustomIneqConFcn property of
the controller to one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Jacobian.CustomEqConFcn = "myEqConJacobian";
Jacobian.CustomIneqConFcn = "myIneqConJacobian";

• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomEqConFcn = @myEqConJacobian;
Jacobian.CustomIneqConFcn = @myIneqConJacobian;

• Anonymous function
Jacobian.CustomEqConFcn = @(X,U,data,params) myEqConJacobian(X,U,data,params);
Jacobian.CustomInqConFcn = @(X,U,e,data,params) myIneqConJacobian(X,U,e,data,params);

Your constraint Jacobian functions must have one of the following signatures:

• If your controller does not use optional parameters:

10 Nonlinear MPC

10-30

function [Geq,Gmv] = myEqConJacobian(X,U,data)
function [Geq,Gmv,Ge] = myIneqConJacobian(X,U,e,data)

• If your controller uses parameters, where params is a comma-separated list of
parameters:

function [Geq,Gmv] = myEqConJacobian(X,U,data,params)
function [Geq,Gmv,Ge] = myIneqConJacobian(X,U,e,data,params)

The input arguments of the constraint Jacobian functions are the same as the inputs of
their respective custom constraint functions. This table describes the outputs of the
Jacobian functions, where:

• Nx is the number of states and is equal to the Dimensions.NumberOfStates
property of the controller

• Nmv is the number of manipulated variables
• Nc is the number of constraints (either equality or inequality constraints, depending on

the constraint function)
• p is the prediction horizon

Argument Description
G Jacobian of the equality or inequality constraints with respect to the

state trajectories, returned as a p-by-Nx-by-Nc array, where
G c Xi j l l i j, , ,() = ∂ () ∂ +()1 . Compute G based on X from the second
row to row p+1, ignoring the first row.

Gmv Jacobian of the equality or inequality constraints with respect to the
manipulated variable trajectories, returned as a p-by-Nmv-by Nc array,

where Gmv c Ui j l l i MV j, , ,() = ∂ () ∂ ()() and MV(j) is the jth MV index
in data.MVIndex.

Since the controller forces U(p+1,:) to equal U(p,:), if your
constraints use U(p+1,:), you must include the impact of both
U(p,:) and U(p+1,:) in the Jacobian for U(p,:).

Ge Jacobian of the inequality constraints with respect to the slack
variable, e, returned as a row vector of length Nc, where
Ge c el l() = ∂ () ∂

 Specify Constraints for Nonlinear MPC

10-31

To use output variable Jacobians in your constraint Jacobian functions, you must first
derive them from the state and input arguments using the Jacobian of the prediction
model output function, as specified in the Jacobian.OutputFcn property of the
controller. For example, to compute the output variable Jacobians Yjacob from time k to
time k+p, use:

p = data.PredictionHorizon;
for i=1:p+1
 Y(i,:) = myOutputFunction(X(i,:)',U(i,:)',params)';
end
for i=1:p+1
 Yjacob(i,:) = myOutputJacobian(X(i,:)',U(i,:)',params)';
end

Since prediction model output functions do not support direct feedthrough from inputs to
outputs, the output function Jacobian contains partial derivatives with respect to only the
states in X. For more information on the output function Jacobian, see “Specify Prediction
Model for Nonlinear MPC” on page 10-4.

To find the Jacobians, compute the partial derivatives of the constraint functions with
respect to the state trajectories, manipulated variable trajectories, and slack variable. For
example, suppose that your constraint function is as follows, where u1 is the first
manipulated variable.

2 3 10 0

5 0

1
2

2

1
2

x x

u

- - £

- £

To compute the Jacobian with respect to the state trajectories, use:

Nx = data.NumOfStates;
Nc = 2*p;
G = zeros(p,Nx,Nc);
G(1:p,2,1:p) = diag(2*X1 - 3);

To compute the Jacobian with respect to the manipulated variable trajectories, use:

Nmv = length(data.MVIndex);
Gmv = zeros(p,Nmv,Nc);
Gmv(1:p,1,p+1:2*p) = diag(2*u(1:p,data.MVIndex(1)));

In this case, the derivative with respect to the slack variable is Ge = zeros(20,1).

10 Nonlinear MPC

10-32

See Also
nlmpc

More About
• “Nonlinear MPC” on page 10-2
• “Specify Prediction Model for Nonlinear MPC” on page 10-4
• “Specify Cost Function for Nonlinear MPC” on page 10-14

 See Also

10-33

Configure Optimization Solver for Nonlinear MPC
By default, nonlinear MPC controllers solve a nonlinear programming problem using the
fmincon function with the SQP algorithm, which requires Optimization Toolboxsoftware.
If you do not have Optimization Toolbox software, you can specify your own custom
nonlinear solver.

Solver Decision Variables
For nonlinear MPC controllers, at time tk, the nonlinear optimization problem uses the
following decision variables:

• Predicted state values from time tk+1 to tk+p. These values correspond to rows 2
through p+1 of the X input argument of your cost, and constraint functions, where p is
the prediction horizon.

• Predicted manipulated variables from time tk to tk+p-1. These values correspond to the
manipulated variable columns in rows 1 through p of the U input argument of your
cost, and constraint functions.

Therefore, the number of decision variables, NZ, is equal to p(Nx+Nmv) + 1, Nx is the
number of states, Nmv is the number of manipulated variables, and the +1 is for the global
slack variable.

Specify Initial Guesses
A properly configured standard linear MPC optimization problem has a unique solution.
However, nonlinear MPC optimization problems often allow multiple solutions (local
minima), and it can be difficult for the solver to find one. In such cases, it is important to
provide a good starting point near the global optimum.

During closed-loop simulations, it is best practice is to warm start your nonlinear solver
by using the predicted state and manipulated variable trajectories from the previous
control interval as the initial guesses for the current control interval. In Simulink, the
Nonlinear MPC Controller block is configured to use these trajectories as initial guesses
by default. To use these trajectories as initial guesses at the command line:

1 Return the opt output argument when calling nlmpcmove. This nlmpcmoveopt
object contains any run-time options you specified in the previous call to nlmpcmove
along with the initial guesses for the state (opt.X0) and manipulated variable
(opt.MV0) trajectories, and the global slack variable (opt.Slack0).

10 Nonlinear MPC

10-34

2 Pass this object in as the options input argument to nlmpcmove for the next control
interval.

These command-line simulation steps are the recommended best practice, even if you do
not specify any other run-time options.

Configure fmincon Options
By default, nonlinear MPC controllers optimize their control move using the fmincon
function from the Optimization Toolbox. When you first create your controller, the
Optimization.SolverOptions property of the nlmpc object contains the standard
fmincon options, with the following nondefault settings:

• Use the SQP algorithm (SolverOptions.Algorithm = 'sqp')
• Use objective function gradients (SolverOptions.SpecifyObjectiveGradient =

'true')
• Use constraint gradients (SolverOptions.SpecifyConstraintGradient =

'true')
• Do not display optimization messages to the command window

(SolverOptions.Display = 'none')

In general, these nondefault options typically improve the performance of the nonlinear
MPC controller.

You can modify the solver options for your application. For example, to specify the
maximum number of solver iterations for your application, set
SolverOptions.MaxIter. For more information on the available solver options, see
fmincon.

In general, you should not modify the SpecifyObjectiveGradient and
SpecifyConstraintGradient solver options, since doing so can significantly affect
controller performance. For example, the constraint gradient matrices are sparse, and
setting SpecifyConstraintGradient to false would cause the solver to calculate
gradients that are known to be zero.

Specify Custom Solver
If you do not have Optimization Toolbox software, you can specify your own custom
nonlinear solver. To do so, create a custom wrapper function that converts the interface of

 Configure Optimization Solver for Nonlinear MPC

10-35

your solver function to match the interface expected by the nonlinear MPC controller.
Your custom function must be a MATLAB script or MAT-file on the MATLAB path. For an
example that shows a template custom solver wrapper function, see “Optimizing
Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver” on page 10-75.

To configure your nlmpc object to use your custom solver wrapper function, set its
Optimization.CustomSolverFcn property in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as
a string or character vector

Optimization.CustomSolverFcn = "myNLPSolver";
• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomSolverFcn = @myNLPSolver;

Your custom solver wrapper function must have the signature:

function [zopt,cost,flag] = myNLPSolver(FUN,z0,A,B,Aeq,Beq,LB,UB,NLCON)

This table describes the inputs and outputs of this function, where:

• NZ is the number of decision variables
• Mcineq is the number of linear inequality constraints
• Mceq is the number of linear equality constraints
• Ncineq is the number of nonlinear inequality constraints
• Nceq is the number of nonlinear equality constraints

10 Nonlinear MPC

10-36

Argument Input/Output Description
FUN Input Nonlinear cost function to minimize, specified as a handle

to a function with the signature:

[F,G] = FUN(z)

and arguments:

• z — Decision variables, specified as a vector of length
NZ

• F — Cost, returned as a scalar
• G — Cost function gradients with respect to the decision

variables, returned as a column vector of length NZ,

where G i F z i() = ∂ ∂ ()

z0 Input Initial guesses for decision variable values, specified as a
vector of length NZ

A Input Linear inequality constraint array, specified as an Mcineq-by-
NZ array. Together, A and B define constraints of the form
A B◊ £z .

B Input Linear inequality constraint vector, specified as a column
vector of length Mcineq. Together, A and B define constraints
of the form A B◊ £z .

Aeq Input Linear equality constraint array, specified as an Mceq-by-NZ
array. Together, Aeq and Beq define constraints of the form
Aeq Beq◊ =z .

Beq Input Linear equality constraint vector, specified as a column
vector of length Mceq. Together, Aeq and Beq define

constraints of the form Aeq Beq◊ =z .
LB Input Lower bounds for decision variables, specified as a column

vector of length NZ, where LB i z i() £ ()

UB Input Upper bounds for decision variables, specified as a column

vector of length NZ, where z i i() £ ()UB

 Configure Optimization Solver for Nonlinear MPC

10-37

Argument Input/Output Description
NLCON Input Nonlinear constraint function, specified as a handle to a

function with the signature:

[cineq,c,Gineq,Geq] = NLCON(z)

and arguments:

• z — Decision variables, specified as a vector of length
NZ

• cineq — Nonlinear inequality constraint values,
returned as a column vector of length Ncineq

• ceq — Nonlinear equality constraint values, returned as
a column vector of length Nceq

• Gineq — Nonlinear inequality constraint gradients with
respect to the decision variables, returned as an NZ-by-

Ncineq array, where Gineq cineqi j j z i,() = ∂ () ∂ ()

• Geq — Nonlinear equality constraint gradients with
respect to the decision variables, returned as an NZ-by-

Nceq array, where Geq ceqi j j z i,() = ∂ () ∂ ()

zopt Output Optimal decision variable values, returned as a vector of
length NZ

cost Output Optimal cost, returned as a scalar
flag Output Exit flag, returned as one of the following:

• 1 — Optimization successful (first order optimization
conditions satisfied)

• 0 — Suboptimal solution (maximum number of
iterations reached)

• Negative value — Optimization failed

When you implement your custom solver function, it is best practice to have your solver
use the cost and constraint gradient information provided by the nonlinear MPC
controller

10 Nonlinear MPC

10-38

If you are unable to obtain a solution using your custom solver, try to identify a special
condition for which you know the solution, and start the solver at this condition. If the
solver diverges from this initial guess:

• Check the validity of the state and output functions in your prediction model
• If you are using a custom cost function, make sure it is correct
• If you are using the standard MPC cost function, verify the controller tuning weights
• Make sure that all constraints are feasible at the initial guess
• If you are providing custom Jacobian functions, validate your Jacobians using

validateFcns

See Also
fmincon | nlmpc

More About
• “Nonlinear MPC” on page 10-2
• “Specify Cost Function for Nonlinear MPC” on page 10-14
• “Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver” on

page 10-75

 See Also

10-39

Trajectory Optimization and Control of Flying Robot
Using Nonlinear MPC

This example shows how to find the optimal trajectory that brings a flying robot from one
location to another with minimum fuel cost using a nonlinear MPC controller. In addition,
another nonlinear MPC controller, along with an Extended Kalman filter, drives the robot
along the optimal trajectory in closed-loop simulation.

Flying Robot

The flying robot in this example has four thrusters to move it around in a 2-D space. The
model has six states:

• x(1) - x inertial coordinate of center of mass
• x(2) - y inertial coordinate of center of mass
• x(3) - theta, robot (thrust) direction
• x(4) - vx, velocity of x
• x(5) - vy, velocity of y
• x(6) - omega, angular velocity of theta

10 Nonlinear MPC

10-40

For more information on the flying robot, see [1]. The model in the paper uses two thrusts
ranging from -1 to 1 while in this example we assume that there are four physical thrusts
in the robot, ranging from 0 to 1, to achieve the same control freedom.

Trajectory Planning

The robot initially rests at [-10,-10] with an orientation angle of pi/2 radians (facing
north). The flying maneuver for this example is to move and park the robot at the final
location [0,0] with an angle of 0 radians (facing east) in 12 seconds. The goal is to find
the optimal path such that the total amount of fuel consumed by the thrusters during the
maneuver is minimized.

Nonlinear MPC is an ideal tool for trajectory planning problems because it solves an
open-loop constrained nonlinear optimization problem given the current plant states.
With the availability of a nonlinear dynamic model, MPC can make more accurate
decisions.

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

10-41

Create a nonlinear MPC object with 6 states, 6 outputs, and 4 inputs. By default, all the
inputs are manipulated variables (MVs).

nx = 6;
ny = 6;
nu = 4;
nlobj = nlmpc(nx,ny,nu);

Specify the prediction model state function using the function name. You can also specify
functions using a function handle. For details on the state function, open
FlyingRobotStateFcn.m. For more information on specifying the prediction model, see
“Specify Prediction Model for Nonlinear MPC” on page 10-4.

nlobj.Model.StateFcn = "FlyingRobotStateFcn";

Specify the Jacobian of the state function using a function handle. It is best practice to
provide an analytical Jacobian for the prediction model. Doing so significantly improves
simulation efficiency. For details on the Jacobian function, open
FlyingRobotStateJacobianFcn.m.

nlobj.Jacobian.StateFcn = @FlyingRobotStateJacobianFcn;

For this example, the target prediction time is 12 seconds. Therefore, specify a sample
time of 0.4 seconds and prediction horizon of 30 steps.

Ts = 0.4;
p = 30;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;

To perform trajectory planning instead of feedback control, use the maximum control
horizon, which provides the maximum number of decision variables for the optimization
problem. Since trajectory planning usually runs at a much slower sampling rate than a
feedback controller, the extra computation load introduced by a large control horizon can
be tolerated. Set the control horizon equal to the prediction horizon.

nlobj.ControlHorizon = p;

A trajectory planning problem usually involves a nonlinear cost function, which can be
used to find the shortest distance, the maximal profit, or as in this case, the minimal fuel
consumption. Because the thrust value is a direct indicator of fuel consumption, compute
the fuel cost as the sum of the thrust values used across the prediction horizon. Specify
this cost function using an anonymous function handle. For more information on
specifying cost functions, see “Specify Cost Function for Nonlinear MPC” on page 10-14.

10 Nonlinear MPC

10-42

nlobj.Optimization.CustomCostFcn = @(X,U,e,data) Ts*sum(sum(U(1:p,:)));

For this example, the custom cost function replaces the default cost function that is
typically used in feedback control.

nlobj.Optimization.ReplaceStandardCost = true;

The goal of the maneuver is to park the robot at [0,0] with an angle of 0 radians at the
12th second. Specify this goal as equality constraints on the states, where every position
and velocity state at the last prediction step should be zero. For more information on
specifying constraint functions, see “Specify Constraints for Nonlinear MPC” on page 10-
23.

nlobj.Optimization.CustomEqConFcn = @(X,U,data) X(end,:)';

It is best practice to provide analytical Jacobian functions for your custom cost and
constraint functions as well. However, for this example, we intentionally skip them so that
their Jacobian is computed by the nonlinear MPC controller using the built-in numerical
perturbation method.

Each thrust has an operating range between 0 and 1, which is translated into lower and
upper bounds on the MVs.

for ct = 1:nu
 nlobj.MV(ct).Min = 0;
 nlobj.MV(ct).Max = 1;
end

Specify the initial conditions for the robot.

x0 = [-10;-10;pi/2;0;0;0]; % robot parks at [-10, -10], facing north
u0 = zeros(nu,1); % thrust is zero

It is best practice to validate the user-provided model, cost, and constraint functions and
their Jacobians. To do so, use the validateFcns command.

validateFcns(nlobj,x0,u0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

10-43

The optimal state and MV trajectories can be found by calling the nlmpcmove command
once, given the current state x0 and last MV u0. The optimal cost and trajectories are
returned as part of the info output argument.

[~,~,info] = nlmpcmove(nlobj,x0,u0);

Plot the optimal trajectory. The optimal cost is 7.8.

FlyingRobotPlotPlanning(info);

Optimal fuel consumption = 7.797825

10 Nonlinear MPC

10-44

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

10-45

The first plot shows the optimal trajectory of the six robot states during the maneuver.
The second plot shows the corresponding optimal MV profiles for the four thrusts. The
third plot shows the X-Y position trajectory of the robot, moving from [-10 -10 pi/2]
to [0 0 0].

Feedback Control for Path Following

After the optimal trajectory is found, a feedback controller is required to move the robot
along the path. In theory, you can apply the optimal MV profile directly to the thrusters to
implement feed-forward control. However, in practice, a feedback controller is needed to
reject disturbances and compensate for modeling errors.

10 Nonlinear MPC

10-46

You can use different feedback control techniques for tracking. In this example, you use
another nonlinear MPC controller to move the robot to the final location. In this path
tracking problem, you track references for all six states.

nlobj_tracking = nlmpc(nx,ny,nu);

Use the same state function and its Jacobian function.

nlobj_tracking.Model.StateFcn = nlobj.Model.StateFcn;
nlobj_tracking.Jacobian.StateFcn = nlobj.Jacobian.StateFcn;

For feedback control applications, reduce the computational effort by specifying shorter
prediction and control horizons.

nlobj_tracking.Ts = Ts;
nlobj_tracking.PredictionHorizon = 10;
nlobj_tracking.ControlHorizon = 4;

The default cost function in nonlinear MPC is a standard quadratic cost function suitable
for reference tracking and disturbance rejection. For tracking, the states have higher
priority (larger penalty weights) than the MV moves.

nlobj_tracking.Weights.ManipulatedVariablesRate = 0.2*ones(1,nu);
nlobj_tracking.Weights.OutputVariables = 5*ones(1,nx);

Set the same bounds for the thruster inputs.

for ct = 1:nu
 nlobj_tracking.MV(ct).Min = 0;
 nlobj_tracking.MV(ct).Max = 1;
end

Also, to reduce fuel consumption, it is clear that u1 and u2 cannot be positive at any time
during the operation. Therefore, implement equality constraints such that u(1)*u(2)
must be 0 for all prediction steps. Apply similar constraints for u3 and u4.

nlobj_tracking.Optimization.CustomEqConFcn = ...
 @(X,U,data) [U(1:end-1,1).*U(1:end-1,2); U(1:end-1,3).*U(1:end-1,4)];

Validate the your prediction model and custom functions, and their Jacobians.

validateFcns(nlobj_tracking,x0,u0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

10-47

No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Nonlinear State Estimation

In this example, only the three position states (x, y and angle) are measured. The velocity
states are unmeasured and must be estimated. Use an extended Kalman filter (EKF) from
Control System Toolbox™ for nonlinear state estimation.

Because an EKF requires a discrete-time model, you use the trapezoidal rule to transition
from x(k) to x(k+1), which requires the solution of nx nonlinear algebraic equations. For
more information, open FlyingRobotStateFcnDiscreteTime.m.

DStateFcn = @(xk,uk,Ts) FlyingRobotStateFcnDiscreteTime(xk,uk,Ts);

Measurement can help the EKF correct its state estimation. Only the first three states are
measured.

DMeasFcn = @(xk) xk(1:3);

Create the EKF, and indicate that the measurements have little noise.

EKF = extendedKalmanFilter(DStateFcn,DMeasFcn,x0);
EKF.MeasurementNoise = 0.01;

Closed-Loop Simulation of Tracking Control

Simulate the system for 32 steps with correct initial conditions.

Tsteps = 32;
xHistory = x0';
uHistory = [];
lastMV = zeros(nu,1);

The reference signals are the optimal state trajectories computed at the planning stage.
When passing these trajectories to the nonlinear MPC controller, the current and future
trajectory is available for previewing.

Xopt = info.Xopt;
Xref = [Xopt(2:p+1,:);repmat(Xopt(end,:),Tsteps-p,1)];

Use nlmpcmove and nlmpcmoveopt command for closed-loop simulation.

hbar = waitbar(0,'Simulation Progress');
options = nlmpcmoveopt;

10 Nonlinear MPC

10-48

for k = 1:Tsteps
 % Obtain plant output measurements with sensor noise.
 yk = xHistory(k,1:3)' + randn*0.01;
 % Correct state estimation based on the measurements.
 xk = correct(EKF, yk);
 % Compute the control moves with reference previewing.
 [uk,options] = nlmpcmove(nlobj_tracking,xk,lastMV,Xref(k:min(k+9,Tsteps),:),[],options);
 % Predict the state for the next step.
 predict(EKF,uk,Ts);
 % Store the control move and update the last MV for the next step.
 uHistory(k,:) = uk';
 lastMV = uk;
 % Update the real plant states for the next step by solving the
 % continuous-time ODEs based on current states xk and input uk.
 ODEFUN = @(t,xk) FlyingRobotStateFcn(xk,uk);
 [TOUT,YOUT] = ode45(ODEFUN,[0 Ts], xHistory(k,:)');
 % Store the state values.
 xHistory(k+1,:) = YOUT(end,:);
 % Update the status bar.
 waitbar(k/Tsteps, hbar);
end
close(hbar)

Compare the planned and actual closed-loop trajectories.

FlyingRobotPlotTracking(info,Ts,p,Tsteps,xHistory,uHistory);

Actual fuel consumption = 10.784429

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

10-49

10 Nonlinear MPC

10-50

 Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC

10-51

The nonlinear MPC feedback controller successfully moves the robot (blue blocks),
following the optimal trajectory (yellow blocks), and parks it at the final location (red
block) in the last figure.

The actual fuel cost is higher than the planned cost. The main reason for this result is
that, since we used shorter prediction and control horizons in the feedback controller, the
control decision at each interval is suboptimal compared to the optimization problem used
in the planning stage.

10 Nonlinear MPC

10-52

References

[1] Y. Sakawa. "Trajectory planning of a free-flying robot by using the optimal control."
Optimal Control Applications and Methods, Vol. 20, 1999, pp. 235-248.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 10-2

 See Also

10-53

Swing-up Control of a Pendulum Using Nonlinear Model
Predictive Control

This example uses nonlinear model predictive controller object and block to achieve
swing-up and balancing control of an inverted pendulum on a cart.

Product Requirement

This example requires Optimization Toolbox™ software to provide the default nonlinear
programming solver for nonlinear MPC to compute optimal control moves at each control
interval.

if ~mpcchecktoolboxinstalled('optim')
 disp('Optimization Toolbox is required to run this example.')
 return
end

Pendulum/Cart Assembly

The plant for this example is a pendulum/cart assembly, where z is the cart position and
theta is the pendulum angle. The manipulated variable for this system is a variable force
F acting on the cart. The range of the force is between -100 and 100. An impulsive
disturbance dF can happen to push the pendulum as well.

10 Nonlinear MPC

10-54

Control Objectives

Assume the following initial conditions for the pendulum/cart assembly:

• The cart is stationary at z = 0.
• The pendulum is in a downward equilibrium position where theta = -pi.

The control objectives are:

• Swing-up control - Initially swing the pendulum up to an inverted equilibrium position
where z = 0 and theta = 0.

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

10-55

• Cart position reference tracking - Move the cart to a new position with a step setpoint
change, keeping the pendulum inverted.

• Pendulum balancing - When an impulse disturbance of magnitude of 2 is applied to the
inverted pendulum, keep the pendulum balanced and return the cart to its original
position.

The downward equilibrium position is stable and the inverted equilibrium position is
unstable, which makes the swing-up control more challenging for a single linear
controller, which is the main reason that nonlinear MPC is used in this example.

Control Structure

In this example, nonlinear MPC has the following I/O configuration:

• One manipulated variable - variable force (F).
• Two measured outputs - cart position (z) and pendulum angle (theta).

Two other states, cart velocity (zdot) and pendulum angular velocity (thetadot) are not
measurable.

While the setpoint of the cart position, z, can vary, the setpoint of the pendulum angle,
theta, is always 0 (inverted equilibrium position).

Create Nonlinear MPC Controller

First, create a nonlinear MPC controller with the proper dimensions using an nlmpc
object. In this example, the prediction model has 4 states, 2 outputs and 1 input (MV).

nx = 4;
ny = 2;
nu = 1;
nlobj = nlmpc(nx, ny, nu);

The prediction model has sample time of 0.1 seconds, which is the same as the controller
sample time.

Ts = 0.1;
nlobj.Ts = Ts;

Set the prediction horizon to 10, which is long enough to capture major dynamics in the
plant but not so long that it hurts computational efficiency.

nlobj.PredictionHorizon = 10;

10 Nonlinear MPC

10-56

Set the control horizon to 5, which is long enough to give the controller enough degrees
of freedom to handle the unstable mode without introducing excessive decision variables.

nlobj.ControlHorizon = 5;

Specify Nonlinear Plant Model

The major benefit of nonlinear model predictive control is that it uses a nonlinear dynamic
model to predict plant behavior in the future across a wide range of operating conditions.

This nonlinear model is usually a first principle model consisting of a set of differential
and algebraic equations (DAEs). In this example, a discrete-time cart and pendulum
system is defined in the pendulumDT0 function. It integrates continuous-time model,
pendulumCT0, between control intervals using a multistep forward Euler method. The
same function is used by the nonlinear state estimator as well.

nlobj.Model.StateFcn = "pendulumDT0";

To use a discrete-time model, set the Model.IsContinuousTime property of the
controller to false.

nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Using
this parameter means that, if you change the prediction sample time during the design,
you do not have to modify the pendulumDT0 file.

nlobj.Model.NumberOfParameters = 1;

The two plant outputs are the first and third state in the model, the cart position and
pendulum angle, respectively. Specify the corresponding output function using an
anonymous function.

nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)];

It is best practice to provide analytical Jacobian functions whenever possible, since they
significantly improve the simulation speed. In this example, provide a Jacobian for the
output function.

nlobj.Jacobian.OutputFcn = @(x,u,Ts) [1 0 0 0; 0 0 1 0];

Since you do not provide Jacobian for the state function, the nonlinear MPC controller
estimates the state function Jacobian during optimization using numerical perturbation.
Doing so slows down simulation to some degree.

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

10-57

Define Cost and Constraints

Like linear MPC, nonlinear MPC solves a constrained optimization problem at each
control interval. However, since the plant model is nonlinear, nonlinear MPC converts the
optimal control problem into a nonlinear optimization problem with a nonlinear cost
function and nonlinear constraints.

The cost function used in this example is the same standard cost function used by linear
MPC, where output reference tracking and manipulated variable move suppression are
enforced. Therefore, specify standard MPC tuning weights.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;

The cart position is limited to the range -10 to 10.

nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;

The force has a range between -100 and 100.

nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Validating Nonlinear MPC

After designing nonlinear MPC controller object, it is best practice to check all the
functions you specified for the prediction model, custom cost, and custom constraints, as
well as their Jacobians, using the validateFcns command. This command detects any
dimensional and numerical inconsistencies in these functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj, x0, u0, [], {Ts});

Model.StateFcn is OK.
Model.OutputFcn is OK.
Jacobian.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

State Estimation

In this example, only two plant states (cart position and pendulum angle) are measurable.
Therefore, you estimate the four plant states using an extended Kalman filter. Its state

10 Nonlinear MPC

10-58

transition function is defined in pendulumStateFcn.m and its measurement function is
defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn, @pendulumMeasurementFcn);

Closed-Loop Simulation in MATLAB®

Specify the initial conditions for simulations by setting the initial plant state and output
values. Also, specify the initial state of the extended Kalman filter.

The initial conditions of the simulation are:

• The cart is stationary at z = 0.
• The pendulum is in a downward equilibrium position, theta = -pi.

x = [0;0;-pi;0];
y = [x(1);x(3)];
EKF.State = x;

mv is the optimal control move computed at any control interval. Initialize mv to zero,
since the force applied to the cart is zero at the beginning.

mv = 0;

In the first stage of the simulation, the pendulum swings up from a downward equilibrium
position to an inverted equilibrium position. The state references for this stage are all
zero.

yref1 = [0 0];

At a time of 10 seconds, the cart moves from position 0 to 5. Set the state references for
this position.

yref2 = [5 0];

Using the nlmpcmove command, compute optimal control moves at each control interval.
This function constructs a nonlinear programming problem and solves it using the
fmincon function from the Optimization Toolbox.

Specify the prediction model parameter using an nlmpcmoveopt object, and pass this
object to nlmpcmove.

nloptions = nlmpcmoveopt;
nloptions.Parameters = {Ts};

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

10-59

Run the simulation for 20 seconds.

Duration = 20;
hbar = waitbar(0,'Simulation Progress');
xHistory = x;
for ct = 1:(20/Ts)
 % Set references
 if ct*Ts<10
 yref = yref1;
 else
 yref = yref2;
 end
 % Correct previous prediction using current measurement
 xk = correct(EKF, y);
 % Compute optimal control moves
 [mv,nloptions,info] = nlmpcmove(nlobj,xk,mv,yref,[],nloptions);
 % Predict prediction model states for the next iteration
 predict(EKF, [mv; Ts]);
 % Implement first optimal control move and update plant states.
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data with some white noise
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states for display.
 xHistory = [xHistory x]; %#ok<*AGROW>
 waitbar(ct*Ts/20,hbar);
end
close(hbar);

Plot the closed-loop response.

figure
subplot(2,2,1)
plot(0:Ts:Duration,xHistory(1,:))
xlabel('time')
ylabel('z')
title('cart position')
subplot(2,2,2)
plot(0:Ts:Duration,xHistory(2,:))
xlabel('time')
ylabel('zdot')
title('cart velocity')
subplot(2,2,3)
plot(0:Ts:Duration,xHistory(3,:))
xlabel('time')
ylabel('theta')

10 Nonlinear MPC

10-60

title('pendulum angle')
subplot(2,2,4)
plot(0:Ts:Duration,xHistory(4,:))
xlabel('time')
ylabel('thetadot')
title('pendulum velocity')

The pendulum angle plot shows that the pendulum successfully swings up in two
seconds. During the swing-up process, the cart is displaced with a peak deviation of -1,
and returned to its original position around a time of 2 seconds.

The cart position plot shows that the cart successfully moves to z = 5 in two seconds.
While the cart moves, the pendulum is displaced with a peak deviation of 1 radian (57
degrees), and returned to an inverted equilibrium position around a time of 12 seconds.

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

10-61

Closed-Loop Simulation in Simulink

This example also requires Simulink® software to simulate nonlinear MPC control of a
pendulum model in Simulink.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(TR) is required to run this example.')
 return
end

Validate the nonlinear MPC controller with a closed-loop simulation in Simulink.

Open the Simulink model.

mdl = 'mpc_pendcartNMPC';
open_system(mdl)

In this model, the Nonlinear MPC Controller block is configured to use the previously
designed controller, nlobj.

10 Nonlinear MPC

10-62

To use optional parameters in the prediction model, the model has a Simulink Bus block
connected to the params input port of the Nonlinear MPC Controller block. To configure
this bus block to use the Ts parameter, create a Bus object in the MATLAB® workspace
and configure the Bus Creator block to use this object. To do so, use the
createParameterBus function. In this example, name the Bus object 'myBusObject'.

createParameterBus(nlobj,[mdl '/Nonlinear MPC Controller'],'myBusObject',{Ts});

Run the simulation for 30 seconds.

open_system([mdl '/Scope'])
sim(mdl)

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

10-63

10 Nonlinear MPC

10-64

The nonlinear simulation in Simulink produces identical swing-up and cart position
tracking results compared to the MATLAB simulation. Also, a push (impulse disturbance
dF) is applied to the inverted pendulum at a time of 20 seconds. The nonlinear MPC
controller successfully rejects the disturbance and returns the cart to z = 5 and the
pendulum to an inverted equilibrium position.

Both the nlmpc object and Nonlinear MPC Controller block do not support code
generation.

Conclusion

This example illustrates a general workflow to design and simulate nonlinear MPC in
MATLAB and Simulink using an nlmpc object and Nonlinear MPC Controller block
respectively. Depending on the specific nonlinear plant characteristics and control

 Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control

10-65

requirements, the implementation details can vary significantly. The key design
challenges include:

• Choosing proper horizons, bounds and weights
• Designing a nonlinear state estimator
• Designing custom nonlinear cost function and constraint function
• Selecting solver options or choosing a custom NLP solver

You can use the functions and Simulink model in this example as templates for other
nonlinear MPC design and simulation tasks.

bdclose(mdl)

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 10-2

10 Nonlinear MPC

10-66

Nonlinear Model Predictive Control of an Exothermic
Chemical Reactor

This example shows how to use a nonlinear MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from a low conversion rate to a
high conversion rate.

About the Continuous Stirred Tank Reactor

A continuous stirred tank reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

This system is a jacketed nonadiabatic tank reactor described extensively in [1]. The
vessel is assumed to be perfectly mixed, and a single first-order exothermic and
irreversible reaction, A --> B, takes place. The inlet stream of reagent A is fed to the tank
at a constant volumetric rate. The product stream exits continuously at the same

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

10-67

volumetric rate, and liquid density is constant. Thus the volume of reacting liquid in the
reactor is constant.

The inputs of the CSTR model are:

The outputs (y(t)), which are also the states of the model (x(t)), are:

The control objective is to maintain the concentration of reagent A in the exit stream, ,
at its desired setpoint, which changes when the reactor transitions from a low conversion
rate to a high conversion rate. The coolant temperature is the manipulated variable
used by the controller to track the reference. The concentration of A in the feed stream
and the feed stream temperature are measured disturbances.

Simulink Model

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Open Simulink model.

mdl = 'mpc_cstr_nonlinear';
open_system(mdl)

10 Nonlinear MPC

10-68

Nonlinear Prediction Model

Nonlinear MPC requires a prediction model that describes the nonlinear behavior of your
plant to your best knowledge. To challenge the controller, this example intentionally
introduces modeling errors such that, as the temperature increases, the reaction rate of
the prediction model exceeds that of the true plant. For details of the prediction model
state function, see exocstrStateFcnCT.m.

In addition, to reject a random step-like unmeasured disturbance occurring in the
concentration in the exit stream, the plant model is augmented with an integrator whose
input is assumed to be zero-mean white noise. After augmentation, the prediction model
has four states (T, CA and Dist) and four inputs (CA_i, T_i, T_c, WN).

Since you are only interested in controlling the concentration leaving the reactor, the
output function returns a scalar value, which is the second state (CA) plus the third state
(Dist). For details of the prediction model output function, see exocstrOutputFcn.m.

Nonlinear MPC

The control objective is to move the plant from the initial operating point with a low
conversion rate (CA = 8.5698 kgmol/m^3) to the final operating point with a high

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

10-69

conversion rate (CA = 2 kgmol/m^3). At the final steady state, the plant is open-loop
unstable because cooling is no longer self-regulating. Therefore, the reactor temperature
tends to run away from the operating point.

Create a nonlinear MPC controller object in MATLAB®. As mentioned previously, the
prediction model has three states, one output, and four inputs. Among the inputs, the first
two inputs (feed composition and feed temperature) are measured disturbances, the third
input (coolant temperature) is the manipulated variable. The fourth input is the white
noise going to the augmented integrator that represents an unmeasured output
disturbance.

nlobj = nlmpc(3, 1,'MV',3,'MD',[1 2],'UD',4);

The prediction model sample time is the same as the controller sample time.

Ts = 0.5;
nlobj.Ts = Ts;

To reduce computational effort, use a short prediction horizon of 3 seconds (6 steps).
Also, to increase robustness, use block moves in the control horizon.

nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = [2 2 2];

Since the magnitude of the MV is of order 300 and that of the OV is order 1, scale the MV
to make them compatible such that default tuning weights can be used.

nlobj.MV(1).ScaleFactor = 300;

Constrain the coolant temperature adjustment rate, which can only increase or decrease
5 degrees between two successive intervals.

nlobj.MV(1).RateMin = -5;
nlobj.MV(1).RateMax = 5;

It is good practice to scale the state to be of unit order. Doing so has no effect on the
control strategy, but it can improve numerical behavior.

nlobj.States(1).ScaleFactor = 300;
nlobj.States(2).ScaleFactor = 10;

Specify the nonlinear state and output functions.

nlobj.Model.StateFcn = 'exocstrStateFcnCT';
nlobj.Model.OutputFcn = 'exocstrOutputFcn';

10 Nonlinear MPC

10-70

It is best practice to test your prediction model and any other custom functions before
using them in a simulation. To do so, use the validateFcns command. In this case, use
the initial operating point as the nominal condition for testing, setting the unmeasured
disturbance state to 0.

x0 = [311.2639; 8.5698; 0];
u0 = [10; 298.15; 298.15];
validateFcns(nlobj,x0,u0(3),u0(1:2)');

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Nonlinear State Estimation

The nonlinear MPC controller needs an estimate of three states (including the
unmeasured disturbance state) at every sample time. To provide this estimate, use an
Extended Kalman Filter (EKF) block. This block uses the same model as the nonlinear
MPC controller except that the model is discrete-time. For details, see
exocstrStateFcnDT.m.

EKF measures the current concentration and uses it to correct the prediction from the
previous interval. In this example, assume that the measurements are relatively accurate
and use small covariance in the Extended Kalman Filter block.

Closed-Loop Simulation

In the simulation, ramp up the target concentration rather than making an abrupt step
change. You can use a much faster ramp rate because the nonlinear prediction model is
used.

During the operating point transition, step changes in the two measured disturbance
channels occur at 10 and 20 seconds, respectively. At time 40, an unmeasured output
disturbance (a step change in the concentration of the reactor exit) occurs as well.

open_system([mdl, '/Concentration (OV)'])
open_system([mdl, '/Coolant Temp (MV)'])
sim(mdl)

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

10-71

10 Nonlinear MPC

10-72

The concentration in the exit stream tracks its reference accurately and converges to the
desired final value. Also, the controller rejects both measured disturbances and the
unmeasured disturbance.

The initial controller moves are limited by the maximum rate-of-change in the coolant
temperature. This could be improved by providing the controller MPC with a look-ahead
reference signal, which informs the controller of the expected reference variation over
the prediction horizon.

 Nonlinear Model Predictive Control of an Exothermic Chemical Reactor

10-73

References

[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp. Process Dynamics and Control, 2nd
Edition, Wiley, 2004, pp. 34-36 and 94-95.

bdclose(mdl)

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 10-2

10 Nonlinear MPC

10-74

Optimizing Tuberculosis Treatment Using Nonlinear MPC
with a Custom Solver

This example shows how to find the optimal policy to treat a population with two-strain
tuberculosis (TB) by constructing a nonlinear MPC problem. The nonlinear MPC
controller then uses both the default solver and a custom solver to calculate the optimal
solution.

Two-Strain Tuberculosis Model

A two-strain tuberculosis model is introduced in [1]. The model is described as follows in
the paper:

"In the absence of an effective vaccine, current control programs for TB have focused on
chemotherapy. The antibiotic treatment for an active TB (with drug-sensitive strain)
patient requires a much longer period of time and a higher cost than that for those who
are infected with sensitive TB but have not developed the disease. Lack of compliance
with drug treatments not only may lead to a relapse but to the development of antibiotic
resistant TB - one of the most serious public health problems facing society today. The
reduction in cases of drug sensitive TB can be achieved either by "case holding", which
refers to activities and techniques used to ensure regularity of drug intake for a duration
adequate to achieve a cure, or by "case finding", which refers to the identification
(through screening, for example) of individuals latently infected with sensitive TB who are
at high risk of developing the disease and who may benefit from preventive intervention
Description of first code block. These preventive treatments will reduce the incidence
(new cases per unit of time) of drug sensitive TB and hence indirectly reduce the
incidence of drug resistant TB."

In the dynamic model used in this example, the total host population N (which is a
constant) is divided into six distinct epidemiological classes. Five of these classes are
defined as state variables:

• x(1) = S, number of susceptible individuals
• x(2) = T, number of effectively treated individuals
• x(3) = L2, latent, infected with resistant TB but not infectious
• x(4) = I1, infectious with typical TB
• x(5) = I2, infectious with resistant TB

The sixth class, L1 (latent, infected with typical TB but not infectious) is calculated as N -
(S+T+L2+I1+I2).

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

10-75

You can reduce resistant TB cases using two manipulated variables (MVs):

• u(1) - "case finding", relatively inexpensive effort expended to identify those needing
treatment.

• u(2) - "case holding", relatively costly effort to maintain effective treatment.

For more information on the dynamic model, see ResistantTBStateFcn.m.

Nonlinear Control Problem

The goal of TB treatment is to reduce the latent (L2) and infectious (I2) individuals with
resistant TB during a five-year period while keeping the cost low. To achieve this goal, use
a cost function that sums the following value over five years.

F = L2 + I2 + 0.5*B1*u1^2 + 0.5*B2*u2^2

Here, weight B1 is 50, and weight B2 is 500. These weights emphasize a preference for
case finding over case holding due to its cost impact.

The total population is N = 30000. At the initial condition:

S = 19000 T = 250 L2 = 500 I1 = 1000 I2 = 250

which leaves L1 = 9000.

N = 30000;
x0 = [76; 1; 2; 4; 1]*N/120;

In this example, find the optimal control policy using a nonlinear MPC controller. Create
the nlmpc object with correct numbers of states, outputs, and inputs.

nx = 5;
ny = nx;
nu = 2;
nlobj = nlmpc(nx,ny,nu);

Assume that the treatment policy can only be adjusted every three months. Therefore, set
the controller sample time to 0.25 years. Since you want to find the optimal policy over
five years, set the prediction horizon to 20 steps (5 years divided by 0.25).

Years = 5;
Ts = 0.25;
p = Years/Ts;

10 Nonlinear MPC

10-76

nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;

For this planning problem, you want to use the maximum number of decision variables. To
do so, set the control horizon equal to the prediction horizon.

nlobj.ControlHorizon = p;

The prediction model is defined in ResistantTBStateFcn.m. Specify this function as
the controller state function.

nlobj.Model.StateFcn = 'ResistantTBStateFcn';

It is best practice to specify analytical Jacobian functions for prediction model and cost/
constraint functions. For details on the Jacobian calculation for the state equations, see
ResistantTBStateJacFcn.m. Set this file as the state Jacobian function.

nlobj.Jacobian.StateFcn = 'ResistantTBStateJacFcn';

Since all the states are numbers of individuals, they must be nonnegative values. Specify
a minimum bound of 0 for all states.

for ct = 1:nx
 nlobj.States(ct).Min = 0;
end

Since there is a large population variation among the groups (states), scale the state
variables using their respective nominal values. Doing so improves the numerical
robustness of the optimization problem.

for ct = 1:nx
 nlobj.States(ct).ScaleFactor = x0(ct);
end

Both "finding" and "holding" controls have an operating range between 0.05 and 0.95.
Set these values as the lower and upper bounds for the MVs.

nlobj.MV(1).Min = 0.05;
nlobj.MV(1).Max = 0.95;
nlobj.MV(2).Min = 0.05;
nlobj.MV(2).Max = 0.95;

The cost function, which minimizes the TB population and the treatment cost, is defined
in ResistantTBCostFcn.m. Since this planning problem does not require reference
tracking or disturbance rejection, replace the standard cost using this cost function.

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

10-77

nlobj.Optimization.CustomCostFcn = "ResistantTBCostFcn";
nlobj.Optimization.ReplaceStandardCost = true;

Also, to speed up simulation, the analytical Jacobian of the cost is provided in
ResistantTBCostJacFcn.

nlobj.Jacobian.CustomCostFcn = "ResistantTBCostJacFcn";

Since the L1 population is defined as N minus the sum of all states, you must ensure that
(S+T+L2+I1+I2) - N < 0 is always satisfied. In the nlmpc object, specify this
condition as an inequality constraint using an anonymous function.

nlobj.Optimization.CustomIneqConFcn = @(X,U,e,data) sum(X(2:end,:),2)-30000;

To check for potential numerical issues, validate your prediction model, custom functions,
and Jacobians using the validateFcns command.

validateFcns(nlobj,x0,[0.5;0.5])

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Jacobian.CustomCostFcn is OK.
Optimization.CustomIneqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

To compute the optimal control policy, use the nlmpcmove function. At the initial
condition, the MVs are zero. By default, fmincon from the Optimization Toolbox™ is used
as the default NLP solver.

lastMV = zeros(nu,1);
[~,~,Info] = nlmpcmove(nlobj,x0,lastMV);

Plot and examine the optimal solution.

ResistantTBPlot(Info,Ts)

Optimal cost = 5194.8
Final L2 = 175.9
Final I2 = 862.9

10 Nonlinear MPC

10-78

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

10-79

The optimal solution yields a cost of 5195, and the total number of individuals infected
with resistant TB at the final time is L2 + I2 = 1037.

Find Optimal Treatment Using Custom Nonlinear Programming Solver

If you want to use a third-party NLP solver in the simulation, write an interface file that
converts the inputs defined by nlmpc into the inputs defined by your NLP solver, and
specify it as the CustomSolverFcn in the nlmpc object.

In this example, assume that you have an "XYZ" solver that has a different user interface
than fmincon. A ResistantTBSolver.m file is created to convert the optimization
problem defined by nlmpc object to the proper interface required by the "XYZ" solver.
Review the ResistantTBSolver.m.

10 Nonlinear MPC

10-80

function [zopt,cost,exitflag] = ResistantTBSolver(FUN,z0,A,b,Aeq,beq,lb,ub,NONLINCON)
% This is an interface function that calls a XYZ nonlinear programming
% solver to solve an NLP problem defined by an nlmpc controller. The
% input and output definitions of this function are identical to fmincon.
%
% This interface function converts fmincon inputs to the format required
% by the XYZ solver and converts the results back to the fmincon outputs.
%
% Inputs
% FUN: nonlinear cost. FUN accepts input z (decision variabls) and
% returns cost f (a scalar value evaluated at z) and its
% gradient g (a nz-by-1 vector evaluated at z).
% z0: initial guess of z
% A,b: A*z<=b
% Aeq,beq: Aeq*z==beq
% lb,ub: lower and upper bounds of z
% NONLINCON: nonlinear constraints. NONLINCON accepts input z and returns
% the vectors C and Ceq as the first two outputs, representing
% the nonlinear inequalities and equalities respectively where
% FUN is minimized subject to C(z) <= 0 and Ceq(z) = 0.
% NONLINCON also returns Jacobian matrices of C (a nz-by-ncin
% sparse matrix) and Ceq (a nz-by-nceq sparse matrix).
%
% Outputs
% zopt: optimal solution of z
% cost: optimal cost at optimal z
% exitflag:
% 1 First order optimality conditions satisfied.
% 0 Too many function evaluations or iterations.
% -1 Stopped by output/plot function.
% -2 No feasible point found.
%
% You can use this example as a template to implement an interface file to
% your own NLP solver. The solver must be an M file or a MEX file on the
% MATLAB path.
%
% DO NOT EDIT LINES ABOVE.
%
% Copyright 2018 The MathWorks, Inc.

%% Set dimensional information of linear and nonlinear constraints
num_lin_ineq = size(A,1);
num_lin_eq = size(Aeq,1);

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

10-81

[in,eq] = NONLINCON(z0);
num_non_ineq = length(in);
num_non_eq = length(eq);
total = num_non_ineq + num_non_eq + num_lin_ineq + num_lin_eq;
logicals_nlineq = false(total,1);
logicals_nlineq(1:num_non_ineq) = true;
logicals_nleq = false(total,1);
logicals_nleq(num_non_ineq+(1:num_non_eq)) = true;
logicals_ineq = false(total,1);
logicals_ineq(num_non_ineq+num_non_eq+(1:num_lin_ineq)) = true;
logicals_eq = false(total,1);
logicals_eq(num_non_ineq+num_non_eq+num_lin_ineq+(1:num_lin_eq)) = true;
options = struct('nlineq',logicals_nlineq,'nleq',logicals_nleq,...
 'ineq',logicals_ineq,'eq',logicals_eq);
%% Set decision variable bounds
options.lb = lb;
options.ub = ub;
%% Set RHS of nonlinear constraints
options.cl = [-inf(num_non_ineq,1);zeros(num_non_eq,1)];
options.cu = [zeros(num_non_ineq,1);zeros(num_non_eq,1)];
%% Set RHS of linear constraints
options.rl = [-inf(num_lin_ineq,1);beq];
options.ru = [b;beq];
%% Set A matrix
options.A = sparse([A; Aeq]);
%% Set XYZ solver optons
options.algorithm = struct('print_level',0,'max_iter',200,...
 'max_cpu_time',1000,'tol',1.0000e-06,...
 'hessian_approximation','limited-memory');
%% Set function handles used by XYZ solver
Jstr = sparse(ones(num_non_ineq+num_non_eq,length(z0)));
funcs = struct('objective',@(x) fval(FUN,x),...
 'gradient',@(x) gval(FUN,x),...
 'constraints',@(x) conval(NONLINCON,x),...
 'jacobian',@(x) jacval(NONLINCON,x),...
 'jacobianstructure',@() Jstr...
);
%% Call XYZ and return cost and status
[zopt,output] = XYZsolver(z0,funcs,options);
cost = FUN(zopt);
exitflag = convertStatustoExitflag(output.status);

%% Utility functions
function f = fval(fun,z)

10 Nonlinear MPC

10-82

% Return nonlinear cost
[f,~] = fun(z);

function g = gval(fun,z)
% Return cost gradient
[~,g] = fun(z);

function c = conval(nonlcon,z)
% Return nonlinear constraints
[in,eq] = nonlcon(z);
c = [in;eq];

function J = jacval(nonlcon,z)
% Return constraints Jacobian as nc-by-nz in sparse matrix
% Jin is nz-by-ncin sparse, Jeq is nz-by-nceq sparse
[~,~,Jin,Jeq] = nonlcon(z);
J = [Jin Jeq]';

function exitflag = convertStatustoExitflag(status)
switch(status)
 case 0
 %info.Status = 'Success';
 exitflag = 1;
 case 1
 %info.Status = 'Solved to Acceptable Level';
 exitflag = 1;
 case 2
 %info.Status = 'Infeasible';
 exitflag = -1;
 case 3
 %info.Status = 'Search Direction Becomes Too Small';
 exitflag = -2;
 case 4
 %info.Status = 'Diverging Iterates';
 exitflag = -2;
 case 6
 %info.Status = 'Feasible Point Found';
 exitflag = 1;
 case -1
 %info.Status = 'Exceeded Iterations';
 exitflag = 0;
 case -4
 %info.Status = 'Max Time Exceeded';
 exitflag = 0;

 Optimizing Tuberculosis Treatment Using Nonlinear MPC with a Custom Solver

10-83

 otherwise
 %info.Status = 'IPOPT Error';
 exitflag = -2;
end

You can use this file as a template to implement an interface file to your own NLP solver.
The solver must be a MATLAB script or MEX file on the MATLAB path.

You can plug in the solver by specifying it as the custom solver in the nlmpc object.

nlobj.Optimization.CustomSolverFcn = @ResistantTBSolver;

As long as the "XYZ" solver is reliable and its options are properly chosen, rerunning the
simulation should produce similar results.

References

[1] Jung, E., S. Lenhart, and Z. Feng. "Optimal Control of Treatments in a Two-Strain
Tuberculosis Model." Discrete and Continuous Dynamical Systems, Series B2, 2002, pp.
479-482.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 10-2
• “Configure Optimization Solver for Nonlinear MPC” on page 10-34

10 Nonlinear MPC

10-84

Nonlinear and Gain-Scheduled MPC Control of an
Ethylene Oxidation Plant

This example shows how to use a nonlinear model predictive controller to control an
ethylene oxidation plant as it transitions from one operating point to another. In addition,
linear MPC controllers are generated directly from the nonlinear MPC controller to
implement a gain-scheduled control scheme that produces comparable performance.

Product Requirement

This example requires Optimization Toolbox™ software to solve a nonlinear programming
problem at each control interval.

if ~mpcchecktoolboxinstalled('optim')
 disp('Optimization Toolbox is required to run this example.')
 return
end

This example also requires Simulink® software to simulate MPC control of the ethylene
oxidation plant in Simulink.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Ethylene Oxidation Plant

Oxidation of ethylene (C2H4) to ethylene oxide (C2H4O) occurs in a cooled, gas-phase
catalytic reactor. Three reactions occur simultaneously in the well-mixed gas phase within
the reactor:

C2H4 + 0.5*O2 -> C2H4O

C2H4 + 3*O2 -> 2*CO2 + 2*H2O

C2H4O + 2.5*O2 -> 2*CO2 + 2*H2O

A mixture of air and ethylene is fed continuously. The plant is described by a first-
principle nonlinear dynamic model, implemented as a set of ordinary differential

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

10-85

equations (ODEs) in the oxidationStateFcn function. For more information, see
oxidationStateFcn.m.

The plant contains four states:

• Gas density in the reactor (x1)
• C2H4 concentration in the reactor (x2)
• C2H4O concentration in the reactor (x3)
• Temperature in the reactor (x4)

The plant has two inputs:

• Total volumetric feed flow rate (u1)
• C2H4 concentration of the feed (u2)

The plant has one output:

• C2H4O concentration in the effluent flow (y, equivalent to x3)

For convenience, all variables in the model are pre-scaled to be dimensionless. All the
states are measurable. The plant equations and parameters are obtained from [1].

Control Objectives

In this example, the total volumetric feed flow rate (u1) is the manipulated variable (MV)
and C2H4O concentration in the effluent flow (y) is the output variable (OV). Good
tracking performance of y is required within an operating range from 0.03 to 0.05. The
corresponding u1 values are 0.38 and 0.15, respectively.

The C2H4 concentration in the feed flow (u2) is a measured disturbance. Its nominal
value is 0.5, and a typical disturbance has a size of 0.1. The controller is required to
reject such a disturbance.

The manipulated variable u1 has a range from 0.0704 to 0.7042 due to actuator
limitations.

Feedback Control with Nonlinear MPC

In general, using nonlinear MPC with an accurate nonlinear prediction model provides a
benchmark performance; that is, the best control solution you can achieve. However, in
practice, linear MPC control solutions, such as adaptive MPC or gain-scheduled MPC, are

10 Nonlinear MPC

10-86

more computationally efficient than nonlinear MPC. If your linear control solution can
deliver a comparable performance, there is no need to implement the nonlinear control
solution, especially in a real-time environment.

In this example, you first design a nonlinear MPC controller to obtain the benchmark
performance. Afterward, you generate several linear MPC objects from the nonlinear
controller at different operating point using the convertToMPC function. Finally, you
implement gain-scheduled MPC using these linear MPC objects and compare the
performance.

Create a nonlinear MPC controller with 4 states, 1 output, 1 manipulated variable, and 1
measured disturbance.

nlobj = nlmpc(4,1,'MV',1,'MD',2);

Specify the controller sample time and the prediction and control horizons.

Ts = 5;
PredictionHorizon = 10;
ControlHorizon = 3;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = PredictionHorizon;
nlobj.ControlHorizon = ControlHorizon;

Specify the nonlinear prediction model using oxidationStateFcn.m, which is a
continuous-time model.

nlobj.Model.StateFcn = 'oxidationStateFcn';
nlobj.States(1).Name = 'Den';
nlobj.States(2).Name = 'CE';
nlobj.States(3).Name = 'CEO';
nlobj.States(4).Name = 'Tc';

Specify the output function that returns the C2H4O concentration in the effluent flow
(same as x3). Its scale factor is its typical operating range.

nlobj.Model.OutputFcn = @(x,u) x(3);
nlobj.OV.Name = 'CEOout';
nlobj.OV.ScaleFactor = 0.03;

Specify the MV constraints based on the controller actuator limitations. Its scale factor is
its typical operating range.

nlobj.MV.Min = 0.0704;
nlobj.MV.Max = 0.7042;

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

10-87

nlobj.MV.Name = 'Qin';
nlobj.MV.ScaleFactor = 0.6;

Specify the measured disturbance name. Its scale factor is its typical operating range.

nlobj.MD.Name = 'CEin';
nlobj.MD.ScaleFactor = 0.5;

Initially the plant is at an equilibrium operating point with a low concentration of C2H4O
(y = 0.03) in the effluent flow. Find the initial values of the states and output using
fsolve from the Optimization Toolbox.

options = optimoptions('fsolve','Display','none');
uLow = [0.38 0.5];
xLow = fsolve(@(x) oxidationStateFcn(x,uLow),[1 0.3 0.03 1],options);
yLow = xLow(3);

Validate that the prediction model functions do not have any numerical issues using the
validateFcns command. Validate the functions at the initial state and output values.

validateFcns(nlobj,xLow,uLow(1),uLow(2));

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Specify the reference signal in a structure, where it ramps up from 0.03 to 0.05 in 50
seconds at time 100.

Tstop = 300;
time = (0:Ts:(Tstop+PredictionHorizon*Ts))';
r = [yLow*ones(sum(time<100),1);linspace(yLow,yLow+0.02,11)';(yLow+0.02)*ones(sum(time>150),1)];
ref.time = time;
ref.signals.values = r;

To assess nonlinear MPC performance, use a Simulink model. The Nonlinear MPC
Controller block in the model is configured to use nlobj as its controller.

mdlNMPC = 'oxidationNMPC';
open_system(mdlNMPC)

10 Nonlinear MPC

10-88

Run the simulation, and view the output.

sim(mdlNMPC)
open_system([mdlNMPC '/y'])

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

10-89

The nonlinear MPC controller produces good reference tracking and disturbance
rejection performance, as expected.

10 Nonlinear MPC

10-90

Although a ramp-like set-point change in C2H4O concentration occurs between 100 and
150 seconds (the yellow stair curve in the plot), the controller knows about the change as
early as at 50 seconds because of reference previewing. Since the objective is to minimize
tracking errors across the whole horizon, the controller decides to move the plant in
advance such that tracking error is the smallest across the prediction horizon. If
previewing is disabled, the controller would start reacting at 100 seconds, which would
produce a larger tracking error.

In this example, since all the states are measurable, full state feedback is used by the
nonlinear MPC controller. In general, when there are unmeasurable states, you must
design a nonlinear state estimator, such as an extended kalman filter (EKF) or a moving
horizon estimator (MHE).

Obtain Linear MPC Controllers from Nonlinear MPC Controller

In practice, when producing comparable performance, linear MPC is always preferred
over nonlinear MPC due to its higher computation efficiency. Since you designed a
nonlinear MPC controller as a benchmark, you can convert it into a linear MPC controller
at a specific operating point.

In this example, you generate three linear MPC controllers with C2H4O concentrations at
0.03, 0.04, and 0.05, respectively. During the conversion, the nonlinear plant model is
linearized at the specified operating point. All the scale factors, linear constraints, and
quadratic weights defined in the nonlinear MPC object are retained. However, any custom
nonlinear cost function or custom nonlinear equality or inequality constraints are
discarded.

Generate a linear MPC controller at an operating point with low C2H4O conversion rate y
= 0.03. Specify the operating point using the corresponding state and input values, xLow
and uLow, respectively.

mpcobjLow = convertToMPC(nlobj,xLow,uLow);

Generate a linear MPC controller at an operating point with medium C2H4O conversion
rate y = 0.04.

uMedium = [0.24 0.5];
xMedium = fsolve(@(x) oxidationStateFcn(x,uMedium),[1 0.3 0.03 1],options);
mpcobjMedium = convertToMPC(nlobj,xMedium,uMedium);

Generate a linear MPC controller at an operating point with high C2H4O conversion rate
y = 0.05.

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

10-91

uHigh = [0.15 0.5];
xHigh = fsolve(@(x) oxidationStateFcn(x,uHigh),[1 0.3 0.03 1],options);
mpcobjHigh = convertToMPC(nlobj,xHigh,uHigh);

Feedback Control with Gain-Scheduled MPC

Implement a gain-scheduled MPC solution using the three generated linear MPC
controllers. The scheduling scheme is:

• If y is lower than 0.035, use mpcobjLow.
• If y is higher than 0.045, use mpcobjHigh.
• Otherwise, use mpcobjMedium.

To assess the gain-scheduled controller performance, use another Simulink model.

mdlMPC = 'oxidationMPC';
open_system(mdlMPC)

Run the simulation, and view the output.

10 Nonlinear MPC

10-92

sim(mdlMPC)
open_system([mdlMPC '/y'])

 Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant

10-93

The gain-scheduled controller produces comparable reference tracking and disturbance
rejection performance.

Conclusion

This example illustrates a general workflow to:

• Design and simulate a nonlinear MPC controller in MATLAB and Simulink for a
benchmark control performance.

• Use the nonlinear MPC object to directly generate linear MPC controllers at desired
operating points.

• Implement a gain-scheduled MPC control scheme using these controllers.

If the performance of the gain-scheduled controller is comparable to that of the nonlinear
controller, you can feel confident implementing a linear control solution to a nonlinear
control problem.

Remove example file folder from MATLAB path, and close Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdlNMPC)

References

[1] H. Durand, M. Ellis, P. D. Christofides. "Economic model predictive control designs for
input rate-of-change constraint handling and guaranteed economic performance."
Computers and Chemical Engineering, Vol. 92, pp. 18-36, 2016.

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 10-2

10 Nonlinear MPC

10-94

Lane Following Using Nonlinear Model Predictive
Control

This example shows how to design a lane-following controller using the Nonlinear Model
Predictive Controller block. In this example, you:

1 Design a nonlinear MPC controller (NLMPC) for lane following.
2 Compare the performance of NLMPC with adaptive MPC.

Introduction

A lane-following system is a control system that keeps the vehicle traveling along the
centerline of a highway lane, while maintaining a user-set velocity. The lane-following
scenario is depicted in the following figure.

A lane-following system manipulates both the longitudinal acceleration and front steering
angle of the vehicle to:

• Keep the lateral deviation and relative yaw angle small.
• Keep the longitudinal velocity close to a driver set velocity.

 Lane Following Using Nonlinear Model Predictive Control

10-95

• Balance the above two goals when they cannot be met simultaneously.

In a separate example of lane keeping assist, it is assumed that the longitudinal velocity is
constant. For more information, see “Lane Keeping Assist System Using Model Predictive
Control” on page 11-35. This restriction is relaxed in this example because the
longitudinal acceleration varies in this MIMO control system.

Another example augments a lane-following system with spacing control, where a safe
distance from a detected lead car is also maintained. For more information, see “Lane
Following Control with Sensor Fusion and Lane Detection” on page 11-57.

% Add example file folder to MATLAB path.
addpath(fullfile(matlabroot,'examples','mpc','main'));

Overview of Simulink Model

Open the Simulink model:

mdl = 'LaneFollowingNMPC';
open_system(mdl)

This model contains four main components:

1 Vehicle Dynamics - Apply the bicycle mode of lateral vehicle dynamics and
approximate the longitudinal dynamics using a time constant .

10 Nonlinear MPC

10-96

2 Sensor Dynamics - Approximate a sensor such as a camera to calculate the lateral
deviation and relative yaw angle.

3 Lane Following Controller - Simulate two variants of model predictive controllers:
Nonlinear MPC and Adaptive MPC.

4 Curvature Previewer - Detect the curvature at the current time step and the
curvature sequence over the prediction horizon of the MPC controller.

The vehicle dynamics and sensor dynamics are discussed in more details in “Adaptive
Cruise Control with Sensor Fusion” on page 11-13. This example applies the same model
for vehicle and sensor dynamics.

Parameters of Vehicle Dynamics and Road Curvature.

Specify the vehicle dynamics parameters

m = 1575; % Mass of car
Iz = 2875; % Moment of inertia about Z axis
lf = 1.2; % Distance between Center of Gravity and Front axle
lr = 1.6; % Distance between Center of Gravity and Rear axle
Cf = 19000; % Cornering stiffness of the front tires (N/rad)
Cr = 33000; % Cornering stiffness of the rear tires (N/rad).
tau = 0.2; % Time constant

Set the initial and driver-set velocities.

v0 = 15; % Initial velocity
v_set = 20; % Driver set velocity

Set the controller sample time.

Ts = 0.1;

Obtain the lane curvature information. seconds.

Duration = 15; % Simulation duration
t = 0:Ts:Duration; % Time vector
rho = LaneFollowingGetCurvature(v_set,t); % Signal containing curvature information

Design Nonlinear Model Predictive Controller

The continuous-time prediction model for NLMPC has the following state and output
equations. The state equations are defined in LaneFollowingStateFcn.

 Lane Following Using Nonlinear Model Predictive Control

10-97

The prediction model includes an unmeasured disturbance (UD) model. The UD model
describes what type of unmeasured disturbance NLMPC expects to encounter and reject
in the plant. In this example, the UD model is an integrator with its input assumed to be
white noise. Its output is added to the relative yaw angle. Therefore, the controller
expects a random step-like unmeasured disturbance occurring at the relative yaw angle
output and is prepared to reject it when it happens.

Create a nonlinear MPC controller with a prediction model that has seven states, three
outputs, and two inputs. The model has two MV signals: acceleration and steering. The
product of the road curvature and the longitudinal velocity is modeled as a measured
disturbance, and the unmeasured disturbance is modeled by white noise.

nlobj = nlmpc(7,3,'MV',[1 2],'MD',3,'UD',4);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the controller sample time, prediction horizon, and control horizon.

nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 2;

Specify the state function for the nonlinear plant model and its Jacobian.

nlobj.Model.StateFcn = @(x,u) LaneFollowingStateFcn(x,u);
nlobj.Jacobian.StateFcn = @(x,u) LaneFollowingStateJacFcn(x,u);

10 Nonlinear MPC

10-98

Specify the output function for the nonlinear plant model and its Jacobian. The output
variables are:

• Longitudinal velocity
• Lateral deviation
• Sum of the yaw angle and yaw angle output disturbance

nlobj.Model.OutputFcn = @(x,u) [x(3);x(5);x(6)+x(7)];
nlobj.Jacobian.OutputFcn = @(x,u) [0 0 1 0 0 0 0;0 0 0 0 1 0 0;0 0 0 0 0 1 1];

Set the constraints for manipulated variables.

nlobj.MV(1).Min = -3; % Maximum acceleration 3 m/s^2
nlobj.MV(1).Max = 3; % Minimum acceleration -3 m/s^2
nlobj.MV(2).Min = -1.13; % Minimum steering angle -65
nlobj.MV(2).Max = 1.13; % Maximum steering angle 65

Set the scale factors.

nlobj.OV(1).ScaleFactor = 15; % Typical value of longitudinal velocity
nlobj.OV(2).ScaleFactor = 0.5; % Range for lateral deviation
nlobj.OV(3).ScaleFactor = 0.5; % Range for relative yaw angle
nlobj.MV(1).ScaleFactor = 6; % Range of steering angle
nlobj.MV(2).ScaleFactor = 2.26; % Range of acceleration
nlobj.MD(1).ScaleFactor = 0.2; % Range of Curvature

Specify the weights in the standard MPC cost function. The third output, yaw angle, is
allowed to float because there are only two manipulated variables to make it a square
system. In this example, there is no steady-state error in the yaw angle as long as the
second output, lateral deviation, reaches 0 at steady state.

nlobj.Weights.OutputVariables = [1 1 0];

Penalize acceleration change more for smooth driving experience.

nlobj.Weights.ManipulatedVariablesRate = [0.3 0.1];

Validate prediction model functions at an arbitrary operating point using the
validateFcns command. At this operating point:

• x0 contains the state values
• u0 contains the input values

 Lane Following Using Nonlinear Model Predictive Control

10-99

• ref0 contains the output reference values
• md0 contains the measured disturbance value

x0 = [0.1 0.5 25 0.1 0.1 0.001 0.5];
u0 = [0.125 0.4];
ref0 = [22 0 0];
md0 = 0.1;
validateFcns(nlobj,x0,u0,md0,{},ref0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
Model.OutputFcn is OK.
Jacobian.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

In this example, an extended kalman filter (EKF) provides state estimation for the seven
states. The state transition function for the EKF is defined in
LaneFollowingEKFStateFcn, and the measurement function is defined in
LaneFollowingEKFMeasFcn.

Design Adaptive Model Predictive Controller

An adaptive MPC (AMPC) controller is also designed in this example. This controller uses
a linear model for the vehicle dynamics and updates the model online as the longitudinal
velocity varies. The adaptive MPC controller is designed in
LaneFollowingGenerateAMPC and the model is updated using
LaneFollowingGetModelForAMPC.

LaneFollowingGenerateAMPC;

In practice, as long as a linear control solution such as adaptive MPC or gain-scheduled
MPC can achieve comparable control performance against nonlinear MPC, you would
implement the linear control solution because it is more computationally efficient.

Compare Controller Performance

To compare the results of NLMPC and AMPC, simulate the model and save the logged
data.

First, simulate the model using nonlinear MPC.

controller_type = 1; % Set the variant for nonlinear MPC.
sim(mdl)
logsout1 = logsout;

10 Nonlinear MPC

10-100

Second, simulate the model using adaptive MPC.

controller_type = 2; % Set the variant for adaptive MPC.
sim(mdl)
logsout2 = logsout;

Plot and compare simulation results.

LaneFollowingCompareResults(logsout1,logsout2)

 Lane Following Using Nonlinear Model Predictive Control

10-101

In the first plot, both nonlinear MPC and adaptive MPC give almost identical steering
angle profiles. The lateral deviation and relative yaw angle are close to zero during the
maneuver. This result implies that the vehicle is traveling along the desired path.

The longitudinal control command and performance for nonlinear and adaptive MPC are
slightly different. The nonlinear MPC controller has smoother acceleration command and
better tracking of set velocity, although the result from adaptive MPC is also acceptable.

You can also view the results via Scopes of Outputs and Inputs in the model.

Set the variant to be nonlinear MPC.

controller_type = 1; % Set the variant for nonlinear MPC.

10 Nonlinear MPC

10-102

Conclusion

This example shows how to design a nonlinear model predictive controller for lane
following. The performance of using nonlinear MPC and adaptive MPC is compared. You
can select nonlinear MPC or adaptive MPC depending on the modeling information and
computational power for your application.

Remove the example file folder from the MATLAB path.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdl)

See Also
Nonlinear MPC Controller | nlmpc

More About
• “Nonlinear MPC” on page 10-2

 See Also

10-103

Economic MPC
Economic model predictive controllers optimize control actions to satisfy generic
economic or performance cost functions. The name Economic MPC derives from
applications in which the cost function to minimize is the operating cost of the system
under control.

Traditional implicit MPC controllers minimize a quadratic performance criterion (cost
function) using a linear prediction model.

A quadratic cost function is adequate for tracking specified output and manipulated
variable references. However, some applications can require optimizing for performance
criteria, such as fuel consumption or production rates. Such performance criteria can be
a combination of linear or nonlinear functions of the system states, inputs, or outputs.

An economic MPC controller:

• Can use a linear or nonlinear prediction model
• Uses your generic performance cost function instead of (or in addition to) the built-in

quadratic cost function
• Computes optimal control moves by solving a nonlinear optimization problem using

the SQP algorithm in fmincon

To implement an economic MPC controller, create a nonlinear MPC controller object, and
specify:

• State and output functions that define your prediction model. For more information,
see “Specify Prediction Model for Nonlinear MPC” on page 10-4.

• A generic performance-based cost function. For more information, see “Specify Cost
Function for Nonlinear MPC” on page 10-14.

For more information on nonlinear MPC controller objects, see nlmpc.

You can simulate economic MPC controllers:

• In Simulink using the Nonlinear MPC Controller block
• At the command line using nlmpcmove

Note An economic MPC controller does not support:

10 Nonlinear MPC

10-104

• Code generation.
• Designing controllers using the MPC Designer app.

An economic MPC controller requires Optimization Toolboxsoftware.

See Also
Functions
nlmpc | nlmpcmove

Blocks
Nonlinear MPC Controller

More About
• “Economic MPC Control of Ethylene Oxide Production” on page 10-106

 See Also

10-105

Economic MPC Control of Ethylene Oxide Production
This example shows how to maximize the production of an ethylene oxide plant for profit
using an economic MPC controller. This controller is implemented using a nonlinear MPC
controller with a custom performance-based cost function.

This example requires Simulink® software to simulate nonlinear MPC control of the
ethylene oxidation plant in Simulink.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink(R) is required to run this example.')
 return
end

The example uses the fsolve command from the Optimization Toolbox™ to find the
nominal equilibrium operating point and the fmincon method as the default nonlinear
programming solver.

if ~mpcchecktoolboxinstalled('optim')
 disp('Optimization Toolbox must be installed to run this example.')
 return
end

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Nonlinear Ethylene Oxidation Plant

Conversion of ethylene (C2H4) to ethylene oxide (C2H4O) occurs in a cooled, gas-phase
catalytic reactor. Three reactions occur simultaneously in the well-mixed gas phase within
the reactor:

C2H4 + 0.5*O2 -> C2H4O

C2H4 + 3*O2 -> 2*CO2 + 2*H2O

C2H4O + 2.5*O2 -> 2*CO2 + 2*H2O

The first reaction is wanted and the other two are unwanted because they reduce C2H4O
production. A mixture of air and ethylene is continuously fed into the reactor. The first-
principle nonlinear dynamic model of the reactor is implemented as a set of ordinary
differential equations (ODEs) in the oxidationPlantCT function. For more information,
see oxidationPlantCT.m.

10 Nonlinear MPC

10-106

The plant has four states:

• Gas density in the reactor ()
• C2H4 concentration in the reactor ()
• C2H4O concentration in the reactor ()
• Temperature in the reactor ()

The plant has three inputs:

• C2H4 concentration in the feed ()
• Reactor cooling jacket temperature ()
• C2H4 feed rate ()

All variables in the model are scaled to be dimensionless and of unity order. The basic
plant equations and parameters are obtained from [1] with some changes in i/o definitions
and ordering.

The plant is asymptotically open-loop stable.

Control Objectives and Constraints

The primary control objective is to maximize the ethylene oxide (C2H4O) production rate
(which in turn maximizes profit) at any steady-state operating point, given the availability
of C2H4 in the feed stream.

The C2H4O production rate is defined as the product of the C2H4O concentration in the
reactor () and the total volumetric flow rate exiting the reactor ().

The operating point is effectively determined by the three inputs. is the C2H4
concentration in the feed, which the MPC controller can manipulate. is the cooling
jacket temperature, which keeps the stable. is the C2H4 feed rate, which indicates the
available ethylene coming from an upstream process. A higher feed rate increases the
achievable C2H4O production rate. Both and are considered as measured
disturbances in this example.

Optimal Production Rate at the Initial Operating Point

At the initial condition, the cooling jacket temperature is 1.1 and the C2H4 availability is
0.175.

 Economic MPC Control of Ethylene Oxide Production

10-107

Tc = 1.1;
C2H4Avalability = 0.175;

Compute the optimal C2H4O production rate by sweeping through the operating range of
the C2H4 concentration in the feed () using fsolve.

uRange = 0.1:0.1:3;
EORate = zeros(length(uRange),1);
optimopt = optimoptions('fsolve','Display','none');
for ct = 1:length(uRange)
 xRange = real(fsolve(@(x) oxidationPlantCT(x,[uRange(ct);Tc;C2H4Avalability]),rand(1,4),optimopt));
 EORate(ct) = C2H4Avalability/uRange(ct)*xRange(3)*xRange(4);
end
figure
plot(uRange,EORate)
xlabel('C2H4 concentration in the feed')
ylabel('C2H4O Production Rate')

10 Nonlinear MPC

10-108

The optimal C2H4O production rate of 0.0156 is achieved at = 1.6. In other words, if
the plant originally operates with a different C2H4 concentration in the feed, you expect
the economic MPC controller to bring it to 1.6 such that the optimal C2H4O production
rate is achieved.

Nonlinear MPC Design

Economic MPC can be implemented with a nonlinear MPC controller. The prediction
model has four states and three inputs (one MV and two MDs). In this example, Since you
do not need an output function, assume y = x.

nlobj = nlmpc(4,4,'MV',1,'MD',[2 3]);
nlobj.States(1).Name = 'Den';
nlobj.States(1).Name = 'C2H4';

 Economic MPC Control of Ethylene Oxide Production

10-109

nlobj.States(1).Name = 'C2H4O';
nlobj.States(1).Name = 'Tc';
nlobj.MV.Name = 'CEin';
nlobj.MD(1).Name = 'Tc';
nlobj.MD(2).Name = 'Availability';

The nonlinear plant model is defined in oxidationPlantDT. It is a discrete-time model
where a multi-step explicit Euler method is used for integration. While this example uses
a nonlinear plant model, you can also implement economic MPC using linear plant
models.

nlobj.Model.StateFcn = 'oxidationPlantDT';
nlobj.Model.IsContinuousTime = false;

In general, to improve computational efficiency, it is best practice to provide an analytical
Jacobian function for the prediction model. In this example, you do not provide one
because the simulation is fast enough.

The relatively large sample time of 25 seconds used here is appropriate when the plant is
stable and the primary objective is economic optimization. Prediction horizon is 2, which
gives a prediction time is 50 seconds.

Ts = 25;
nlobj.Ts = Ts; % Sample time
nlobj.PredictionHorizon = 2; % Prediction horizon
nlobj.ControlHorizon = 1; % Control horizon

All the states in the prediction model must be positive based on first principles. Therefore,
specify a minimum bound of zero for all states.

nlobj.States(1).Min = 0;
nlobj.States(2).Min = 0;
nlobj.States(3).Min = 0;
nlobj.States(4).Min = 0;

Plant input must stay within saturation limits between 0.1 and 3.

nlobj.MV.Min = 0.1;
nlobj.MV.Max = 3;

The rates of change of are also limited to +/- 0.02/sec.

nlobj.MV.RateMin = -0.02*Ts;
nlobj.MV.RateMax = 0.02*Ts;

10 Nonlinear MPC

10-110

Custom Cost Function for Economic MPC

Instead of using the standard quadratic objective function, a custom cost function is used
as the replacement. You want to maximize the C2H4O production rate at the end of the
prediction horizon.

f = -(u3/u1*x3*x4)

The negative sign in f is used to maximize production, since the controller minimizes f
during optimization. For more information, see oxidationCostFcn.m.

nlobj.Optimization.CustomCostFcn = 'oxidationCostFcn';
nlobj.Optimization.ReplaceStandardCost = true;

Validate Custom Functions

Assume that the plant initially operates at u1 = 0.5.

u0 = 0.5;

Find the states at the steady state using fsolve.

x0 = real(fsolve(@(x) oxidationPlantCT(x,[u0;Tc;C2H4Avalability]),rand(1,4),optimopt));

The C2H4O production rate is 0.0138, far away from the optimal condition of 0.0156.

EORate0 = C2H4Avalability/u0*x0(3)*x0(4);

Validate the state function and cost function at the initial condition.

validateFcns(nlobj,x0,u0,[Tc C2H4Avalability]);

Model.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

You can compute the first move using the nlmpcmove function. It returns an MV of 1.0,
indicating that economic MPC will increase the MV from 0.5 to 1, limited by the MVRate
constraint.

mv = nlmpcmove(nlobj,x0,u0,zeros(1,4),[Tc C2H4Avalability]);

Simulink Model with Economic MPC Controller

Open the Simulink model.

 Economic MPC Control of Ethylene Oxide Production

10-111

mdl = 'mpc_economicEO';
open_system(mdl)

The cooling jacket temperature is initially 1.1 and remains constant for the first 100
seconds. It then increases to 1.15, and therefore, reduces the optimal C2H4O production
rate from 0.0156 to 0.0135.

The C2H4 availability is initially 0.175 and remains constant for the first 200 seconds. It
then increases to 0.25, and therefore, increases the optimal C2H4O production rate from
0.0135 to 0.0195.

The model includes constant (zero) references for the four plant outputs. The Nonlinear
MPC Controller block requires these reference signals, but they are ignored in the custom
cost function.

The Plant subsystem calculates the plant states by integrating the ODEs in
oxidationPlantCT.m. Assume all the states are measurable such that you do not need
to implement a nonlinear state estimator in this example. The C2H4O plant output is the
instantaneous C2H4O production rate, which is used for display purposes.

10 Nonlinear MPC

10-112

Simulate Model and Analyze Results

Run the simulation.

open_system([mdl '/MV']);
open_system([mdl '/C2H4O']);
sim(mdl)

 Economic MPC Control of Ethylene Oxide Production

10-113

Because the C2H4O plant operating at the initial condition is not optimal, its profit can be
improved. In the first 100 seconds, the economic MPC controller gradually moves the
plant to the true optimal condition under the same cooling jacket temperature and C2H4
availability constraints. It improves C2H4O production rate by:

10 Nonlinear MPC

10-114

which could be worth millions of dollars per year in large-scale production.

In the next 100 seconds, the cooling jacket temperature increases from 1.1 to 1.15. The
economic MPC controller moves the plant smoothly to the new optimal condition 0.0135
as expected.

In the next 100 seconds, the C2H4 availability increases from 0.175 to 0.25. The
economic MPC controller is again able to move the plant the new optimal steady state
0.0195.

Remove example file folder from MATLAB path, and close the Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdl)

References

[1] H. Durand, M. Ellis, P. D. Christofides, "Economic model predictive control designs for
input rate-of-change constraint handling and guaranteed economic performance",
Computers and Chemical Engineering, Vol. 92, pp 18-36, 2016.

See Also

More About
• “Economic MPC” on page 10-104

 See Also

10-115

Automated Driving Applications

• “Automated Driving Using Model Predictive Control” on page 11-2
• “Adaptive Cruise Control System Using Model Predictive Control” on page 11-6
• “Adaptive Cruise Control with Sensor Fusion” on page 11-13
• “Lane Keeping Assist System Using Model Predictive Control” on page 11-35
• “Lane Keeping Assist with Lane Detection” on page 11-41
• “Lane Following Control with Sensor Fusion and Lane Detection” on page 11-57
• “Lane-Following Control with Monocular Camera Perception” on page 11-72

11

Automated Driving Using Model Predictive Control
Model predictive control (MPC) is a discrete-time multi-variable control architecture. At
each control interval, an MPC controller uses an internal model to predict future plant
behavior. Based on this prediction, the controller computes optimal control actions. For
more information on model predictive control, see “MPC Design”.

You can use MPC in automated driving applications to improve vehicle responsiveness
while maintaining passenger comfort and safety. Applications can include:

• Adaptive cruise control — For an example, see “Adaptive Cruise Control System Using
Model Predictive Control” on page 11-6.

• Lane-keeping assist — For an example, see “Lane Keeping Assist System Using Model
Predictive Control” on page 11-35.

• Lane-following control — For an example, see “Lane Following Control with Sensor
Fusion and Lane Detection” on page 11-57.

• Obstacle avoidance — For an example, see “Obstacle Avoidance Using Adaptive Model
Predictive Control” on page 6-48.

MPC has several features that are useful for automated driving.

MPC Feature Description More Information
Explicitly handle
input and output
constraints

When computing optimal control moves,
an MPC controller accounts for any input
and output constraints on the system.
For example, you can specify constraints
for:

• Speed limits
• Safe following distance
• Physical vehicle limits, such as

maximum steering angle
• Obstacles for the controller to avoid

• “Specify Constraints”
on page 1-6

• “Constraints on Linear
Combinations of
Inputs and Outputs”
on page 3-10

11 Automated Driving Applications

11-2

MPC Feature Description More Information
Predict ego vehicle
behavior across a
receding horizon

An MPC controller uses an internal
model of the vehicle dynamics to predict
how the vehicle will react to a given
control action across a prediction
horizon. This behavior is analogous to a
human driver understanding and
predicting the behavior of their vehicle.

• “Choose Sample Time
and Horizons” on page
1-2

• “MPC Modeling”

Preview reference
trajectories and
disturbances across
prediction horizon

If you can anticipate reference
trajectories or disturbances across the
prediction horizon, an MPC controller
can incorporate this information when
computing optimal control actions. This
behavior is analogous to a human driver
previewing the road ahead of their
vehicle.

“Signal Previewing” on
page 5-15

Update internal
vehicle model at run
time

If the dynamics of the ego vehicle vary
over time, such as for velocity-dependent
steering dynamics, you can update the
controller internal model using adaptive
MPC.

“Adaptive MPC” on page
6-2

Generate code You can automatically generate code for
deploying model predictive controllers.

“Generate Code and
Deploy Controller to Real-
Time Targets” on page 9-
2

Simulation in Simulink
To simplify the initial development of automated driving controllers, Model Predictive
Control Toolbox software provides Simulink blocks for adaptive cruise control and lane-
keeping assistance. These blocks provide application-specific interfaces and options for
designing an MPC controller.

Block Description
Adaptive Cruise Control System Track a set velocity and maintain a safe distance

from a lead vehicle by adjusting the longitudinal
acceleration of an ego vehicle.

 Automated Driving Using Model Predictive Control

11-3

Block Description
Lane Keeping Assist System Keep an ego vehicle traveling along the center of a

straight or curved road by adjusting the front
steering angle.

For other automated driving applications, such as obstacle avoidance, you can design and
simulate controllers using the other model predictive control Simulink blocks, such as the
MPC Controller and Adaptive MPC Controller blocks. For an example that uses an
adaptive model predictive controller, see “Obstacle Avoidance Using Adaptive Model
Predictive Control” on page 6-48.

Controller Customization
For the Adaptive Cruise Control System and Lane Keeping Assist System blocks, you can
generate a custom subsystem, which you can then modify for your application. This option
is useful when you want to:

• Modify default MPC settings or use advanced MPC features
• Modify the default controller initial conditions
• Use different application settings, such as a custom safe following distance definition

for adaptive cruise control

To create a custom subsystem, click the corresponding button for the block you are using.
For example, to create a custom subsystem for an Adaptive Cruise Control System block,
on the Blocks tab, click Create ACC subsystem. The software creates a Simulink model
that contains a subsystem with the same configuration as your original controller. You can
modify this subsystem and directly substitute it back into your original model, replacing
the controller block.

Integration with Automated Driving System Toolbox
If you have Automated Driving System Toolbox software, you can integrate your model
predictive controller with systems for:

• Object detection and tracking
• Lane boundary detection
• Path planning

11 Automated Driving Applications

11-4

• Sensor fusion

For examples, see “Adaptive Cruise Control with Sensor Fusion” on page 11-13 and
“Lane Keeping Assist with Lane Detection” on page 11-41.

See Also
Blocks
Adaptive Cruise Control System | Adaptive MPC Controller | Lane Keeping Assist System |
MPC Controller

 See Also

11-5

Adaptive Cruise Control System Using Model Predictive
Control

This example shows how to use the Adaptive Cruise Control System block in Simulink®
and demonstrates the control objectives and constraints of this block.

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Adaptive Cruise Control System

A vehicle (ego car) equipped with adaptive cruise control (ACC) has a sensor, such as
radar, that measures the distance to the preceding vehicle in the same lane (lead car),

, as well as the relative velocity of the lead car, . The ACC system operates in the
following two modes:

• Speed control - The ego car travels at a driver-set speed.
• Spacing control - The ego car maintains a safe distance from the lead car.

The ACC system decides which mode to use based on real-time radar measurements. For
example, if the lead car is too close, the ACC system switches from speed control to
spacing control. Similarly, if the lead car is further away, the ACC system switches from
spacing control to speed control. In other words, the ACC system makes the ego car
travel at a driver-set speed as long as it maintains a safe distance.

The following rules are used to determine the ACC system operating mode:

• If , then speed control mode is active. The control goal is to track the
driver-set velocity, .

• If , then spacing control mode is active. The control goal is to maintain
the safe distance, .

11 Automated Driving Applications

11-6

Simulink Model for Lead Car and Ego Car

The dynamics for lead car and ego car are modeled in Simulink. Open the Simulink
model.

mdl = 'mpcACCsystem';
open_system(mdl)

 Adaptive Cruise Control System Using Model Predictive Control

11-7

To approximate a realistic driving environment, the acceleration of the lead car varies
according to a sine wave during the simulation. The Adaptive Cruise Control System block
outputs an acceleration control signal for the ego car.

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 80;

For both the ego vehicle and the lead vehicle, the dynamics between acceleration and
velocity are modeled as:

which approximates the dynamics of the throttle body and vehicle inertia.

Specify the linear model for ego car.

G_ego = tf(1,[0.5,1,0]);

Specify the initial position and velocity for the two vehicles.

x0_lead = 50; % initial position for lead car (m)
v0_lead = 25; % initial velocity for lead car (m/s)

11 Automated Driving Applications

11-8

x0_ego = 10; % initial position for ego car (m)
v0_ego = 20; % initial velocity for ego car (m/s)

Configuration of Adaptive Cruise Control System Block

The ACC system is modeled using the Adaptive Cruise Control System Block in Simulink.
The inputs to the ACC system block are:

• Driver-set velocity
• Time gap
• Velocity of the ego car
• Relative distance to the lead car (from radar)
• Relative velocity to the lead car (from radar)

The output for the ACC system is the acceleration of the ego car.

The safe distance between the lead car and the ego car is a function of the ego car
velocity, :

where is the standstill default spacing and is the time gap between the
vehicles. Specify values for , in meters, and , in seconds.

t_gap = 1.4;
D_default = 10;

Specify the driver-set velocity in m/s.

v_set = 30;

Considering the physical limitations of the vehicle dynamics, the acceleration is
constrained to the range [-3,2] (m/s^2).

amin_ego = -3;
amax_ego = 2;

For this example, the default parameters of the Adaptive Cruise Control System block
match the simulation parameters. If your simulation parameters differ from the default
values, then update the block parameters accordingly.

 Adaptive Cruise Control System Using Model Predictive Control

11-9

Simulation Analysis

Run the simulation.

sim(mdl)

Plot the simulation result.

mpcACCplot(logsout,D_default,t_gap,v_set)

11 Automated Driving Applications

11-10

In the first 3 seconds, to reach the driver-set velocity, the ego car accelerates at full
throttle.

From 3 to 13 seconds, the lead car accelerates slowly. As a result, to maintain a safe
distance to the lead car, the ego car accelerates with a slower rate.

 Adaptive Cruise Control System Using Model Predictive Control

11-11

From 13 to 25 seconds, the ego car maintains the driver-set velocity, as shown in the
Velocity plot. However, as the lead car reduces speed, the spacing error starts
approaching 0 after 20 seconds.

From 25 to 45 seconds, the lead car slows down and then accelerates again. The ego car
maintains a safe distance from the lead car by adjusting its speed, as shown in the
Distance plots.

From 45 to 56 seconds, the spacing error is above 0. Therefore, the ego car achieves the
driver-set velocity again.

From 56 to 76 seconds, the deceleration/acceleration sequence from the 25 to 45 second
interval is repeated.

Throughout the simulation, the controller ensures that the actual distance between the
two vehicles is greater than the set safe distance. When the actual distance is sufficiently
large, then the controller ensures that the ego vehicle follows the driver-set velocity.

Remove example file folder from MATLAB path, and close Simulink model.

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdl)

See Also
Blocks
Adaptive Cruise Control System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-12

Adaptive Cruise Control with Sensor Fusion
This example shows how to implement a sensor fusion-based automotive adaptive cruise
controller for a vehicle traveling on a curved road using sensor fusion.

In this example, you will:

1 Review a control system that combines sensor fusion and an adaptive cruise
controller (ACC). Two variants of ACC are provided: a classical controller and an
Adaptive Cruise Control System block from Model Predictive Control Toolbox.

2 Test the control system in a closed-loop Simulink model using synthetic data
generated by the Automated Driving System Toolbox.

3 Configure the code generation settings for software-in-the-loop simulation and
automatically generate code for the control algorithm.

Introduction

An adaptive cruise control system is a control system that modifies the speed of the ego
car in response to conditions on the road. As in regular cruise control, the driver sets a
desired speed for the car; in addition, the adaptive cruise control system can slow the ego
car down if there is another vehicle moving slower in the lane in front of it.

For the ACC to work correctly, the ego car has to determine how the lane in front of it
curves, and which car is the 'lead car', that is, in front of the ego car in the lane. A typical
scenario from the viewpoint of the ego car is shown in the following figure. The ego car
(blue) travels along a curved road. At the beginning, the lead car is the pink car. Then the
purple car cuts into the lane of the ego car and becomes the lead car. After a while, the
purple car changes to another lane, and the pink car becomes the lead car again. The
pink car remains the lead car afterward. The ACC design must react to the change in the
lead car on the road.

 Adaptive Cruise Control with Sensor Fusion

11-13

Current ACC designs rely mostly on range and range rate measurements obtained from
radar, and are designed to work best along straight roads. An example of such a system is
given in “Adaptive Cruise Control System Using Model Predictive Control” and in
“Automotive Adaptive Cruise Control Using FMCW Technology” (Phased Array System
Toolbox). Moving from ADAS designs to more autonomous systems, the ACC must address
the following challenges:

1 Estimating the relative positions and velocities of the cars that are near the ego car
and that have significant lateral motion relative to the ego car.

2 Estimating the lane ahead of the ego car to find which car in front of the ego car is
the closest one in the same lane.

3 Reacting to aggressive maneuvers by other vehicles in the environment, in particular,
when another vehicle cuts into the ego car lane.

This example demonstrates two main additions to existing ACC designs that meet these
challenges: adding a sensor fusion system and updating the controller design based on
model predictive control (MPC). A sensor fusion and tracking system that uses both vision
and radar sensors provides the following benefits:

1 It combines the better lateral measurement of position and velocity obtained from
vision sensors with the range and range rate measurement from radar sensors.

11 Automated Driving Applications

11-14

2 A vision sensor can detect lanes, provide an estimate of the lateral position of the
lane relative to the ego car, and position the other cars in the scene relative to the
ego lane. In this example, we consider an ideal lane detection.

An advanced MPC controller adds the ability to react to more aggressive maneuvers by
other vehicles in the environment. In contrast to a classical controller that uses a PID
design with constant gains, the MPC controller regulates the velocity of the ego car while
maintaining a strict safe distance constraint. Therefore, the controller can apply more
aggressive maneuvers when the environment changes quickly in a similar way to what a
human driver would do.

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Overview of the Test Bench Model and Simulation Results

To open the main Simulink model, use the following command:

open_system('ACCTestBenchExample')

 Adaptive Cruise Control with Sensor Fusion

11-15

The model contains two main subsystems:

1 ACC with Sensor Fusion, which models the sensor fusion and controls the
longitudinal acceleration of the vehicle. This component allows you to select either a
classical or model predictive control version of the design.

2 A Vehicle and Environment subsystem, which models the motion of the ego car and
models the environment. A simulation of radar and vision sensors provides synthetic
data to the control subsystem.

To run the associated initialization script before running the model, in the Simulink
model, click Run Setup Script or, at the command prompt, type the following:

helperACCSetUp

11 Automated Driving Applications

11-16

The script loads certain constants needed by the Simulink model, such as the vehicle and
ACC design parameters. The default ACC is the classical controller. The script also
creates buses that are required for defining the inputs into and outputs for the control
system referenced model. These buses must be defined in the workspace before model
compilation. When the model compiles, additional Simulink buses are automatically
generated by their respective blocks.

To plot the results of the simulation and depict the surroundings of the ego car, including
the tracked objects, use the Bird's-Eye Scope. The Bird's-Eye Scope is a model-level
visualization tool in Simulink that you can open using a menu provided on the Simulink
model toolbar. For more information, see “Inspect and Analyze Models in Simulink”
(Simulink). After opening the scope, click Find Signals to set up the signals. The
following commands run the simulation to 15 seconds to get a mid-simulation picture and
run again all the way to end of the simulation to gather results.

sim('ACCTestBenchExample','StopTime','15') %Simulate 15 seconds
sim('ACCTestBenchExample') %Simulate to end of scenario

 Adaptive Cruise Control with Sensor Fusion

11-17

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [151x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

The bird's-eye scope shows the results of the sensor fusion. It shows how the radar and
vision sensors detect the vehicles within their sensors coverage areas. It also shows the
tracks maintained by the Multi-Object Tracker block. The yellow track shows the most
important object (MIO): the closest track in front of the ego car in its lane. We see that at
the beginning of the scenario, the most important object is the fast-moving car ahead of
the ego car. When the passing car gets closer to the slow-moving car, it crosses to the left
lane, and the sensor fusion system recognizes it to be the MIO. This car is much closer to
the ego car and much slower than it. Thus, the ACC must slow the ego car down.

In the following results for the classical ACC system, the:

• Top plot shows the ego car velocity.

11 Automated Driving Applications

11-18

• Middle plot shows the relative distance between the ego car and lead car.
• Bottom plot shows the ego car acceleration.

In this example, the raw data from the Tracking and Sensor Fusion system is used for
ACC design without post-processing. You can expect to see some `spikes' (middle plot)
due to the uncertainties in the sensor model especially when another car cuts into or
leaves the ego car lane.

To view the simulation results, use the following command.

helperPlotACCResults(logsout,default_spacing,time_gap)

 Adaptive Cruise Control with Sensor Fusion

11-19

• In the first 11 seconds, the lead car is far ahead of the ego car (middle plot). The ego
car accelerates and reaches the driver-set velocity V_set (top plot).

• Another car becomes the lead car from 11 to 20 seconds when the car cuts into the
ego car lane (middle plot). When the distance between the lead car and the ego car is
large (11-15 seconds), the ego car still travels at the driver-set velocity. When the

11 Automated Driving Applications

11-20

distance becomes small (15-20 seconds), the ego car decelerates to maintain a safe
distance from the lead car (top plot).

• From 20 to 34 seconds, the car in front moves to another lane, and a new lead car
appears (middle plot). Because the distance between the lead car and the ego car is
large, the ego car accelerates until it reaches the driver-set velocity at 27 seconds.
Then, the ego car continues to travel at the driver-set velocity (top plot).

• The bottom plot demonstrates that the acceleration is within the range [-3,2] m/s^2.
The smooth transient behavior indicates that the driver comfort is satisfactory.

In the MPC-based ACC design, the underlying optimization problem is formulated by
tracking the driver-set velocity subject to enforcing a safe distance from the lead car. The
MPC controller design is described in the Adaptive Cruise Controller section. To run the
model with the MPC design, first activate the MPC variant and then run the following
commands. This step requires Model Predictive Control Toolbox software. You can check
the existence of this license using the following code. If no code exists, a sample of similar
results is depicted.

hasMPCLicense = license('checkout','MPC_Toolbox');
if hasMPCLicense
 controller_type = 2;
 sim('ACCTestBenchExample','StopTime','15') %Simulate 15 seconds
 sim('ACCTestBenchExample') %Simulate to end of scenario
else
 load data_mpc
end

 Adaptive Cruise Control with Sensor Fusion

11-21

ans =

11 Automated Driving Applications

11-22

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [151x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

In the simulation results for the MPC-based ACC, similar to the classical ACC design, the
objectives of speed and spacing control are achieved. Compared to the classical ACC
design, the MPC-based ACC is more aggressive as it uses full throttle or braking for
acceleration or deceleration. This behavior is due to the explicit constraint on the relative
distance. The aggressive behavior may be preferred when sudden changes on the road
occur, such as when the lead car changes to be a slow car. To make the controller less
aggressive, open the mask of the Adaptive Cruise Control System Block and reduce the
value of the "Controller Behavior" slider. As noted above, the spikes in the middle plot are
due to the uncertainties in the sensor model.

To view the results of the simulation with the MPC-based ACC, use the following
command.

helperPlotACCResults(logsout,default_spacing,time_gap)

 Adaptive Cruise Control with Sensor Fusion

11-23

In the following, the functions of each subsystem in the Test Bench Model are described
in more details. The ACC with Sensor Fusion subsystem. It contains two main parts: 1)
Tracking and sensor fusion and 2) Adaptive cruise controller.

11 Automated Driving Applications

11-24

Tracking and Sensor Fusion

The Tracking and Sensor Fusion subsystem processes vision and radar detections coming
from the Vehicle and Environment subsystem and generates a comprehensive situation
picture of the environment around the ego car. Also, it provides the ACC with an estimate
of the closest car in the lane in front of the ego car.

 Adaptive Cruise Control with Sensor Fusion

11-25

The main block of the Tracking and Sensor Fusion subsystem is the Multi Object Tracker
block, whose inputs are the combined list of all the sensor detections and the prediction
time. The output from the Multi-Object Tracker block is a list of confirmed tracks.

The Detection Concatenation block concatenates the vision and radar detections. The
prediction time is driven by a clock in the Vehicle and Environment subsystem.

The Detection Clustering block clusters multiple radar detections, since the tracker
expects at most one detection per object per sensor.

The findLeadCar MATLAB function block finds which car is closest to the ego car and
ahead of it in same the lane using the list of confirmed tracks and the curvature of the
road. This car is referred to as the lead car, and may change when cars move into and out
of the lane in front of the ego car. The function provides the position and velocity of the
lead car relative to the ego car and an index to the most important object (MIO) track.

Adaptive Cruise Controller

The adaptive cruise controller has two variants: a classical design (default) and an MPC-
based design. For both designs, the following design principles are applied. An ACC
equipped vehicle (ego car) uses sensor fusion to estimate the relative distance and
relative velocity to the lead car. The ACC makes the ego car travel at a driver-set velocity
while maintaining a safe distance from the lead car. The safe distance between lead car
and ego car is defined as

where the default spacing , and time gap are design parameters and is the
longitudinal velocity of the ego car. The ACC generates the longitudinal acceleration for
the ego car based on the following inputs:

• Longitudinal velocity of ego car
• Relative distance between lead car and ego car (from the Tracking and Sensor Fusion

system)
• Relative velocity between lead car and ego car (from the Tracking and Sensor Fusion

system)

Considering the physical limitations of the ego car, the longitudinal acceleration is
constrained to the range [-3,2] .

11 Automated Driving Applications

11-26

In the classical ACC design, if the relative distance is less than the safe distance, then the
primary goal is to slow down and maintain a safe distance. If the relative distance is
greater than the safe distance, then the primary goal is to reach driver-set velocity while
maintaining a safe distance. These design principles are achieved through the Min and
Switch Blocks.

In the MPC-based ACC design, the underlying optimization problem is formulated by
tracking the driver-set velocity subject to a constraint. The constraint enforces that
relative distance is always greater than the safe distance.

To configure the Adaptive Cruise Control System block, use the parameters defined in the
helperACCSetUp file. For example, the linear model for ACC design , and is
obtained from vehicle dynamics. The two Switch blocks implement simple logic to handle

 Adaptive Cruise Control with Sensor Fusion

11-27

large numbers from the sensor (for example, the sensor may return Inf when it does not
detect an MIO).

For more information on MPC design for ACC, see “Adaptive Cruise Control System Using
Model Predictive Control”.

Vehicle and Environment

The Vehicle and Environment subsystem is composed of two parts: (1) Vehicle Dynamics
and Global Coordinates and (2) Actor and Sensor Simulation.

11 Automated Driving Applications

11-28

The "Vehicle Dynamics" subsystem models the vehicle dynamics with the "Bicycle Model -
Force Input" block from Vehicle Dynamics Blockset. The vehicle dynamics, with input
(longitudinal acceleration) and front steering angle , are approximated by:

In the state vector, denotes the lateral velocity, denotes the longitudinal velocity and
 denotes the yaw angle. The vehicle parameters are provided in the helperACCSetUp
file.

The outputs from the vehicle dynamics (such as longitudinal velocity and lateral
velocity) are based on body fixed coordinates. To obtain the trajectory traversed by the

 Adaptive Cruise Control with Sensor Fusion

11-29

vehicle, the body fixed coordinates are converted into global coordinates through the
following relations:

The yaw angle and yaw angle rate are also converted into the units of degrees.

The goal for the driver steering model is to keep the vehicle in its lane and follow the
curved road by controlling the front steering angle . This goal is achieved by driving the
yaw angle error and lateral displacement error to zero (see the following figure),
where

The desired yaw angle rate is given by (denotes the radius for the road
curvature).

The Actors and Sensor Simulation subsystem generates the synthetic sensor data
required for tracking and sensor fusion. Before running this example, the
drivingScenario function was used to create a simulation environment with a curved
road and multiple actors moving on the road. The scenario was saved to a file. To see how
you can define the scenario, see the Scenario Authoring section.

11 Automated Driving Applications

11-30

The motion of the ego car is controlled by the control system and is not recorded as part
of the recorded scenario. Instead, the ego car position, velocity, yaw angle, and yaw rate
are received as inputs from the Vehicle Dynamics block and are packed into a single actor
pose structure using the packEgo MATLAB function block.

The Scenario Reader block reads the actor pose data and the road boundary data from
the file that was used to save the scenario. The block converts both the actor poses and
the road boundaries from scenario coordinates to the ego car coordinates. The actor
poses are streamed on a bus generated by the block. In this example, you use a Vision
Detection Generator block and Radar Detection Generator block. Both sensors are long-
range and forward-looking, and provide good coverage of the front of the ego car, as
needed for ACC. The sensors use the actor poses in ego coordinates to generate lists of
detections of the vehicles in front of the ego car. Finally, a clock block is used as an
example of how the vehicle would have a centralized time source. The time is used by the
Multi-Object Tracker block.

 Adaptive Cruise Control with Sensor Fusion

11-31

Scenario Authoring

The scenario was authored using the helperScenarioAuthoring function. To open the
function, in the main model, click Edit Scenario, or run the following command to open
the function:

edit helperScenarioAuthoring

The function creates a drivingScenario. The driving scenario allows you to define
roads and vehicles moving on the roads. For this example, you define two parallel roads of
constant curvature. To define the road, you define the road centers, the road width, and
banking angle (if needed). The road centers were chosen by sampling points along a
circular arc, spanning a turn of 60 degrees of constant radius of curvature.

You define all the other vehicles in the scenario, excluding the ego car to be controlled by
the model. To define the motion of the vehicles, you define their trajectory by a set of
waypoints and speeds. A quick way to define the waypoints is by choosing a subset of the
road centers defined earlier, with an offset to the left or right of the road centers to
control the lane in which the vehicles travel.

This example shows four vehicles: a fast-moving car in the left lane, a slow-moving car in
the right lane, a car approaching on the opposite side of the road, and a car that starts on
the right lane, but then moves to the left lane to pass the slow-moving car.

Finally, the driving scenario must be saved to a file. The function uses the record method
to obtain the actor poses relative to the scenario coordinates at every sample time. The
function obtains the road boundaries as a cell array using the roadBoundaries function.
Due to code generation limitations, it then converts the cell array to a structure to allow it
to be loaded by the Scenario Reader block.

The helperScenarioAuthoring function allows you to:

1 Modify the road radius of curvature, which is the first input to the function. The
default is 760 meters.

2 Modify the file name used when saving the driving scenario. The default is
'scenario'.

3 Visualize the scenario by setting the third input to the helper function to true. The
default is false. You can edit the helper function and create your own scenarios.

11 Automated Driving Applications

11-32

Generating Code for the Control Algorithm

The ACCWithSensorFusionMdlRef model is configured to support generating C code
using Embedded Coder software. To check if you have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by
running:

if hasEmbeddedCoderLicense
 rtwbuild('ACCWithSensorFusionMdlRef')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop
(SIL) simulation. To simulate the ACCWithSensorFusionMdlRef referenced model in
SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('ACCTestBenchExample/ACC with Sensor Fusion',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

 Adaptive Cruise Control with Sensor Fusion

11-33

When you run the ACCTestBenchExample model, code is generated, compiled, and
executed for the ACCWithSensorFusionMdlRef model. This enables you to test the
behavior of the compiled code through simulation.

Conclusions

This example shows how to implement an integrated adaptive cruise controller (ACC) on
a curved road with sensor fusion, test it in Simulink using synthetic data generated by the
Automated Driving System Toolbox, componentize it, and automatically generate code for
it.

Remove the example file folder from the MATLAB path.

rmpath(fullfile(matlabroot,'examples','mpc','main'));

See Also
Blocks
Adaptive Cruise Control System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-34

Lane Keeping Assist System Using Model Predictive
Control

This example shows how to use the Lane Keeping Assist System block in Simulink® and
demonstrates the control objectives and constraints of this block.

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Lane Keeping Assist System

A vehicle (ego car) equipped with a lane-keeping assist (LKA) system has a sensor, such as
camera, that measures the lateral deviation and relative yaw angle between the
centerline of a lane and the ego car. The sensor also measures the current lane curvature
and curvature derivative. Depending on the curve length that the sensor can view, the
curvature in front of the ego car can be calculated from the current curvature and
curvature derivative.

The LKA system keeps the ego car travelling along the centerline of the lanes on the road
by adjusting the front steering angle of the ego car. The goal for lane keeping control is to
drive both lateral deviation and relative yaw angle close to zero.

 Lane Keeping Assist System Using Model Predictive Control

11-35

Simulink Model for Ego Car

The dynamics for ego car are modeled in Simulink. Open the Simulink model.

mdl = 'mpcLKAsystem';
open_system(mdl)

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 15;

To describe the lateral vehicle dynamics, this example uses a bicycle model with the
following parameters:

• m is the total vehicle mass (kg)
• Iz is the yaw moment of inertia of the vehicle (mNs^2).
• lf is the longitudinal distance from the center of gravity to the front tires (m).
• lr is the longitudinal distance from center of gravity to the rear tires (m).
• Cf is the cornering stiffness of the front tires (N/rad).
• Cr is the cornering stiffness of the rear tires (N/rad).

m = 1575;
Iz = 2875;

11 Automated Driving Applications

11-36

lf = 1.2;
lr = 1.6;
Cf = 19000;
Cr = 33000;

You can represent the lateral vehicle dynamics using a linear time-invariant (LTI) system
with the following state, input, and output variables. The initial conditions for the state
variables are assumed to be zero.

• State variables: Lateral velocity and yaw angle rate
• Input variable: Front steering angle
• Output variables: Same as state variables

In this example, the longitudinal vehicle dynamics are separated from the lateral vehicle
dynamics. Therefore, the longitudinal velocity is assumed to be constant. In practice, the
longitudinal velocity can vary and the Lane Keeping Assist System Block uses adaptive
MPC to adjust the model of the lateral dynamics accordingly.

% Specify the longitudinal velocity in m/s.
Vx = 15;

Specify a state-space model, G(s), of the lateral vehicle dynamics.

A = [-(2*Cf+2*Cr)/m/Vx, -Vx-(2*Cf*lf-2*Cr*lr)/m/Vx;...
 -(2*Cf*lf-2*Cr*lr)/Iz/Vx, -(2*Cf*lf^2+2*Cr*lr^2)/Iz/Vx];
B = [2*Cf/m, 2*Cf*lf/Iz]';
C = eye(2);
G = ss(A,B,C,0);

Sensor Dynamics and Curvature Previewer

In this example, the Sensor Dynamics block outputs the lateral deviation and relative yaw
angle. The dynamics for relative yaw angle are , where denotes the
curvature. The dynamics for lateral deviation are .

The Curvature Previewer block outputs the previewed curvature with a look-ahead time
one second. Therefore, given a sample time , the prediction horizon 10 steps.
The curvature used in this example is calculated based on trajectories for a double lane
change maneuver.

Specify the prediction horizon and obtain the previewed curvature.

 Lane Keeping Assist System Using Model Predictive Control

11-37

PredictionHorizon = 10;

time = 0:0.1:15;
md = getCurvature(Vx,time);

Configuration of the Lane Keeping Assist System Block

The LKA system is modeled in Simulink using the Lane Keeping Assist System block. The
inputs to the LKA system block are:

• Previewed curvature (from lane detections)
• Ego longitudinal velocity
• Lateral deviation (from lane detections)
• Relative yaw angle (from lane detections)

The output of the LKA system is the front steering angle of the ego car. Considering the
physical limitations of the ego car, the steering angle is constrained to the range [-0.5,0.5]
rad/s.

u_min = -0.5;
u_max = 0.5;

For this example, the default parameters of the Lane Keeping Assist System block match
the simulation parameters. If your simulation parameters differ from the default values,
then update the block parameters accordingly.

Simulation Analysis

Run the model.

sim(mdl)

Plot the simulation results.

mpcLKAplot(logsout)

11 Automated Driving Applications

11-38

The lateral deviation and the relative yaw angle both converge to zero. That is, the ego
car follows the road closely based on the previewed curvature.

Remove example file folder from MATLAB path, and close Simulink model.

 Lane Keeping Assist System Using Model Predictive Control

11-39

rmpath(fullfile(matlabroot,'examples','mpc','main'));
bdclose(mdl)

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-40

Lane Keeping Assist with Lane Detection
This example shows how to simulate and generate code for an automotive lane keeping
assist (LKA) controller.

In this example, you will:

1 Review a control algorithm that combines data processing from lane detections and a
lane keeping controller from the Model Predictive Control Toolbox™.

2 Test the control system in a closed-loop Simulink model using synthetic data
generated by the Automated Driving System Toolbox™.

3 Configure the code generation settings for software-in-the-loop simulation and
automatically generate code for the control algorithm.

Introduction

A lane keeping assist (LKA) system is a control system that aids a driver in maintaining
safe travel within a marked lane of a highway. The LKA system detects when the vehicle
deviates from a lane and automatically adjust the steering to restore proper travel inside
the lane without additional input from the driver. In this example, the LKA system
switches between the driver steering command and lane keeping controller. This
approach is sufficient to introduce a modeling architecture for an LKA system, however a
real system would also provide haptic feedback to the steering wheel and enable the
driver to override the LKA system by applying sufficient counter-torque.

For the LKA to work correctly, the ego car must determine the lane boundaries and how
the lane in front of it curves. Idealized LKA designs rely mostly on the previewed
curvature, the lateral deviation, and relative yaw angle between the centerline of the lane
and the ego car. An example of such a system is given in “Lane Keeping Assist System
Using Model Predictive Control”. Moving from ADAS designs to more autonomous
systems, the LKA must be robust to missing, incomplete, or inaccurate measurement
readings from real-world lane detectors.

This example demonstrates a robust approach to the controller design when the data
from lane detections may not be accurate. To do so, it uses data from a synthetic lane
detector that simulates the impairments introduced by a wide-angle monocular vision
camera. The controller makes decisions when the data from sensor is invalid or outside a
range. This provides a safety guard when the sensor measurement is false due to
conditions in the environment, such as a sharp curve on the road.

Add example file folder to MATLAB® path.

 Lane Keeping Assist with Lane Detection

11-41

addpath(fullfile(matlabroot,'examples','mpc','main'));

Open Test Bench Model

To open the Simulink test bench model, use the following command.

open_system('LKATestBenchExample')

The model contains two main subsystems:

1 Lane Keeping Assist, which controls the front steering angle of the vehicle.
2 A Vehicle and Environment subsystem, which models the motion of the ego car and

models the environment.

Opening this model also runs the helperLKASetUp script which initializes data used by
the model. The script loads certain constants needed by the Simulink model, such as the
vehicle model parameters, controller design parameters, road scenario, and driver path.
You can plot the road and the path that the driver model will follow.

plotLKAInputs(scenario,driverPath)

11 Automated Driving Applications

11-42

Simulate Assisting a Distracted Driver

You can explore the behavior of the algorithm by enabling lane-keeping assistance and
setting the safe lateral distance. In the Simulink model, in the User Controls section,
switch the toggle to On, and set the Safe Lateral Distance to 1 meter. Alternatively,
enable the lane-keeping assist and set the safe lateral distance.

set_param('LKATestBenchExample/Enable','Value','1')
set_param('LKATestBenchExample/Safe Lateral Offset','Value','1')

To plot the results of the simulation, use the Bird's-Eye Scope. The Bird's-Eye Scope is a
model-level visualization tool in Simulink that you can open using a menu provided on the
Simulink model toolbar. For more information, see “Inspect and Analyze Models in
Simulink” (Simulink). After opening the scope, click Find Signals to set up the signals.
Then run the simulation for 15 seconds and explore the contents of the Bird's-Eye Scope.

sim('LKATestBenchExample','StopTime','15') % Simulate 15 seconds

 Lane Keeping Assist with Lane Detection

11-43

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [4678x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

The bird's-eye scope shows a symbolic representation of the road from the perspective of
the ego car. In this example, the bird's-eye scope renders the coverage area of the
synthetic vision detector as a shaded area. The ideal lane markings are additionally
shown, as well as the synthetically detected left and right lane boundaries (shown here in
red).

To run the full simulation and explore the results, use the following commands.

11 Automated Driving Applications

11-44

sim('LKATestBenchExample') % Simulate to end of scenario
plotLKAResults(scenario,logsout,driverPath)

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The blue curve for the driver path shows that the distracted driver may drive the ego car
to another lane when the road curvature changes. The red curve for the driver with Lane
Keeping Assist shows that the ego car remains in its lane when the road curvature
changes.

To plot the controller performance, use the following command.

plotLKAPerformance(logsout)

 Lane Keeping Assist with Lane Detection

11-45

• Top plot shows the lateral deviation relative to ego car. The lateral deviation with LKA
is within [-0.5,0.5] m.

• Middle plot shows the relative yaw angle. The relative yaw angle with LKA is within
[-0.15,0.15] rad.

• Bottom plot shows the steering angle of the ego car. The steering angle with LKA is
within [-0.5,0.5] rad.

11 Automated Driving Applications

11-46

To view the controller status, use the following command.

plotLKAStatus(logsout)

• Top plot shows the left and right lane offset. Around 5.5 s, 19 s, 31 s, and 33 s, the
lateral offset is within the distance set by the lane keeping assist. When this happens,
the lane departure is detected.

 Lane Keeping Assist with Lane Detection

11-47

• Middle plot shows the LKA status and the detection of lane departure. The departure
detected status is consistent with the top plot. The LKA is turned on when the lane
departure is detected, but the control is returned to the driver later when the driver
can steer the ego car correctly.

• Bottom plot shows the steering angle from driver and LKA. When the difference
between the steering angle from driver and LKA is small, the LKA releases control to
driver (for example, between 9 s to 17 s).

Simulate Lane Following

You can modify the value of Safe Lateral Offset for LKA to ignore the driver input, putting
the controller into a pure lane following mode. By increasing this threshold, the lateral
offset is always within the distance set by the lane keeping assist. Thus, the status for
lane departure is on and the lane keeping assist takes control all the time.

set_param('LKATestBenchExample/Safe Lateral Offset','Value','2')
sim('LKATestBenchExample') % Simulate to end of scenario

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

You can explore the results of the simulation using the following commands.

plotLKAResults(scenario,logsout)

11 Automated Driving Applications

11-48

The red curve shows that the Lane Keeping Assist on its own can keep the ego car
travelling along the centerline of its lane.

Use the following command to depict the controller performance.

plotLKAPerformance(logsout)

 Lane Keeping Assist with Lane Detection

11-49

• Top plot shows the lateral deviation relative to ego car. The lateral deviation with LKA
is within [-0.1,0.1] m.

• Middle plot shows the relative yaw angle. The relative yaw angle with LKA is within
[-0.02,0.02] rad.

• Bottom plot shows the steering angle of the ego car. The steering angle with LKA is
within [-0.04,0.04] rad.

11 Automated Driving Applications

11-50

To view the controller status, use the following command.

plotLKAStatus(logsout)

• Top plot shows the left and right lane offset. Since the lateral offset is never within the
distance set by the lane keeping assist, the lane departure is not detected.

 Lane Keeping Assist with Lane Detection

11-51

• Middle plot shows that the LKA status is always one, that is, the Lane Keeping Assist
takes control all the time.

• Bottom plot shows the steering angle from driver and LKA. The steering angle from
driver negotiating with the curved road is too aggressive. The small steering angle
from LKA is sufficient for the curved road in this example.

Explore Lane Keeping Assist Algorithm

The Lane Keeping Assist model contains four main parts: 1) Estimate Lane Center 2) Lane
Keeping Controller 3) Detect Lane Departure, and 4) Apply Assist.

open_system('LKATestBenchExample/Lane Keeping Assist')

The Detect Lane Departure subsystem outputs a signal which is true when the vehicle is
too close to a detected lane. We detect a departure when the offset between the vehicle
and lane boundary from the Lane Sensor is less than the Lane Assist Offset input.

The Estimate Lane Center subsystem outputs the data from lane sensors to the lane
keeping controller. The detector in this example is configured to report the left and right
lane boundaries of the current lane in the current field-of-view of the camera. Each
boundary is modeled as a length of a curve whose curvature varies linearly with distance
(clothoid curve). To feed this data to a controller, we offset both of the detected curves
toward the center of the lane by the width of the car and a small margin (1.8 m total). We
weight each of the resulting centered curves by the strength of the detection and pass the
averaged result to the controller. Also, it provides finite values for inputs to the Lane

11 Automated Driving Applications

11-52

Keeping Controller subsystem. The previewed curvature provides the centerline of lane
curvature ahead of the ego car. In this example, the ego car can look ahead for 3 seconds,
which is the product of the prediction horizon and sample time. This enables the
controller to use previewed information for calculating steering angle for the ego car
which improves the MPC controller performance.

The goal for the Lane Keeping Controller block is to keep the vehicle in its lane and follow
the curved road by controlling the front steering angle . This goal is achieved by driving
the lateral deviation and the relative yaw angle to be small (see the figure below).

The LKA controller calculates a steering angle for the ego car based on the following
inputs:

• Previewed curvature (derived from Lane Detections)
• Ego longitudinal velocity
• Lateral deviation (derived from Lane Detections)
• Relative yaw angle (derived from Lane Detections)

Considering physical limitations of the ego car, the steering angle is constrained to be
within [-0.5,0.5] rad. You can change the prediction horizon or move the Controller
Behavior slider to adjust the performance of the controller.

 Lane Keeping Assist with Lane Detection

11-53

The Apply Assist subsystem decides if the lane keeping controller or the driver takes
control of the ego car. The subsystem switches between the driver commanded steer and
the assisted steer from the Lane Keeping Controller. The switch to assisted steer is
initiated when a lane departure is detected. Control is returned to the driver when the
driver begins steering within the lane again.

Explore Vehicle and Environment

The Vehicle and Environment subsystem enables closed loop simulation of the lane
keeping assist controller.

open_system('LKATestBenchExample/Vehicle and Environment')

The Vehicle Dynamics subsystem models the vehicle dynamics with Vehicle Body 3DOF
Single Track block from Vehicle Dynamics Blockset™.

The Scenario Reader block generates the ideal left and right lane boundaries based on
the position of the vehicle with respect to the scenario created in helperLKASetUp.

The Vision Detection Generator block takes the ideal lane boundaries from the Scenario
Reader block. The detection generator models the field of view of a monocular camera
and determines the heading angle, curvature, curvature derivative, and valid length of
each road boundary, accounting for any other obstacles.

11 Automated Driving Applications

11-54

The Driver subsystem generates the driver steering angle based on the driver path which
was created in helperLKASetUp.

Generate Code for the Control Algorithm

The LKARefMdl model is configured to support generating C code using Embedded
Coder software. To check if you have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by
running:

if hasEmbeddedCoderLicense
 rtwbuild('LKARefMdl')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop
(SIL) simulation. To simulate the LKARefMdl referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('LKATestBenchExample/Lane Keeping Assist',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

When you run the LKATestBenchExample model, code is generated, compiled, and
executed for the LKARefMdl model. This enables you to test the behavior of the compiled
code through simulation.

Conclusions

This example shows how to implement an integrated lane keeping assist (LKA) controller
on a curved road with lane detection, test it in Simulink using synthetic data generated by
the Automated Driving System Toolbox, componentize it, and automatically generate code
for it.

Remove the example file folder from the MATLAB path.

 Lane Keeping Assist with Lane Detection

11-55

rmpath(fullfile(matlabroot,'examples','mpc','main'));

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-56

Lane Following Control with Sensor Fusion and Lane
Detection

This example shows how to simulate and generate code for an automotive lane-following
controller.

In this example, you will:

1 Review a control algorithm that combines sensor fusion, lane detection, and a lane
following controller from the Model Predictive Control Toolbox™.

2 Test the control system in a closed-loop Simulink® model using synthetic data
generated by the Automated Driving System Toolbox™.

3 Configure the code generation settings for software-in-the-loop simulation and
automatically generate code for the control algorithm.

Introduction

A lane following system is a control system that keeps the vehicle traveling within a
marked lane of a highway, while maintaining a user-set velocity or safe distance from the
preceding vehicle. A lane following system includes combined longitudinal and lateral
control of the ego vehicle:

• Longitudinal control - Maintain a driver-set velocity and keep a safe distance from the
preceding car in the lane by adjusting the acceleration of the ego vehicle.

• Lateral control - Keep the ego car travelling along the centerline of its lane by
adjusting the steering of the ego vehicle

The combined lane following control system achieves the individual goals for longitudinal
and lateral control. Further, the lane following control system can adjust the priority of
the two goals when they cannot be met simultaneously.

For an example of longitudinal control using adaptive cruise control (ACC) with sensor
fusion, see “Adaptive Cruise Control with Sensor Fusion” on page 11-13. For an example
of lateral control using a lane keeping assist (LKA) system with lane detection, see “Lane
Keeping Assist with Lane Detection” on page 11-41. The ACC example assumes ideal lane
detection, and the LKA example does not consider surrounding vehicles.

In this example, both lane detection and surrounding cars are considered. The lane
following system synthesizes data from vision and radar detections, estimates the lane

 Lane Following Control with Sensor Fusion and Lane Detection

11-57

center and lead car distance, and calculates the longitudinal acceleration and steering
angle of the ego car.

Add example file folder to MATLAB® path.

addpath(fullfile(matlabroot,'examples','mpc','main'));

Open Test Bench Model

Open the Simulink test bench model.

open_system('LaneFollowingTestBenchExample')

11 Automated Driving Applications

11-58

The model contains four main components:

1 Lane Following Controller - Controls both the longitudinal acceleration and front
steering angle of the ego vehicle

2 Vehicle and Environment - Models the motion of the ego vehicle and models the
environment

 Lane Following Control with Sensor Fusion and Lane Detection

11-59

3 Collision Detection - Stops the simulation when a collision of the ego vehicle and lead
vehicle is detected

4 MIO Track - Enables MIO track for display in Bird's Eye Scope.

Opening this model also runs the helperLFSetUp script, which initializes the data used
by the model by loading constants needed by the Simulink model, such as the vehicle
model parameters, controller design parameters, road scenario, and surrounding cars.

Plot the road and the path that the ego vehicle will follow using:

plot(scenario)

To plot the results of the simulation and depict the ego vehicle surroundings and tracked
objects, use the Bird's-Eye Scope. The Bird's-Eye Scope is a model-level visualization tool

11 Automated Driving Applications

11-60

in Simulink that you can using a menu provided on the Simulink model toolbar. After
opening the scope, set up the signals by clicking Find Signals.

To get a mid-simulation view, simulate the model for 10 seconds.

sim('LaneFollowingTestBenchExample','StopTime','10')

After simulating the model for 10 seconds, open the Bird's-Eye Scope.

 Lane Following Control with Sensor Fusion and Lane Detection

11-61

The bird's-eye scope shows the results of the sensor fusion. It shows how the radar and
vision sensors detect the vehicles within their coverage areas. It also shows the tracks

11 Automated Driving Applications

11-62

maintained by the Multi-Object Tracker block. The yellow track shows the most important
object (MIO), which is the closest track in front of the ego vehicle in its lane. The ideal
lane markings are also shown along with the synthetically detected left and right lane
boundaries (shown in red).

Simulate the model to the end of the scenario.

sim('LaneFollowingTestBenchExample')

Plot the controller performance.

plotLFResults(logsout)

 Lane Following Control with Sensor Fusion and Lane Detection

11-63

11 Automated Driving Applications

11-64

The first figure shows the following spacing control performance results.

• The Velocity plot shows that the ego vehicle maintains velocity control from 0 to 9
seconds, switches to spacing control from 9 to 18 seconds, then switches back to
velocity control.

• The Distance between two cars plot shows that the actual distance between lead
vehicle and ego vehicle is always greater than the safe distance.

 Lane Following Control with Sensor Fusion and Lane Detection

11-65

• The Acceleration plot shows that the acceleration for ego vehicle is smooth.
• The Collision status plot shows that no collision between lead vehicle and ego

vehicle is detected, thus the ego vehicle runs in a safe mode.

The second figure shows the following lateral control performance results.

• The Lateral deviation plot shows that the distance to the lane centerline is within 0.2
m.

• The Relative yaw angle plot shows that the yaw angle error with respect to lane
centerline is within 0.03 rad (less than 2 degrees).

• The Steering angle plot shows that the steering angle for ego car is smooth.

Explore Lane Following Controller

The Lane Following Controller subsystem contains three main parts: 1) Estimate Lane
Center 2) Tracking and Sensor Fusion 3) MPC Controller

open_system('LaneFollowingTestBenchExample/Lane Following Controller')

11 Automated Driving Applications

11-66

The Estimate Lane Center subsystem outputs the lane sensor data to the MPC controller.
The previewed curvature provides the centerline of lane curvature ahead of the ego
vehicle. In this example, the ego vehicle can look ahead for 3 seconds, which is the
product of the prediction horizon and the controller sample time. The controller uses
previewed information for calculating the ego vehicle steering angle, which improves the
MPC controller performance. The lateral deviation measures the distance between the
ego car and the centerline of the lane. The relative yaw angle measures the yaw angle
difference between the ego car and the road. The ISO 8855 to SAE J670E block inside the
subsystem converts the coordinates from Lane Detections, which use ISO 8855, to the
MPC Controller which uses SAE J670E.

The Tracking and Sensor Fusion subsystem processes vision and radar detections coming
from the Vehicle and Environment subsystem and generates a comprehensive situation

 Lane Following Control with Sensor Fusion and Lane Detection

11-67

picture of the environment around the ego vehicle. Also, it provides the lane following
controller with an estimate of the closest vehicle in the lane in front of the ego vehicle.

The goals for the MPC Controller block are to:

• Maintain the driver-set velocity and keep a safe distance from lead vehicle. This goal is
achieved by controlling the longitudinal acceleration.

• Keep the ego vehicle in the middle of the lane; that is reduce the lateral deviation
 and the relative yaw angle , by controlling the steering angle.

• Slow down the ego vehicle when road is curvy. To achieve this goal, the MPC
controller has larger penalty weights on lateral deviation than on longitudinal speed.

The MPC controller is designed in createLaneFollowingController and the MPC
Controller block uses adaptive MPC, which updates the vehicle model at run time. The
lane following controller calculates the longitudinal acceleration and steering angle for
the ego vehicle based on the following inputs:

• Driver-set velocity
• Ego vehicle longitudinal velocity
• Previewed curvature (derived from Lane Detections)

11 Automated Driving Applications

11-68

• Lateral deviation (derived from Lane Detections)
• Relative yaw angle (derived from Lane Detections)
• Relative distance between lead vehicle and ego vehicle (from the Tracking and Sensor

Fusion system)
• Relative velocity between lead vehicle and ego vehicle (from the Tracking and Sensor

Fusion system)

Considering the physical limitations of the ego vehicle, the steering angle is constrained
to be within [-0.26,0.26] rad, and the longitudinal acceleration is constrained to be within
[-3,2] m/s^2.

Explore Vehicle and Environment

The Vehicle and Environment subsystem enables closed-loop simulation of the lane
following controller.

open_system('LaneFollowingTestBenchExample/Vehicle and Environment')

The System Latency blocks model the latency in the system between model inputs and
outputs. The latency can be caused by sensor delay or communication delay. In this
example, the latency is approximated by one sample time seconds.

The Vehicle Dynamics subsystem models the vehicle dynamics using a Bicycle Model -
Force Input block from the Vehicle Dynamics Blockset™. The lower-level dynamics are
modeled by a first-order linear system with a time constant of seconds.

The SAE J670E to ISO 8855 subsystem converts the coordinates from Vehicle Dynamics,
which uses SAE J670E, to Scenario Reader, which uses ISO 8855.

 Lane Following Control with Sensor Fusion and Lane Detection

11-69

The Scenario Reader block reads the positions and orientations (poses) of the vehicles
(actors) and the road boundary data from the file that was used to save the scenario. The
block converts both the actor poses and the road boundaries from scenario coordinates to
the ego vehicle coordinates. The actor poses are streamed on a bus generated by the
block. The Scenario Reader block also generates the ideal left and right lane boundaries
based on the position of the vehicle with respect to the scenario created in
helperLFSetUp.

The Vision Detection Generator block takes the ideal lane boundaries from the Scenario
Reader block. The detection generator models the field of view of a monocular camera
and determines the heading angle, curvature, curvature derivative, and valid length of
each road boundary, accounting for any other obstacles. The Radar Detection block
generates point detections from the ground-truth data present in the field-of-view of the
radar based on the radar cross-section defined in the scenario.

Run Controller for Multiple Test Scenarios

This example uses multiple test scenarios based on ISO standards and real-world
scenarios. To verify the controller performance, you can test the controller for multiple
scenarios and tune the controller parameters if the performance is not satisfactory. To do
so:

1 Select the scenario by changing scenarioId in helperLFSetUp.
2 Configure the simulation parameters by running helperLFSetUp.
3 Simulate the model with the selected scenario.
4 Evaluate the controller performance using plotLFResults
5 Tune the controller parameters if the performance is not satisfactory.

You can automate the verification and validation of the controller using Simulink Test™.

Generate Code for the Control Algorithm

The LFRefMdl model supports generating C code using Embedded Coder® software. To
check if you have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by
running:

11 Automated Driving Applications

11-70

if hasEmbeddedCoderLicense
 rtwbuild('LFRefMdl')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop
(SIL) simulation. To simulate the LFRefMdl referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('LaneFollowingTestBenchExample/Lane Following Controller',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

When you run the LaneFollowingTestBenchExample model, code is generated,
compiled, and executed for the LFRefMdl model, which enables you to test the behavior
of the compiled code through simulation.

Conclusions

This example shows how to implement an integrated lane following controller on a curved
road with sensor fusion and lane detection, test it in Simulink using synthetic data
generated using the Automated Driving System Toolbox, componentize it, and
automatically generate code for it.

Remove the example file folder from the MATLAB path.

rmpath(fullfile(matlabroot,'examples','mpc','main'));

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

 See Also

11-71

Lane-Following Control with Monocular Camera
Perception

This example enables you to simulate the combined effects of a vision-based perception
algorithm with a lane-following controller.

In this example, you:

1 Integrate a Simulink®-based control algorithm, a MATLAB®-based vision perception
algorithm, and a photorealistic environment based on the Unreal Engine®

2 Explore the effects of a lane detector on lane-following control
3 Explore the effect of a vehicle detector on spacing control

Introduction

Control algorithms used in automated driving applications are often designed and tested
with Simulink models for closed-loop simulation. Closed-loop simulation involves
modeling vehicle dynamics and probabilistic sensor models in a simplified virtual
environment. For more information on this workflow, see “Lane Following Control with
Sensor Fusion and Lane Detection” on page 11-57. In that example, the controller is
partitioned as a model reference that supports simulation and code generation.

Perception algorithms in automated driving applications are often designed and tested
with MATLAB code using recorded data. For example, vision-based perception algorithms
are often designed and tested against recorded video. For more information on this
workflow, see “Visual Perception Using Monocular Camera” (Automated Driving System
Toolbox). In that example, recorded video is used to test a vision processing algorithm
partitioned as a MATLAB class.

System engineers often want to explore how the combination of perception and controller
algorithms affects system performance. To test the integration of a controller with a
vision-based perception algorithm, integration with a photorealistic simulation
environment is required. In this example, you enable system-level simulation through
integration with the Unreal Engine. The 3-D visualization engine requires a Windows®
64-bit platform.

if ~ispc
 error('Vehicle Dynamics Blockset 3D visualization engine requires a Windows 64-bit platform');
end

Add example file folder to MATLAB® path.

11 Automated Driving Applications

11-72

addpath(fullfile(matlabroot,'examples','mpc','main'));

To ensure reproducibility of the simulation results, set the random seed.

rng(0)

Explore Integration of Controller and Perception Algorithms

Open the system-level simulation model, which integrates the control and perception
algorithms.

open_system('LaneFollowingWithMonoCameraTestBench')

The test bench model integrates the control algorithm by referencing the LFRefMdl
Simulink model from “Lane Following Control with Sensor Fusion and Lane Detection” on
page 11-57. The vehicle dynamics are also consistent with that example.

The test bench model integrates the vision detection algorithm using a MATLAB System
object™. The System object in the test bench model (helperMonoSensorSysObj) is an
augmented version of the helperMonoSensor MATLAB class in the “Visual Perception
Using Monocular Camera” (Automated Driving System Toolbox) example. The underlying
mathematics of these classes are the same. The primary difference is the addition of
methods that enable integration with Simulink. A copy of the helperMonoSensor class is
included in this example. To compare the classes and review the modifications, type:

visdiff('helperMonoSensor.m','helperMonoSensorSysObj.m')

 Lane-Following Control with Monocular Camera Perception

11-73

The test bench model integrates the Unreal Engine using the techniques described in
“Scene Interrogation with Camera and Ray Tracing Reference Application” (Vehicle
Dynamics Blockset), which enable control of the ego vehicle pose and target vehicle pose.
The target vehicle pose follows a predetermined path. An ideal camera from the Unreal
Engine is used as input to the perception algorithm.

The test bench model does not include a sensor model for radar detections. Therefore, the
Zero Radar Detections block outputs a bus consistent with zero radar detections.

Simulate Lane Following Scenario

To see the effects of lane detection independent of vehicle occlusion, disable the target
vehicle, then run the simulation.

set_param('LaneFollowingWithMonoCameraTestBench/Target Vehicle Pose',...
 'EnableTargetVehicle','off')
sim('LaneFollowingWithMonoCameraTestBench')

 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Plot the lateral controller performance results.

plotLFLateralResults(logsout)

11 Automated Driving Applications

11-74

For this simulation, the:

• Detected lane boundary lateral offsets plot shows the lateral offsets for the
detected left and right lanes boundaries. The detected values are close to the truth of
the lane, which is 4 meters wide.

 Lane-Following Control with Monocular Camera Perception

11-75

• Lateral deviation plot shows the lateral deviation of the ego vehicle from the
centerline of the lane. The lateral deviation is close to 0, which implies that the ego
vehicle closely follows the centerline.

• Relative yaw angle plot the relative yaw angle between ego vehicle and the
centerline of the lane. The relative yaw angle is very close to 0, which implies that the
heading angle of ego vehicle matches the yaw angle of the centerline closely.

• Steering angle plot shows the steering angle of ego vehicle. The steering angle
reaches steady state within 2 seconds, and the steering angle trajectory is smooth.

The perception algorithm detects the boundaries of the right lane, and the ego vehicle
closely follows the center of the lane.

Simulate Lane Following with Spacing Control Scenario

Integration with the Unreal Engine lets you control the position of a target vehicle on the
road. To see the effects of lane detection with spacing control, enable the target vehicle,
run the system simulation, and plot the results. The simulation runs slower than real time
primarily due to processing of the image by the perception algorithm.

set_param('LaneFollowingWithMonoCameraTestBench/Target Vehicle Pose','EnableTargetVehicle','on')
sim('LaneFollowingWithMonoCameraTestBench')

11 Automated Driving Applications

11-76

 Lane-Following Control with Monocular Camera Perception

11-77

Plot the longitudinal controller performance results.

plotLFLongitudinalResults(logsout)

11 Automated Driving Applications

11-78

For this simulation, the:

• Detected relative distance to target plot shows the detected relative distance
between the target lead vehicle and ego vehicle. The detected distance values are
noisy.

• Velocity plot shows the target and ego vehicle velocities. Due to the noise in the
detection of relative distance, the detected lead vehicle velocity is also noisy. The

 Lane-Following Control with Monocular Camera Perception

11-79

average of the detected lead vehicle velocity is near the truth, which is 10 m/s.
Further, to maintain safe distance between lead vehicle and ego vehicle, the controller
for the ego vehicle can follow the set velocity or lead vehicle velocity.

• Distance between ego and target vehicles plot shows the distance between lead
vehicle and ego vehicle. Most of the time, the relative distance is greater than the safe
distance.

• Acceleration plot shows the ego vehicle acceleration. When the relative distance is
less than the safe distance, the controller slows down using maximum braking (for
example, from 3.5 seconds to 6 seconds).

Plot the lateral controller performance results.

plotLFLateralResults(logsout)

11 Automated Driving Applications

11-80

Similar to the case when the target vehicle is not enabled, the ego vehicle has satisfactory
lateral performance. The addition of a target vehicle affects the detection of lane
boundaries in some conditions, which causes the controller to react aggressively. In the
Detected lane boundary lateral offsets plot, the spikes in the lane detections are due
to the increased noise when adding the target vehicle. Given the noisy measurements, the
lateral deviation (second plot), and relative yaw angle (third plot) are less accurate. As a
result, the controller responds more aggressively (bottom plot). In real-world

 Lane-Following Control with Monocular Camera Perception

11-81

applications, a tracker is often added to the lane detections to compensate for detection
noise.

Conclusion

This example shows how to enable system-level simulation of controls and vision-based
perception algorithms by integrating a Simulink-based control algorithm (using a
reference model) with a MATLAB-based perception algorithm (using a System object).
The example also examines the system-level effects of combining these algorithms by
simulating the vehicle dynamics and perception in a photorealistic environment using the
Unreal Engine.

Remove the example file folder from the MATLAB path.

rmpath(fullfile(matlabroot,'examples','mpc','main'));

See Also
Blocks
Lane Keeping Assist System

More About
• “Automated Driving Using Model Predictive Control” on page 11-2

11 Automated Driving Applications

11-82

