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Sample Time
Duration

Recommended practice is to choose the control interval duration (controller property T;)
initially, and then hold it constant as you tune other controller parameters. If it becomes
obvious that the original choice was poor, you can revise Ts. If you do so, you might then
need to retune other settings.

Qualitatively, as T, decreases, rejection of unknown disturbance usually improves and
then plateaus. The T, value at which performance plateaus depends on the plant dynamic
characteristics.

However, as T, becomes small, the computational effort increases dramatically. Thus, the
optimal choice is a balance of performance and computational effort.

In Model Predictive Control, the prediction horizon, p is also an important consideration.
If one chooses to hold the prediction horizon duration (the product p*T;) constant, p must
vary inversely with T,. Many array sizes are proportional to p. Thus, as p increases, the
controller memory requirements and QP solution time increase.

Consider the following when choosing T:

* As arough guideline, set T, between 10% and 25% of your minimum desired closed-
loop response time.

* Run at least one simulation to see whether unmeasured disturbance rejection
improves significantly when T is halved. If so, consider revising T.

» For process control, T, >> 1 s is common, especially when MPC supervises lower-level
single-loop controllers. Other applications, such as automotive or aerospace), can
require Ty < 1 s. If the time needed for solving the QP in real time exceeds the desired
control interval, consider the Explicit MPC on page 7-2 option.

» For plants with delays, the number of state variables needed for modeling delays is
inversely proportional to Ts.

» For open-loop unstable plants, if p*T, is too large, such that the plant step responses
become infinite during this amount of time, key parameters needed for MPC
calculations become undefined, generating an error message.
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Units

The controller inherits its time unit from the plant model. Specifically, the controller uses
the TimeUnit property of the plant model LTI object. This property defaults to seconds.

Prediction Horizon

Suppose that the current control interval is k. The prediction horizon, p, is the number of
future control intervals the MPC controller must evaluate by prediction when optimizing
its MVs at control interval k.

Tips

Recommended practice is to choose p early in the controller design and then hold it
constant while tuning other controller settings, such as the cost function weights. In
other words, do not use p adjustments for controller tuning. Rather, the value of p
should be such that the controller is internally stable and anticipates constraint
violations early enough to allow corrective action.

If the desired closed-loop response time is T and the control interval is T, try p such
that T = pTs.

Plant delays impose a lower bound on the possible closed-loop response times. Choose
p accordingly. To check for a violation of this condition, use the review command.

Recommended practice is to increase p until further increases have a minor impact on
performance. If the plant is open-loop unstable, the maximum p is the number of
control intervals required for the open-loop step response of the plant to become
infinite. p > 50 is rarely necessary unless T is too small.

Unfavorable plant characteristics combined with a small p can generate an internally
unstable controller. To check for this condition, use the review command, and
increase p if possible. If p is already large, consider the following:

* Increase Ts.

* Increase the cost function weights on MV increments.

* Modify the control horizon or use MV blocking (see “Manipulated Variable
Blocking” on page 3-65).

* Use a small p with terminal weighting to approximate LQR behavior (See “Terminal
Weights and Constraints” on page 3-36).

1-3
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Control Horizon

The control horizon, m, is the number of MV moves to be optimized at control interval k.
The control horizon falls between 1 and the prediction horizon p. The default is m = 2.
Regardless of your choice for m, when the controller operates, the optimized MV move at
the beginning of the horizon is used and any others are discarded.

Tips
Reasons to keep m << p are as follows:
* Small m means fewer variables to compute in the QP solved at each control interval,

which promotes faster computations.

» If the plant includes delays, m < p is essential. Otherwise, some MV moves might not
affect any of the plant outputs before the end of the prediction horizon, leading to a
singular QP Hessian matrix. To check for a violation of this condition, use the review
command.

* Small m promotes (but does not guarantee) an internally stable controller.

Defining Sample Time and Horizons

You can define the sample time, prediction horizon, and control horizon when creating an
mpc controller at the command line. After creating a controller, mpcObj, you can modify
the sample time and horizons by setting the following controller properties:

* Sample time — mpcObj.Ts

* Prediction horizon — mpcObj.p

* Control horizon — mpcObj.m

Also, when designing an MPC controller using the MPC Designer app, in the Tuning
tab, in the Horizon section, you can modify the sample time and horizons.
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More About

. “Specify Constraints” on page 1-6
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Specify Constraints

Input and Output Constraints

By default, when you create a controller object using the mpc command, no constraints
exist. To include a constraint, set the appropriate controller property. The following table
summarizes the controller properties used to define most MPC constraints. (MV = plant
manipulated variable; OV = plant output variable; MV increment = u(k) - u(k - 1).

To include this constraint |Set this controller Soften constraint by
property setting

Lower bound on ith MV MV(1) Min > -Inf MV( i).MinECR > 0

Upper bound on ith MV MV(i).Max < Inf MV (i) .MaxECR > 0

Lower bound on ith OV OV(i).Min > -Inf OV(i).MinECR > 0

Upper bound on ith OV 0V(i).Max < Inf 0V (i).MaxECR > 0

Lower bound on ith MV MV (i) .RateMin > -Inf |MV(i).RateMinECR > 0

increment

Upper bound on ith MV MV(i).RateMax < Inf MV(i).RateMaxECR > 0

increment

To set the controller constraint properties using the MPC Designer app, in the Tuning

'l,ll \f

tab, click Constraints . In the Constraints dialog box, specify the constraint values.

See “Constraints” on page 2-13 for the equations describing the corresponding
constraints.

1-6
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Constraints (mpcl) x

~ Input Constraints

Channel Type Min Max RateMin RateMax
u(l) My -Inf Inf -Inf Inf

+ Constraint Softening Settings

- Output Constraints
Channel Type Min Max
yil] MO -Inf Inf
yi2) ug -Inf Inf

| + Constraint Softening Settings

(o] (Al [cancel (e

Tips
For MV bounds:

* Include known physical limits on the plant MVs as hard MV bounds.

* Include MV increment bounds when there is a known physical limit on the rate of

change, or your application requires you to prevent large increments for some other
reason.

* Do not include both hard MV bounds and hard MV increment bounds on the same MV,
as they can conflict. If both types of bounds are important, soften one.

For OV bounds:

1-7
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* Do not include OV bounds unless they are essential to your application. As an
alternative to setting an OV bound, you can define an OV reference and set its cost
function weight to keep the OV close to its setpoint.

* All OV constraints should be softened.

* Consider leaving the OV unconstrained for some prediction horizon steps. See “Time-
Varying Weights and Constraints” on page 3-6.

* Consider a time-varying OV constraint that is easy to satisfy early in the horizon,
gradually tapering to a more strict constraint. See “Time-Varying Weights and
Constraints” on page 3-6.

* Do not include OV constraints that are impossible to satisfy. Even if soft, such
constraints can cause unexpected controller behavior. For example, consider a SISO
plant with five sampling periods of delay. An OV constraint before the sixth prediction
horizon step is, in general, impossible to satisfy. You can use the review command to
check for such impossible constraints, and use a time-varying OV bound instead. See
“Time-Varying Weights and Constraints” on page 3-6.

Constraint Softening

Hard constraints are constraints that the quadratic programming (QP) solution must
satisfy. If it is mathematically impossible to satisfy a hard constraint at a given control
interval, k, the QP is infeasible. In this case, the controller returns an error status, and
sets the manipulated variables (MVs) to u(k) = u(k-1), that is, no change. If the condition
leading to infeasibility is not resolved, infeasibility can continue indefinitely, leading to a
loss of control.

Disturbances and prediction errors are inevitable in practice. Therefore, a constraint
violation could occur in the plant even though the controller predicts otherwise. A
feasible QP solution does not guarantee that all hard constraints will be satisfied when
the optimal MV is used in the plant.

If the only constraints in your application are bounds on MVs, the MV bounds can be hard
constraints, as they are by default. MV bounds alone cannot cause infeasibility. The same
is true when the only constraints are on MV increments.

However, a hard MV bound with a hard MV increment constraint can lead to infeasibility.
For example, an upset or operation under manual control could cause the actual MV used
in the plant to exceed the specified bound during interval k-1. If the controller is in
automatic during interval k, it must return the MV to a value within the hard bound. If the
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MV exceeds the bound by too much, the hard increment constraint can make correcting
the bound violation in the next interval impossible.

When there are hard constraints on plant outputs, or hard custom constraints (on linear
combinations of plant inputs and outputs, and the plant is subject to disturbances, QP
infeasibility is a distinct possibility.

All Model Predictive Control Toolbox constraints (except slack variable nonnegativity) can
be soft. When a constraint is soft, the controller can deem an MV optimal even though it
predicts a violation of that constraint. If all plant output, MV increment, and custom
constraints are soft (as they are by default), QP infeasibility does not occur. However,
controller performance can be substandard.

To soften a constraint, set the corresponding ECR value to a positive value (zero implies a
hard constraint). The larger the ECR value, the more likely the controller will deem it
optimal to violate the constraint in order to satisfy your other performance goals. The
Model Predictive Control Toolbox software provides default ECR values but, as for the
cost function weights, you might need to tune the ECR values in order to achieve
acceptable performance.

To understand how constraint softening works, suppose that your cost function uses

wy ;= wfs‘ =0, giving both the MV and MV increments zero weight in the cost function.
Only the output reference tracking and constraint violation terms are nonzero. In this
case, the cost function is:

2

oL wiyj . . 2
Jz) =YY —;[rj(k+z|k)—yj(k+L|k)J + PeEf
j=li=1| §;

Suppose that you have also specified hard MV bounds with V¥, (i) =0 and

V¥ max (i) = 0. Then these constraints simplify to:

uj,min (L) < uj (k+i_1|k) < uj,max(i)
5§ s sj

,i=1:p, j=1l:n,.

1-9
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Thus, the slack variable, €, no longer appears in the above equations. You have also

specified soft constraints on plant outputs with VJéV,min (¢)>0 and Vﬁmax(i) >0.

yj,min(i) vy . <yj (k+i|k) < Yjmax (l)
vy k J»mi”(l) - y - y
5j 5j 5j

+g,V?  (i),i=1:p, j=1l:n,

J,max

Now, suppose that a disturbance has pushed a plant output above its specified upper
bound, but the QP with hard output constraints would be feasible, that is, all constraint
violations could be avoided in the QP solution. The QP involves a trade-off between output
reference tracking and constraint violation. The slack variable, ¢, must be nonnegative.
Its appearance in the cost function discourages, but does not prevent, an optimal &, > 0.
A larger p, weight, however, increases the likelihood that the optimal &; will be small or
ZETo0.

If the optimal &, > 0, at least one of the bound inequalities must be active (at equality). A

relatively large VJQ‘: maxc (D) Makes it easier to satisfy the constraint with a small ;. In that
case,

y
s
J

can be larger, without exceeding

Yjmax (l) y .
T+ €LV max®-
J

Notice that V7, (i) does not set an upper limit on the constraint violation. Rather, it is a

tuning factor determining whether a soft constraint is easy or difficult to satisfy.
Tips

» Use of dimensionless variables simplifies constraint tuning. Define appropriate scale
factors for each plant input and output variable. See “Specify Scale Factors” on page
1-18.



See Also

To indicate the relative magnitude of a tolerable violation, use the ECR parameter
associated with each constraint. Rough guidelines are as follows:

¢ 0 — No violation allowed (hard constraint)

* 0.05 — Very small violation allowed (nearly hard)

* 0.2 — Small violation allowed (quite hard)

* 1 — average softness

* 5 — greater-than-average violation allowed (quite soft)
* 20 — large violation allowed (very soft)

Use the overall constraint softening parameter of the controller (controller object
property: Weights.ECR) to penalize a tolerable soft constraint violation relative to the
other cost function terms. Set the Weights.ECR property such that the corresponding
penalty is 1-2 orders of magnitude greater than the typical sum of the other three cost
function terms. If constraint violations seem too large during simulation tests, try
increasing Weights.ECR by a factor of 2-5.

Be aware, however, that an excessively large Weights.ECR distorts MV optimization,
leading to inappropriate MV adjustments when constraint violations occur. To check
for this, display the cost function value during simulations. If its magnitude increases
by more than 2 orders of magnitude when a constraint violation occurs, consider
decreasing Weights.ECR.

Disturbances and prediction errors can lead to unexpected constraint violations in a
real system. Attempting to prevent these violations by making constraints harder often
degrades controller performance.

See Also

review

More About

“Time-Varying Weights and Constraints” on page 3-6

“Terminal Weights and Constraints” on page 3-36

“Optimization Problem” on page 2-9

“DC Servomotor with Constraint on Unmeasured Output” on page 1-12
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DC Servomotor with Constraint on Unmeasured Output

1-12

This example shows how to design a model predictive controller for a DC
servomechanism under voltage and shaft torque constraints.

Reference

[1] A. Bemporad and E. Mosca, "Fulfilling hard constraints in uncertain linear systems by
reference managing," Automatica, vol. 34, no. 4, pp. 451-461, 1998.

See also EMPCMOTOR.

Define DC-Servo Motor Model

The linear open-loop dynamic model is defined in "plant". Variable "tau" is the maximum
admissible torque to be used as an output constraint.

[plant, tau] = mpcmotormodel;

Design MPC Controller

Specify input and output signal types for the MPC controller. The second output, torque,
is unmeasurable.

plant = setmpcsignals(plant,'MV',1,'MO',1,'U0",2);

MYV Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs and
outputs are of different orders of magnitude, you also use scale factors to facilitate MPC
tuning. Typical choices of scale factor are the upper/lower limit or the operating range.
MV = struct('Min',-220, 'Max',220, 'ScaleFactor',b440);

OV Constraints

Torque constraints are only imposed during the first three prediction steps.

0V = struct('Min',{-Inf, [-tau;-tau;-tau;-Infl}, 'Max',{Inf, [tau;tau;tau;Infl},  'ScaleF:

Weights



DC Servomotor with Constraint on Unmeasured Output

The control task is to get zero tracking offset for the angular position. Since you only have
one manipulated variable, the shaft torque is allowed to float within its constraint by
setting its weight to zero.

Weights = struct('MV',0, 'MVRate',0.1,'0V',[0.1 0O]);

Construct MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.1; % Sampling time

p = 10; % Prediction horizon
m= 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);

Simulate Using SIM Command

Use sim command to simulate the closed-loop control of the linear plant model in
MATLAB.

disp('Now simulating nominal closed-loop behavior');
Tstop = 8; % seconds

Tf = round(Tstop/Ts); % simulation iterations
r = [pi*ones(Tf,1) zeros(Tf,1)];% reference signal
[yl,t1l,ul] = sim(mpcobj,Tf,r);

Now simulating nominal closed-loop behavior
Plot results.

subplot(311)
stairs(tl,yl(:,1));
hold on
stairs(tl,r(:,1));
hold off
title('Angular Position')
subplot(312)
stairs(tl,yl(:,2));
title('Torque')
subplot(313)
stairs(tl,ul);
title('Voltage')

1-13
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Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.

mdl = 'mpc motor';

open_system(mdl)
sim(md1l)
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The closed-loop response is identical to the simulation result in MATLAB.
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bdclose(mdl)

See Also

More About
. “Specify Constraints” on page 1-6
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Specify Scale Factors

1-18

Overview

Recommended practice includes specification of scale factors for each plant input and
output variable, which is especially important when certain variables have much larger or
smaller magnitudes than others.

The scale factor should equal (or approximate) the span of the variable. Span is the
difference between its maximum and minimum value in engineering units, that is, the unit
of measure specified in the plant model. Internally, MPC divides each plant input and
output signal by its scale factor to generate dimensionless signals.

The potential benefits of scaling are as follows:

Default MPC tuning weights work best when all signals are of order unity. Appropriate
scale factors make the default weights a good starting point for controller tuning and
refinement.

When choosing cost function weights, you can focus on the relative priority of each
term rather than a combination of priority and signal scale.

Improved numerical conditioning. When values are scaled, round-off errors have less
impact on calculations.

Once you have tuned the controller, changing a scale factor is likely to affect performance
and the controller may need retuning. Best practice is to establish scale factors at the
beginning of controller design and hold them constant thereafter.

Defining Scale Factors

To identify scale factors, estimate the span of each plant input and output variable in
engineering units.

If the signal has known bounds, use the difference between the upper and lower limit.

If you do not know the signal bounds, consider running open-loop plant model
simulations. You can vary the inputs over their likely ranges, and record output signal
spans.

If you have no idea, use the default scale factor (=1).

You can define scale factors at the command line and using the MPC Designer app.



Specify Scale Factors

Once you have set the scale factors and have begun to tune the controller performance,
hold the scale factors constant.

Using Commands

After you create the MPC controller object using the mpc command, set the scale factor
property for each plant input and output variable.

For example, the following commands create a random plant, specify the signal types, and
define a scale factor for each signal.

% Random plant for illustrative purposes: 5 inputs, 3 outputs
Plant = drss(4,3,5);

Plant.InputName = {'MV1','UD1','MV2"','UD2','MD"'};
Plant.OutputName = {'UO','MO1"', 'M02'};

% Example signal spans
Uspan [2, 20, 0.1, 5, 2000];
Yspan [0.01, 400, 75];

% Example signal type specifications

iMv = [1 31;
iMD = 5;

iub = [2 4];
ibDV = [iMD,iUD];

Plant = setmpcsignals(Plant, 'MV',iMv,'MD',iMD,'UD',iUD,
‘MO, [2 3],'U0",1);
Plant.D(:,iMV) = 0; % MPC requires zero direct MV feed-through

% Controller object creation. Ts = 0.3 for illustration.
MPCobj = mpc(Plant,0.3);

% Override default scale factors using specified spans
for i = 1:2

MPCobj .MV(i).ScaleFactor = Uspan(iMV(i));
end

% NOTE: DV sequence is MD followed by UD
for i = 1:3
MPCobj .DV(1i).ScaleFactor

Uspan(iDV(1i));

end
for i = 1:3

MPCobj .0V (i) .ScaleFactor = Yspan(i);
end
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Using MPC Designer App

After opening MPC Designer and defining the initial MPC structure, on the MPC

Designer tab, click I/O Attributes 3 %

In the Input and Output Channel Specifications dialog box, specify a Scale Factor for
each input and output signal.

Input and Qutput Channel Specifications

~ Plant Inputs
_———
Channel Type Marne Unit Mominal Value # Scale Factor
ufl) MY T ¢ 0 1
uf2) uD CA 0 N /
u
~ Plant Qutputs
-
Channel Type Mame Unit Meminal Yalue Scale Factor
yid) MO T 0 1
y(2) uo C_A 0 N[ /.
u
‘oK | [apply| [cancet| [Help|

To update the controller settings, click OK.

See Also
MPC Designer | mpc
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More About

. “Choose Sample Time and Horizons” on page 1-2
. “Using Scale Factors to Facilitate Weight Tuning” on page 1-22
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Using Scale Factors to Facilitate Weight Tuning

This example shows how to specify scale factors in MPC controller to make weight tuning
easier.

Define Plant Model
The discrete-time, linear, state-space plant model has 10 states, 5 inputs, and 3 outputs.

[plant,Ts] = mpcscalefactor _model;
[ny,nu] = size(plant.D);

The plant inputs include manipulated variable (MV), measured disturbance (MD) and
unmeasured disturbance (UD). The plant outputs include measured outputs (MO) and
unmeasured outputs (UO).

mvindex = [1, 3, 5];
mdindex = 4;

udindex = 2;
moindex = [1 31;
uoindex = 2;

plant = setmpcsignals(plant, 'MV',mvindex, '"MD',mdindex, 'UD"',udindex, 'MO',moindex, 'U0", u
The nominal values and operating ranges of plant model are as follows:

* Input 1: nominal value is 100, range is [50 150]

* Input 2: nominal value is 10, range is [5 15]

* Input 3: nominal value is 0.01, range is [0.005 0.015]

* Input 4: nominal value is 0.1, range is [0.05 0.15]

* Input 5: nominal value is 1, range is [0.5 1.5]

* Output 1: nominal value is 0.01, range is [0.005 0.015]

* Output 2: nominal value is 1, range is [0.5 1.5]

* Output 3: nominal value is 100, range is [50 150]

Use 1sim command to run an open loop linear simulation to verify that plant outputs are

within the range and their average are close to the nominal values when input signals
vary randomly around their nominal values.

Unominal
Ynominal

[100;10;0.01;0.1;1];
[0.01;1;100];
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Uspan Unominal;

Yspan Ynominal;

t = (0:1000) '*Ts;

nt = length(t);

Uol = (rand(nt,nu)-0.5).*(ones(nt,1)*Uspan'); % design input signal

Yol = lsim(plant,Uol,t); % compute plant output

fprintf('The difference between average output values and the nominal values are %.2f%
abs(mean(Yol(:,1)))/Ynominal(1l)*100,abs(mean(Yol(:,2)))/Ynominal(2)*100,abs(mean(Y

The difference between average output values and the nominal values are 2.25%, 3.53%,
Evaluate MPC with Default MPC Weights

When plant input and output signals have different orders of magnitude, default MPC
weight settings often give poor performance.

Create an MPC controller with default weights:

* Weight.MV = 0
* Weight.MVRate = 0.1
* Weight.OV =1

C = mpc(plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Xnominal = zeros(10,1);
Unominal (udindex) = 0; % Nominal values for unmeasured disturbance must be 0
C.Model.Nominal = struct('X',Xnominal, 'DX"',Xnominal, 'Y"',Ynominal, 'U',Unominal);

First, test a sequence of step setpoint changes in three reference signals.

nStepLen = 15;
Tl = nStepLen*ny;

rl = ones(T1,1)*Ynominal(:)";
ii = 1;
for i = 1:ny

rl(ii:end,i) = rl(ii:end,i) + Ynominal(i);
ii = i1 + nSteplLen;

end

sim(C,T1,rl)
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-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.

-->Assuming output disturbance added to measured output channel #1 is integrated white
Assuming no disturbance added to measured output channel #3.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Plant Inputs

150 T T T

MV1

0 2 4 6 8 10 12 14 16 18 20 22
Time (seconds)
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Plant Outputs
0.03 - - - - - - - - - -

O p.02 4
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The tracking response of the first output is poor. The reason is that its range is small
compared to the other outputs. If the default controller tuning weights are used, the MPC
controller does not pay much attention to regulating this output because the associated
penalty is so small compared to the other outputs in the objective function.

Second, test the unmeasured disturbance rejection.

SimOpt = mpcsimopt;
SimOpt.UnmeasuredDisturbance = Uspan(udindex)';
T2 = 100;

r2 = ones(T2,1)*Ynominal(:)";
sim(C,T2,r2,[],SimOpt)
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Plant Outputs
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The disturbance rejection response is also poor. None of the outputs return to their
setpoints.

Evaluate MPC with Default MPC Weights After Specifying Scale Factors
Specifying input and output scale factors for the MPC controller:

* Improves the numerical quality of the optimization and state estimation calculations.

* Makes it more likely that the default tuning weights will achieve good controller
performance.

Copy the MPC controller with default weights.
2 = C;
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To specify scale factors, it is good practice to use the expected operating range of each
input and output.

for i = 1:length(mvindex)
C2.MV(1).ScaleFactor = Uspan(mvindex(i));
end
nmd = length(mdindex);
for i = 1:nmd
C2.D(1i).ScaleFactor = Uspan(mdindex(i));
end
for i = 1:length(udindex)
C2.D(i+nmd) .ScaleFactor = Uspan(udindex(i));

end
for i = 1l:ny

C2.0V(1i).ScaleFactor = Yspan(i);
end

Repeat the first test, which is a sequence of step setpoint changes in three reference
signals.

sim(C2,T1,r1)

-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.

-->Assuming output disturbance added to measured output channel #1 is integrated white
Assuming no disturbance added to measured output channel #3.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
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Plant Outputs
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Plant Inputs
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Repeat the second test, which is an unmeasured disturbance.

sim(C2,T2,r2,[],Sim0Opt)
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Plant Outputs
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Plant Inputs
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Both setpoint tracking and disturbance rejection responses are good even without tuning
MPC weights.

See Also
MPC Designer | mpc

More About
. “Specify Scale Factors” on page 1-18
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Tune Weights

A model predictive controller design usually requires some tuning of the cost function
weights. This topic provides tuning tips. See “Optimization Problem” on page 2-9 for
details on the cost function equations.

Initial Tuning

» Before tuning the cost function weights, specify scale factors for each plant input and
output variable. Hold these scale factors constant as you tune the controller. See
“Specify Scale Factors” on page 1-18 for more information.

* During tuning, use the sensitivity and review commands to obtain diagnostic
feedback. The sensitivity command is intended to help with cost function weight
selection.

* Change a weight by setting the appropriate controller property, as follows:

To change this weight |[Set this controller Array size
property

OV reference tracking Weights.OQV p-by-n,

(wY)

MV reference tracking Weights.MV p-by-n,

(w")

MV increment Weights.MVRate p-by-n,

suppression (wA4v)

Here, MV is a plant manipulated variable, and n, is the number of MVs. OV is a plant
output variable, and n, is the number of OVs. Finally,p is the number of steps in the
prediction horizon.

If a weight array contains n < p rows, the controller duplicates the last row to obtain a
full array of p rows. The default (n = 1) minimizes the number of parameters to be tuned,
and is therefore recommended. See “Time-Varying Weights and Constraints” on page 3-
6 for an alternative.

Tips for Setting OV Weights

 Considering the n, OVs, suppose that n,, must be held at or near a reference value
(setpoint). If the ith OV is not in this group, set Weights.0V(:,i) = 0.
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1-34

 If n, = ny, it is usually possible to achieve zero OV tracking error at steady state, if at
least n,, MVs are not constrained. The default Weights .0V = ones(1,ny) is a good
starting point in this case.

If n, > n,,, however, you have excess degrees of freedom. Unless you take preventive
measures, therefore, the MVs may drift even when the OVs are near their reference
values.

* The most common preventive measure is to define reference values (targets) for
the number of excess MVs you have, n, - n,.. Such targets can represent
economically or technically desirable steady-state values.

* An alternative measure is to set w,, > 0 for at least n, - n,, MVs to discourage the
controller from changing them.

 If n, < ny, you do not have enough degrees of freedom to keep all required OVs at a
setpoint. In this case, consider prioritizing reference tracking. To do so, set
Weights.OV(:,1i) > 0 to specify the priority for the ith OV. Rough guidelines for
this are as follows:

* 0.05 — Low priority: Large tracking error acceptable

* 0.2 — Below-average priority

* 1 — Average priority - the default. Use this value if n,, = 1.
* 5 — Above average priority

* 20 — High priority: Small tracking error desired

Tips for Setting MV Weights

By default, Weights .MV = zeros(1,nu). If some MVs have targets, the corresponding
MV reference tracking weights must be nonzero. Otherwise, the targets are ignored. If
the number of MV targets is less than (n, - ny), try using the same weight for each. A
suggested value is 0.2, the same as below-average OV tracking. This value allows the MVs
to move away from their targets temporarily to improve OV tracking.

Otherwise, the MV and OV reference tracking goals are likely to conflict. Prioritize by
setting the Weights.MV(:,1i) values in a manner similar to that suggested for
Weights.OV (see above). Typical practice sets the average MV tracking priority lower
than the average OV tracking priority (e.g., 0.2 < 1).

If the ith MV does not have a target, set Weights.MV(:,1i) = 0 (the default).
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Tips for Setting MVRate Weights

* By default, weights.MVRate = 0.1*ones(1,nu). The reasons for this default
include:

+ Ifthe plant is open-loop stable, large increments are unnecessary and probably
undesirable. For example, when model predictions are imperfect, as is always the
case in practice, more conservative increments usually provide more robust
controller performance, but poorer reference tracking.

* These values force the QP Hessian matrix to be positive-definite, such that the QP
has a unique solution if no constraints are active.

To encourage the controller to use even smaller increments for the ith MV, increase
the Weights.MVRate(:, i) value.

» If the plant is open-loop unstable, you might need to decrease the average
Weight.MVRate value to allow sufficiently rapid response to upsets.

Tips for Setting ECR Weights

See “Constraint Softening” on page 1-8 for tips regarding the Weights . ECR property.

Testing and Refinement

To focus on tuning individual cost function weights, perform closed-loop simulation tests
under the following conditions:

* No constraints.

* No prediction error. The controller prediction model should be identical to the plant
model. Both the MPC Designer app and the sim function provide the option to
simulate under these conditions.

Use changes in the reference and measured disturbance signals (if any) to force a
dynamic response. Based on the results of each test, consider changing the magnitudes of
selected weights.

One suggested approach is to use constant Weights.0V(:,1i) = 1 to signify “average
OV tracking priority,” and adjust all other weights to be relative to this value. Use the
sensitivity command for guidance. Use the review command to check for typical
tuning issues, such as lack of closed-loop stability.
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See “Adjust Disturbance and Noise Models” on page 3-50 for tests focusing on the
disturbance rejection ability of the controller.

Robustness

Once you have weights that work well under the above conditions, check for sensitivity to
prediction error. There are several ways to do so:

+ If you have a nonlinear plant model of your system, such as a Simulink® model,
simulate the closed-loop performance at operating points other than that for which the
LTI prediction model applies.

» Alternatively, run closed-loop simulations in which the LTI model representing the
plant differs (such as in structure or parameter values) from that used at the MPC
prediction model. Both the MPC Designer app and the sim function provide the
option to simulate under these conditions. For an example, see “Test Controller
Robustness” on page 4-22.

If controller performance seems to degrade significantly in comparison to tests with no
prediction error, for an open-loop stable plant, consider making the controller less
aggressive.

In MPC Designer, on the Tuning tab, you can do so using the Closed-Loop
Performance slider.

4\ MPC Designer - scenaricl: Qutput EI\EI
MPC DESIGNER TUNING SCENARIO PLOT QEs Bl @] =
Sample time: |1 ~ - f - -. t { Iy =
MPC Controller: | mpel = fx Robust Closed-Loop Performance Aggressie | | g i~
Prediction horizon: |10 ‘ , , §
Internal Plant: CSTR = Constraints  Weights i ‘ v b v v Review Store Export
Cantrol harizan: | 2 Models =  Sowsr SRS = = Design Controller Controller =
CONTROLLER HORIZON DESIGN FERFORMANCE TUNING ANALYSIS
Data Browser el sesasgasolloout | scenariol: Output |

——

Moving towards more robust control decreases OV/MV weights and increases MV Rate
weights, which leads to relaxed control of outputs and more conservative control moves.

At the command line, you can make the following changes to decrease controller
aggressiveness:

* Increase all Weight.MVRate values by a multiplicative factor of order 2.
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» Decrease all Weight.0V and Weight .MV values by dividing by the same factor.

After adjusting the weights, reevaluate performance both with and without prediction
error.
» If both are now acceptable, stop tuning the weights.

» If there is improvement but still too much degradation with model error, increase the
controller robustness further.

+ If the change does not noticeably improve performance, restore the original weights
and focus on state estimator tuning (see “Adjust Disturbance and Noise Models” on
page 3-50).

Finally, if tuning changes do not provide adequate robustness, consider one of the
following options:

* Adaptive MPC control on page 6-2

* (Gain-scheduled MPC control on page 8-2

See Also

More About

. “Optimization Problem” on page 2-9

. “Specify Constraints” on page 1-6

. “Adjust Disturbance and Noise Models” on page 3-50

. “Tuning Controller Weights”

. “Setting Targets for Manipulated Variables” on page 3-2
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Designing Model Predictive Controller at Equilibrium
Operating Point
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This example shows how to design a model predictive controller with non-zero nominal
values.

The plant model is obtained by linearization of a nonlinear plant in Simulink® at a non-
zero steady state operating point.

Linearize Nonlinear Plant Model

To run this example, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end
if ~mpcchecktoolboxinstalled('slcontrol")
disp('Simulink Control Design(R) is required to run this example.')
return
end

The nonlinear plant is implemented in Simulink® model "mpc nloffsets" and linearized at
the default operating condition using the "linearize" command from Simulink Control
Design®.

Create operating point specification.

plant mdl = 'mpc nloffsets';

op = operspec(plant mdl);

% Compute initial condition.

[op_point, op report] = findop(plant _mdl,op);
% Obtain nominal values of x, y and u.

x0 = [op_report.States(1l).x;op _report.States(2).x];
y0 = op_report.Outputs.y;

ud = op_report.Inputs.u;

% Obtain linear plant at the initial condition.

plant = linearize(plant mdl, op point);

Operating point search report:
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Operating point search report for the Model mpc nloffsets.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_nloffsets/Integrator

X: 0.575 dx: -1.82e-14 (0)
(2.) mpc_nloffsets/Integrator2

X: 2.15 dx: -8.38e-12 (0)
Inputs
(1.) mpc_nloffsets/Inl

u: -1.25 [-Inf Inf]
Outputs:

(1.) mpc_nloffsets/0Outl
y: -0.529 [-Inf Inf]

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1; % Sampling time
p = 20;
m= 3;

mpcobj = mpc(plant,Ts,p,m);

Set nominal values in the controller.

mpcobj.Model.Nominal = struct('X', x0, 'U', u@, 'Y', y0);

Set output measurement noise model (white noise, zero mean, variance=0.01)
mpcobj .Model.Noise = 0.1;

Set MV constraint.

mpcobj.MV.Max = 0.2;

Simulate Using Simulink®

Reference signal for output vector
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ro = 1.5*y0;
% Simulate
mdl = 'mpc _offsets';

open_system(mdl) % Open Simulink(R) Model
sim(mdl); % Start Simulation
L UL Et:l
u
) MPC mv » I Out1 y(t) > y
i I ref
50% vanation > C] Monlinear Plant
from steady state
Input

B u

CJ

Outputs/References

Copyright 1930-2014 The Math\Warks, Inc.
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Simulate Using SIM Command
Simulate

Tf = round(10/Ts);
r = r@*ones(Tf,1);
[yl,t1l,ul,x1,xmpcl] = sim(mpcobj,Tf,r);

Plot and compare results.

subplot(121)
plot(y.time,y.signals.values,tl,yl,tl,r)
legend('Nonlinear', 'Linearized', 'Reference')
title('output')

grid

subplot(122)
plot(u.time,u.signals.values,tl,ul)
legend('Nonlinear', 'Linearized')
title('input')

grid
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bdclose(plant mdl);
bdclose(mdl);

See Also
MPC Controller | mpc
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Design MPC Controller for Plant with Delays

1-44

This example shows how to design an MPC controller for a plant with delays using MPC
Designer.

Plant Model

An example of a plant with delays is the distillation column model:

12.8¢° -18.9¢73% 3.8¢81s

Ui
[yl}: 167s+1 210s+1 149s+1 ||
Y2l | 667 19.4e7 4.9e7% ||

10.9s+1 14.4s+1 132s+1

Outputs y; and y, represent measured product purities. The model consists of six transfer
functions, one for each input/output pair. Each transfer function is a first-order system
with a delay. The longest delay in the model is 8.1 minutes.

Specify the individual transfer functions for each input/output pair. For example, g12 is
the transfer function from input u, to output y;.

gll = tf(12.8,[16.7 1], 'I0delay',1.0, 'TimeUnit"', 'minutes');
gl2 = tf(-18.9,[21.0 1], 'I0delay',3.0, 'TimeUnit', 'minutes');
gl3 = tf(3.8,[14.9 1], 'I0delay',8.1, 'TimeUnit"', 'minutes');
g2l = tf(6.6,[10.9 1], 'I0delay',7.0, 'TimeUnit"', 'minutes');
g22 = tf(-19.4,[14.4 1], 'I0delay',3.0, 'TimeUnit', 'minutes');
g23 = tf(4.9,[13.2 1], 'I0delay',3.4, 'TimeUnit"', 'minutes');

DC = [gll gl2 g13;
g21 g22 g23];

Configure Input and Output Signals
Define the input and output signal names.

DC.InputName = {'Reflux Rate', 'Steam Rate', 'Feed Rate'};
DC.OutputName = {'Distillate Purity', 'Bottoms Purity'};

Alternatively, you can specify the signal names in MPC Designer, on the MPC Designer
tab, by clicking I/O Attributes.

Specify the third input, the feed rate, as a measured disturbance (MD).
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DC = setmpcsignals(DC, 'MD',3);

Since they are not explicitly specified in setmpcsignals, all other input signals are
configured as manipulated variables (MV), and all output signals are configured as
measured outputs (MO) by default.

Open MPC Designer
Open MPC Designer importing the plant model.

mpcDesigner(DC)
4\ mpC Designer - scenariol: Qutput EI@
MPC DESIGNER TUNING SCENARID PLOT =
o E W & & ERE
Open Save MPC ra Import  Import Plot Edit Compare Export
» < - st Attributes Plant  Controller i o+ Ci ~ Controller «
FILE STRUCTURE IMPORT SCENARIO RESULT
Data Browser ® | scenariol: Input | _J scenariol: Output l
w Plants
DC . v . v
Input Response (against internal plant) Output Response (against internal plant)
1 1.5
B
I
Z 05 . -
E] ) E 1 = —
= — o
g 0 b
Lo
w Controllers 0.5 1‘3 0.5
0.5 a

mpel (current)

Steam Rate

o =
0
1.5
-05

W Scenarios

scenaricl

Bottoms Purity

o
(5]

Feed Rate
=

o 2 4 6 8 10 0 2 4 6 8 10
Time (minutes) Time (minutes)

When launched with a continuous-time plant model, such as DC, the default controller
sample time is 1 in the time units of the plant. If the plant is discrete time, the controller
sample time is the same as the plant sample time.
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MPC Designer imports the specified plant to the Data Browser. The following are also
added to the Data Browser:

* mpcl — Default MPC controller created using DC as its internal model.
* scenariol — Default simulation scenario.

The app runs the simulation scenario and generates input and output response plots.
Specify Prediction and Control Horizons

For a plant with delays, it is good practice to specify the prediction and control horizons
such that

P-M=>tqmae A

where,

* Pis the prediction horizon.

* M is the control horizon.

* L4 ma 1S the maximum delay, which is 8.1 minutes for the DC model.
* At is the controller Sample time, which is 1 minute by default.

On the Tuning tab, in the Horizon section, specify a Prediction horizon of 30 and a
Control horizon of 5.

r

4\ MPC Designer - scenariol: Cutput

WMPC DESIGNER TUNING

Sample time: |1

SCENARIO PLOT

MPC Controller: |mpcl =
Prediction horizon: |30

Int | Plant:
fLemna e Control horizon: |5

HORIZON

—
v

After you change the horizons, the Input Response and Output Response plots for the
default simulation scenario are automatically updated.
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Simulate Controller Step Responses

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenariol.
Alternatively, in the Data Browser, right-click scenariol and select Edit.

In the Simulation Scenario dialog box, specify a Simulation duration of 50 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for both
outputs to simulate step changes in their setpoints.

Specify a step Time of 0 for reference r(1), the distillate purity, and a step time of 25 for
r(2), the bottoms purity.

Simulation Settings

Flant used in simulation: |Defau|t [controller internal model) '|

Simulation duration {minutes) |50 |

[ Run open-loop simulation 71 Use unconstrained MPC

[ Preview references (look ahead) [T Preview measured disturbances (look ahead)

Reference Signals (setpoints for all outputs)

Channel Marme Mominal Signal Size Tirne Pericd
(1) Ref of Disti...|0 Step v |1 0
1(2) Ref of Bott... Step vl 25

Click OK.

The app runs the simulation with the new scenario settings and updates the input and
output response plots.
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4\ MPC Designer - scenariol: Output

SCENARIO PLOT

TUNING

MPC DESIGNER

\ ,
sample time: 2 I ! 3
MPC Controller: [mpal SRR Jx Repust Closed-Loop Performance tagesie| | of v
Prediction horizon: | 30 §
Internal Plant: DC . Constraints Weights  Esti g 1 Review  Store Export
Control horizon: |5 Wodels w  Sower SEET N 21 Degign  Controller  Controller
CONTROLLER HORIZON DESIGN FERFORMANCE TUNING ANALYSIS
Data Browser [C] scenariol: Input | [ scenariol: Qutput l
w Plants
DC
Input Response (against internal plant) Output Response (against internal plant)
2 1.2
g | \_m,__\f\
o =
E] Eos
= —
30 T g ||
E 0.6 |
w Controllers -1 'E 0.4 |
mpel (current) 0.5 = |
2 0.2
g ol - |
2 I 0
5 1.5
2 05
w
e —
-1 g ! s
1 5 |
. o
w Scenarios a 05 |
e e g 0 |
scenariol 7] £ |
i3 =
s 0 o |
i}
@ [T s
LT
'S
-1 0.5
0 10 20 30 40 50 0 10 20 30 40 50
Time (minutes) Time (minutes)

The Input Response plots show the optimal control moves generated by the controller.
The controller reacts immediately in response to the setpoint changes, changing both
manipulated variables. However, due to the plant delays, the effects of these changes are
not immediately reflected in the Output Response plots. The Distillate Purity output
responds after 1 minute, which corresponds to the minimum delay from g11 and g12.
Similarly, the Bottoms Purity output responds 3 minutes after the step change, which
corresponds to the minimum delay from g21 and g22. After the initial delays, both signals
reach their setpoints and settle quickly. Changing either output setpoint disturbs the
response of the other output. However, the magnitudes of these interactions are less than
10% of the step size.

Additionally, there are periodic pulses in the manipulated variable control actions as the
controller attempts to counteract the delayed effects of each input on the two outputs.
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Improve Performance Using Manipulated Variable Blocking

Use manipulated variable blocking to divide the prediction horizon into blocks, during
which manipulated variable moves are constant. This technique produces smoother
manipulated variable adjustments with less oscillation and smaller move sizes.

To use manipulated variable blocking, on the Tuning tab, specify the Control horizon as
a vector of block sizes, [5 5 5 5 10].

4\ mpC Designer - scenariol: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT
sample time: : * f ] + { n
MPC Contraller: mpel EURETH Robust Cosed-Loop Performance Aggressive | | ¢ @z
Prediction horizon: | 30 . , , §
Internal Plant: |DC . = i Weights i g L @ — T 1 Review  Store Export
Control horizon: | 555 10] Modele w | Sower State Estimation Faster | pocign  Controller Controller ~
CONTROLLER HORIZON DESIGN PERFORMANCE TUNING ANALYSIS
Data Browser ® | scenariol: Input | _J scenariol: Output 1
w Plants
DC . v . v
Input Response (against internal plant) Output Response (against internal plant)
0.4 LLL 1.2
ool e 1 — —
4 B = \\/
: 1
5 0 — ] <
5 gos
w Controllers 0.2 1‘3 0.4
mpcl (current) 0.1 Ir,—‘_‘h'-—a N =
- 02t
£ |
m
Z o { U
£ — 1
£ 04 i
I
02 2
1 5 05 |
w Scenarios nm. /
scenariol % g If
z £ 9 J
H] o
@«
'S
-1 0.5
0 10 20 30 40 50 0 10 20 30 40 50
Time (minutes) Time (minutes)

The initial manipulated variable moves are much smaller and the moves are less
oscillatory. The trade-off is a slower output response, with larger interactions between the
outputs.
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Improve Performance By Tuning Controller Weights

Alternatively, you can produce smooth manipulated variable moves by adjusting the
tuning weights of the controller.

Set the Control horizon back to the previous value of 5.

In the Performance Tuning section, drag the Closed-Loop Performance slider to the
left towards the Robust setting.

4\ mpC Designer - scenariol: Input EI@
MPC DESIGNER TUNING SCENARIO PLOT =
Sample time: > —ah ; 1 :
MPC Controller: [mpcl ~ SR ﬁ Robust Cised-Leop Performance Aggressve | | g &
Prediction horizom: |30 . . , §
Internal Plant: DC C Weights U u ‘ v v Review Store Export
Control horizon: 5 | Models = | Sower Stste Exvmation Faster | i Controller Controller >
CONTROLLER HORIZON DESIGN FERFORMANCE TUNING ANALYSIS
Data Browser @ J scenaricl: Input 1 | scenariol: Qutput |
w Plants
DC R . R .
Input Response (against internal plant) Output Response (against internal plant)
0.4 1.2
o —
& 02 - - \/
] 1|_ £o08
T 0 — o
. - gosf |
¥ Controllers 02 g 04 If
mpcl (current) 0.2 =
— 02| |

Steam Rate
(=1
M (=3
18
e
|
L
L
|
|
i
; o

-

0.4 =
1 S
w Scenarios %
- @ g 05
scenariol - o /
= £
g0 2 .
b 0
'S
-1 0.5
0 10 20 30 40 50 0 10 20 30 40 50
Time (minutes) Time (minutes)




See Also

As you move the slider to the left, the manipulated variable moves become smoother and
the output response becomes slower.

References

[1] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

See Also
MPC Designer

More About

. “Manipulated Variable Blocking” on page 3-65
. “Design Controller Using MPC Designer”
. “Specify Multi-Input Multi-Output Plants”
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Design MPC Controller for Nonsquare Plant
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This topic shows how to configure an MPC controller for a nonsquare plant with unequal
numbers of manipulated variables and outputs. Model Predictive Control Toolbox
software supports plants with an excess of manipulated variables or plant with an excess
of outputs.

More Outputs Than Manipulated Variables

When there are excess outputs, you cannot hold each at a setpoint. In this case, you have
two options:

Specify that certain outputs do not need to be held at setpoints by setting their tuning
weights to zero.

The controller does not enforce setpoints on outputs with zero weight, and the outputs
are free to vary. If the plant has N, more outputs than manipulated variables, setting
N, output weights to zero enables the controller to hold the remaining outputs at their
setpoints. If any manipulated variables are constrained, one or more output responses
can still exhibit steady-state error, depending on the magnitudes of reference and
disturbance signals.

Outputs with zero tuning weights can still be useful. If measured, the controller can
use the outputs to help estimate the state of the plant. The outputs can also be used as
performance indicators or held within an operating region defined by output
constraints.

Enforce setpoints on all outputs by specifying nonzero tuning weights for all of them.

The controller tries to hold all outputs at their respective setpoints. However, due to
the limited number of manipulated variables, all output responses exhibit some degree
of steady-state error.

You can change the error magnitudes by adjusting the relative values of the output
weights. Increasing an output weight decreases the steady-state error in that output at
the expense of increased error in the other outputs.

You can configure the output tuning weights at the command line by setting the
Weights.OutputVariables property of the controller.

To configure output tuning weights in MPC Designer, on the Tuning tab, in the Design
section, click Weights to open the Weights dialog box.
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In the Output Weights section, specify the Weight for each output variable. For
example, if your plant has two manipulated variables and three outputs, you can:

* Set one of the output weights to zero.

eights (mpcl) »
~ Input Weights (dimensionless)
Channel Type Weight Rate Weight  Target
ufl) MY ] 01 nominal
u(2) MY ] 01 nominal
- Output Weights (dimensionless)
o W
Channel Type /Weight
y(L) MO 1
yid) MO 1 ]
y(3) MO 0 /
- ECR. Weight (dimensionless)
Weight on the slack variable: |1nunnn |
|E| | Apply | | Cancel | | Help]

* Set all the weights to nonzero values. Outputs with higher weights exhibit less steady-
state error.
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Input Weights (dimensionless)

Channel Type Weight Rate Weight  Target
ufl) MY ] 01 nominal
u(2) MY ] 01 nominal
Output Weights (dimensionless)

P

Channel Type /Weight \

y(L) MO 1

y(2) MO \ |os ]

y(3) MO N o1 /

~.

ECR Weight (dimensionless)

Weight on the slack variable: |1DUUUU

OK | |Apply | |Cancel| |Help

More Manipulated Variables Than Outputs

When there are excessive manipulated variables, the default MPC controller settings
allow for error-free output setpoint tracking. However, the manipulated variables values
can drift. You can prevent this drift by setting manipulated variable setpoints. If there are
N, excess manipulated variables, and you hold N, of them at target values for economic
or operational reasons, the remaining manipulated variables attain the values required to
eliminate output steady-state error.

To configure a manipulated variable setpoint at the command line, use the
ManipulatedVariables.Target controller property. Then specify an input tuning
weight using the controller Weights.ManipulatedVariables property.



Design MPC Controller for Nonsquare Plant

To define a manipulated variable setpoint in MPC Designer, on the Tuning tab, in the
Design section, click Weights.

In the Weights dialog box, in the Input Weights section, specify a nonzero Weight value
for the manipulated variable.

Specify a Target value for the manipulated variable.

eights (mpcl) 4

~ Input Weights (dimensionless)

Channel Type Weight Rate Weight  Target
ufl) MY 0 0.1 nominal
ul(2) MV pfl— 0.1 _—rarminal
ui3) mv (o2 ) 01 i )

p — p —

- Output Weights (dimensionless)

Channel Type Weight
yi1) MO
yi2) MO
- ECR Weight (dimensionless)

Weight on the slack variable: |1CIEICIDCI |

‘ok| | apply| [cancel| [Hen|

By default, the manipulated variable Target is nominal, which means that it tracks the
nominal value specified in the controller properties.
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Note Since nominal values apply to all controllers in an MPC Designer session,
changing a Nominal Value updates all controllers in the app. The Target value, however,
is specific to each individual controller.

The magnitude of the manipulated variable weight indicates how much the input can
deviate from its setpoint. However, there is a trade-off between manipulated variable
target tracking and output reference tracking. If you want to have better output setpoint
tracking performance, use a relatively small input weight. If you want the manipulated
variable to stay close to its target value, increase its input weight relative to the output
weight.

You can also avoid drift by constraining one or more manipulated variables to a narrow
operating region using hard constraints. To define constraints in MPC Designer, on the
Tuning tab, in the Design section, click Constraints to open the Constraints dialog box.

In the Input Constraints section, specify Max and Min constraints values.

See Also

Apps
MPC Designer

Functions
mpc

More About

. “Tune Weights” on page 1-33

. “Specify Multi-Input Multi-Output Plants”

. “Setting Targets for Manipulated Variables” on page 3-2
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Design MPC Controller for Identified Plant Model

You can define the internal plant model of your model predictive controller using a linear
model identified while using System Identification Toolbox software. You can identify the
plant model and design the MPC controller interactively using apps or programmatically
at the command line. For more information on identifying plant models, see “Identify
Plant from Data”.

Design Controller for Identified Plant Using Apps

This example shows how to interactively design a model predictive controller using an
identified plant model. First, estimate the plant model from data using the System
Identification app. Then design an MPC controller by importing the identified plant into
MPC Designer.

Load Input/Output Data

Load the input and output data for identification.

load(fullfile(matlabroot, 'examples', 'mpc', 'plantI0'))

This command imports the plant input signal, u, output signal, y, and sample time, Ts, to
the MATLAB® workspace.

Open the System Identification app.

systemIdentification

In the System Identification app, under Import data, select Time domain data.
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P

4. System Identification - Untitled
File Opticns Window Help

(,In'l_p-urt data \

[

Import data Operations
Time domain data... * ]
Freg. domain data... <— Preprocess 1
Drata object... 1
Example... )

[ >

L *

Working Data
Estimate —= -

Data Views
To

In the Import Data dialog box, specify the Input, Output, and Sample time using the
data from the MATLAB workspace.

Also, specify the Data name as ioData and Starting time as 0.
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i

4 Import Data f=a- )
Data Format for Signals
Time-Domain Signals -

Input:
Cutput:
Data Infor
Data name: ioData
Starting time: 0
Sample time: Ts|
[ Import ] [ Reset ]
[ Close ] [ Help ]

Click Import. The app imports the data, creates an iddata object with the specified
name and signal properties, and adds this object to the Data Views area.
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P

4 System Identification - Untitled
File Opticns Window Help
Import data =
Operations
; : «<— Preprocess -
io Data ’
— T
=7 ioData
Waorking Data
Estimate —= =
Data Views
To

Preprocess Data

Typically, you must preprocess identification I/O data before estimating a model. For this
example, remove the offsets from the input and output signals by detrending the data. In
the System Identification app, under Preprocess, select Remove trends.
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P

4| System Identification - Untitled

File Opticns Window Help

Import data =
“ Operations

; : /{_— Preprocess -

io Data

<— Preprocess
Select channels...
Select experiments...
erge experiments...
Select range...
Remove means

Remove trends k
F

itter...

Rezample...
Transform data. ..

[] Time plot L’\Duick start _‘/ W

|:| Data spectra _

[ Fr
h

Data Views

nction

The app creates a data object, ioDatad, using the preprocessed data, and adds this
object to the Data Views area.

For more information on preprocessing identification data, see “Preprocess Data” (System
Identification Toolbox).

Estimate Linear Model

To use the detrended data, ioDatad, for model estimation, first drag the corresponding
data object from the Data Views area to Working Data.
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P

4. System Identification - Untitled
File Opticns Window Help
Import data =
“ Operations
; : ; : «<— Preprocess -
io Data ioDatadl ’
=i
Working Data
Estimate —= -
Data Views
To

To estimate a state-space model, under Estimate, select State Space Models.
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File Opticns

Import data =

4. System Identification - Untitled
Window  Help

|:| Data spectra

[7] Frequency function

-‘v Operations
: <— Preprocess -

io Data ioDatad 1 |

I ioDatad

Waorking Data
n
f -+ _ x
Eztimate —= v
Data Views Estimate —=
Transfer Function Models...
D Time plot

Pohlynomial Models. ..
kh,.__[-‘ll:lnlinlf.lﬂrr.'Im:IlE.lLf-;...

State Space Modeals... N Mgdel o
Process Models...

Mgdel

Spectral Models...
Correlation Models...
Refine Existing Models...
Quick Start

io Data
dation Da

nged to io

In the State Space Models dialog box, specify the properties of the estimated model and
the estimation options. For this example, estimate a second-order, discrete-time model,
leaving the other estimation options at their default values.
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i

4\ state Space Models E@

Model name: ss1 &

Madel Order:

@ Specify value: @ )

() Pick best value in the range: | 1:10

(71 Continuous-time G Discrete-time (Ts = U.D

P Model Structure Configuration

b Estimation Options

Estimate ] ’ Close ] ’ Help

For more information on estimating state-space models, see “State-Space Models”
(System Identification Toolbox).

Click Estimate. The app estimates a state-space model, ss1, and adds the model to the
Model Views area.
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\ E=m|Een

Import models =
erations "'
Ccess /\-ﬂ
551
1 r
io Datad
Working Data
imate —= -

Model Views
To

LTI Viewer

[] Model cutput [] Transient resp Monlinear ARX

Freguency resp Hamm-Wiener

The estimated model has one measured input and one unmeasured noise component.
Import Identified Plant to MPC Designer
To use ss1 for MPC control design, first export the model to the MATLAB workspace.

Drag ss1 from the Model Views area to To Workspace.
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P

4| System Identification - Untitled

File Opticns Window Help

Import data - Import models

“ ' Operations ‘.'

: : : : «<— Preprocess N
io Data ioDatad 1 : 551
=7 ioDatad
Working Data
Eztimate —=
Data Views Mo
Tof} To
|:| Time plot Workspace (| LTI Viewer |:| Model output

|:| Data spectra

|:| Model resids

Open MPC Designer. At the MATLAB command line, type:

mpcDesigner

To import the identified model, in MPC Designer, click MPC Structure. In the Define
MPC Structure By Importing dialog box, select ss1 from the table.
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- MPC Structure
0 Measured Disturbances U Unmeasured .
Selpaints 1 Manipulated Variables . Outputs
{reference) v W Plant -
0 Unmeasured Disturbances | 1 Measured
~Select a plant medel or an MPC controller from MATLAE Workspace:
— —
Select Mame \ Type Inputs Outputs
@ sl ) lidss 2 1 1
-
~ Controller Sample Time

Specify MPC controller sample time: |u.1

~ Assign plant if/o channels to desired signal types:

Manipulated wariable (M%) channel indices: | 1

Measured disturbance (MD} channel indices: |

Unmeasured disturbance (UD} channel indices: |

Measured cutput (MO} channel indices: | 1

Unmeasured cutput (UO} channel indices: |

|@ Refresh wurkspace]

_Deﬁne and Impurt] | Cancel] |@|
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Click Define and Import.

4\ MPC Designer - scenariol: Output

MPC DESIGNER

o oH 8 8 4 4 @ = &
Open Save MPC o Import  Import Plot Edit Compare Export
Session Session  Structure Aftributes  Plant  Controller o - io w C w Controller +

FILE

STRUCTURE

IMPORT

SCENARIO

RESULT

ol )

S

EEd S LS EE

Data Browser

@

& | scenariol: Input

_J scenariol: Output

¥ Plants

5l

Input Response (against internal plant)

& 1.2
o 1
w Controllers Y 0.8
mpcl (current) .
3t
] > 0.6
2t
0.4
- 11
w Scenarios
scenariol
0.2
o —

0 2 4 6 8
Time (seconds)

Output Response (against internal plant)
0 2 4 6 8 10
Time (seconds)

Tip You can also import the identified model when opening MPC Designer.

mpcDesigner(ssl)

The app converts the identified plant to a discrete-time, state-space model, if necessary,

and creates a default MPC controller, mpc1l, in which the:

* Measured input of the identified plant is a manipulated
* Output of the identified plant is a measured output.
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By default, the MPC controller discards the unmeasured noise component from your
identified model. To configure noise channels as unmeasured disturbances, you must first
create an augmented state-space model from your identified model. For more information,
see “Configure Noise Channels as Unmeasured Disturbances” on page 1-80.

Note You can also import an identified linear model into an existing MPC Designer
session. In MPC Designer, click Import Plant. In the Import Plant Model dialog box,
select an identified model from the table.

uv! = 1d I E

IWN&.DLMQLHD m MATLAB Workspace:

Type Order Inputs | Outputs
idss 2 1 1

@ Refresh workspace Import | | Cancel| |Help

Only identified models with an I/O configuration that is compatible with the current MPC
structure are displayed in the Import Plant Model dialog box. If the current MPC
structure includes unmeasured disturbances, any noise channels from the identified
model are converted to unmeasured disturbances. Otherwise, the noise channels are
discarded.

Specify 1/0 Attributes

To improve controller performance and simplify controller tuning, specify the following
attributes for each input and output signal:

» Scale Factor — Scale each signal by a factor that approximates its span, which is the
difference between its maximum and minimum values. Scaling simplifies controller
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weight tuning and improves the numerical conditioning of the controller. For more

information, see “Specify Scale Factors” on page 1-18.

* Nominal Value — Apply an offset to each signal that corresponds to the nominal
operating conditions under which you collected the identification data; that is the
offsets removed by detrending the data. Specifying nominal values places the
controller at the same operating point as the plant, which is important when the plant

is a nonlinear system.

In MPC Designer, on the MPC Designer tab, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, specify the Nominal Value

and Scale Factor for the input and output signals.

Input and Output Channel Specifications x
- Plant Inputs
Channel Type Mame Unit / Morminal Value Scale Factor
u(l) MY ul t 4.99999999999995 E
o
- Plant Qutputs
o
Channel Type Marme Unit ( Mominal Value Scale Factor
yil) MO vl \ 2 45
—
|0k| [apply| |cancel| [Hep|
Click OK.
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A4\ MPC Designer - scenariol: Output

MPC DESIGNER TUNING
oD 2 3 4L 2 = &
Open Save MPC Vo Import Import Plot Edit Compare Export

on Sessi . Aftributes  Plant  Controller o * S o * C = Controller =

FILE

STRUCTURE IMFORT SCENARIO RESULT

BN HoR (=)

YlEHLD L&

=10 =

Data Browser

@ | scenariol: Input |

w Plants
ssl . .
Input Response (against internal plant)
9 T T T T
85
ar
w Controllers
75
mpel (current)
7t
S
6.5
6
w Scenarios
scenaricl 22
5 —
45 L . L .
0 2 4 6 8
Time (seconds)

_J scenariol: Qutput l
Output Response (against internal plant)
3.2 T T T T
3
28
= 2.6
24
22
2
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Time (seconds)

The default controller tracks the output reference value well, however the initial

controller response is aggressive.

Tip You can specify the Nominal Value or Scale Factor using expressions such as
mean(u) ormax(y) - min(y) respectively, where u and y are the I/O signals from the

MATLAB workspace.
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~ Plant Inputs

o —

Channel Type Marmne Unit [’ Mominal Value \ Scale Factor
u(l) MV ul \ [mean(u] 2)
N -

Configure Simulation Scenario
In MPC Designer, on the Tuning tab, click Edit Scenario > scenariol.
In the Simulation Scenario dialog box, specify a Simulation duration of 5 seconds.

In the Reference Signals section, keep the default step signal.
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Simulation Settings

Simulation duration (zeconds) |5 |

71 Run open-loop simulation

71 Preview references (look ahead)

Reference Signals (setpoints for all outputs)

Flant used in simulation: |Defau|t (controller internal model) "|

71 Use unconstrained MPC

[71 Preview measured disturbances (look ahead)

Channel

Mame Mominal Signal Size Tirmne Pericd

ril)

Refofyl |2 Step - |1 1

Click OK.

Tune Controller

Before tuning your controller, it is good practice to specify the controller sample time,
prediction horizon, and control horizon. Since you identified a discrete-time plant model,
the controller automatically derives its sample time from the identified model. For this
example, use the default prediction and control horizons. For more information, see
“Choose Sample Time and Horizons” on page 1-2.

To make the controller less aggressive, on the Tuning tab, drag the Closed-Loop
Performance slider to the left. Doing so increases the cost function weight on the
manipulated variable rate of change, and decreases the weight on the output variable.
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[E=E R =)
=10 =

IR Pl lo ek
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Closed-Loop Performance  Aggressive Lt @

A4\ MPC Designer - scenariol: Output
MPC DESIGNER TUNING
MPC Controlier: | mpecl - Samolo fnec 0L S
Prediction horizon: |10
Internal Plant: 551 - Ci Weights Review Store Export
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| ‘ LTED Slower State Estimation Faster DELY BT s T 5

CONTROLLER HORIZON DESIGN FERFORMANCE TUNING ANALYSIS
Data Browser [C] | scenariol: Input _J scenariol: Output l
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5;1 . N . N

Input Response (against internal plant) Output Response (against internal plant)
6.2 : : : : 3.2 : : : :
6l
3
w Controllers 25|y
28
mpel (current)
b6
S =26
54T
24
w Scenarios s2r
scenariol
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5
48 . . . . 2 .
o 1 2 3 4 5 0 1 2 3 4 5
Time (seconds) Time (seconds)
The input response is now more conservative. The trade-offs are an increased overshoot
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and longer settling time.
For more information on tuning controller weights, see “Tune Weights” on page 1-33.

Note If your plant has known physical or safety constraints that limit the output range,
input range, or input signal rate of change, you can specify these constraints in the MPC
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controller. If so, define the constraints before tuning your controller weights. For more
information, see “Specify Constraints” on page 1-6.

Design Controller for Identified Plant at the Command Line

This example shows how to design a model predictive controller at the command line
using an identified plant model.

Load the input/output data.
load plantIO

This command imports the plant input signal, u, plant output signal, y, and sample time,
Ts, to the MATLAB® workspace.

Create an iddata object from the input and output data.

mydata = iddata(y,u,Ts);

Preprocess the I/O data by removing offsets (mean values) from the input and output
signals.

mydatad = detrend(mydata);

You can also remove offsets by creating an ssestOptions object and specifying the
InputOffset and OutputOffset options.

Estimate a second order, linear state-space model using the I/O data. Estimate a discrete-
time model by specifying the sample time as Ts.

ssl = ssest(mydatad,2,'Ts',Ts);
The estimated model has one measured input and one unmeasured noise component.

Create a default model predictive controller for the identified model, ss1.
mpcObj = mpc(ssl);

-->Converting linear model from System Identification Toolbox to state-space.

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
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By default the controller discards the unmeasured noise component from your identified
model.

To simplify the tuning process, specify input and output signal scaling factors.

mpcObj.MV(1).ScaleFactor
mpcObj.0V(1l).ScaleFactor

max(u) - min(u);
max(y) - min(y);

Specify the nominal values for the input and output signals. Use the offsets that you
previously removed from the I/O data.

nominalInput = mean(u);
nominalQutput = mean(y);
mpcObj .Model.Nominal.u
mpcObj .Model.Nominal.y

nominalInput;
nominalOutput;

Configure the simulation reference signal. Specify a reference signal with a five-second
duration and a unit step at a time of one second. The initial value of the reference signal
is the nominal value of the output signal.

outputRef = [nominalOutput*ones(1/Ts,1);
(nominalOutput+1)*ones(4/Ts+1,1)1;

Before tuning the controller, simulate the initial controller performance.
sim(mpcObj, []1,outputRef)

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
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The default controller tracks the output reference value well, however the initial

controller response is aggressive.
To make the controller less aggressive, simultaneously increase the tuning weight for the

manipulated variable rate of change and decrease the tuning weight for the output

variable.
beta = 0.37;
= mpcObj.Weights.MVRate/beta;

mpcObj .Weights.MVRate =
mpcObj .Weights.0V = mpcObj.Weights.0QV*beta;

Simulate the tuned controller response

sim(mpcObj,[],outputRef)
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-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Plant Qutput: y1
3.2 T T T T T T T T T

24T

22 |

0 05 1 1.5 2 25 3 3.5 4 45 5
Time (seconds)
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Plant Input: u1
62 . ; .
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54

8.2

48 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

The input response is now more conservative. The trade-offs are an increased overshoot
and longer settling time.

Configure Noise Channels as Unmeasured Disturbances

When you create an MPC controller using an identified model, the software discards any
noise channels from the model by default. You can configure the noise channels as
unmeasured disturbances by augmenting the identified model.
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Augment Identified Model with Noise Channels

To convert noise channels to unmeasured disturbances, first convert the identified model,
ss1, to a state-space model using the 'augmented' option. At the MATLAB command
line, type:

ss2 = ss(ssl, 'augmented');
This option creates a state-space model, ss2, with the following input groups:

* Measured — The input channels from the identified model.

* Noise — The noise channels from the identified model. The number of noise channels
matches the number of outputs channels.

Note The System Identification Toolbox software assumes that the inputs to the
Noise channels are unit-variance Gaussian noise. Therefore, the augmented model
encapsulates any noise dynamics from the identified model, such as integration at the
disturbance source.

You can then create an MPC controller using the augmented state-space model.
mpcObj = mpc(ss2);

The software configures the Measured inputs as manipulated variables and the Noise
inputs as unmeasured disturbances.

You can also import the augmented model into MPC Designer.

mpcDesigner(ss2)

To view the MPC signal configuration, in MPC Designer, on the MPC Designer tab,
click MPC Structure.

1-81



1 Controller Creation

iew MPC Structure =

- MPC Structure
0 Measured Disturbances . U Unmeasured .
Selpaints 1 Manipulated Variables . Inputs Outputs
{reference) » - W Plant -
[ 1 Unmeasured Disturbances | ) 1 Measured
~ Plant Inputs
Signal Type Size Channel Indices
Manipulated Yariables (M) 1 1
: £BADY [l
Unmeasured Disturbances (UD) |1 2 )
—
~ Plant Outputs
Signal Type Size Channel Indices
Measured Outputs (MO) 1 1
Unmeasured Cutputs (UO) 0
b New Session | |E| |Help-|

The View MPC Structure dialog box shows the noise channels as unmeasured
disturbances.

Configure Input Disturbance Model

When you convert an identified model to an augmented state-space model, the System
Identification Toolbox software assumes that noise sources are unit-variance Gaussian
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noise. However, by default, MPC controllers model unmeasured input disturbances as
integrated Gaussian noise. When designing your controller, you can:

* Remove the integrators from the input disturbance model, which simplifies the
controller. Use this option if the experimental identification data was collected under
conditions that closely match the expected plant operating conditions. In this case, the
augmented state-space model encapsulates any noise dynamics from the identified
system.

* Keep the default integrated white noise input disturbance model, which leads to more
aggressive disturbance rejection. Use this option if the experimental identification
data was collected under controlled conditions that may not match the expected plant
operating conditions. In this case, the controller compensates for noise dynamics that
the augmented model does not encapsulate.

Note When using MPC Designer, you can tune your controller disturbance rejection
properties by adjusting the State Estimation slider. For more information, see
“Disturbance Rejection Tuning” on page 3-57.

To remove an integrator from an input disturbance model channel, configure that channel
as a static unit gain. For example, to remove the integrators from all input disturbance
model channels, set the input disturbance model to a static gain identity matrix. At the
MATLAB command line, type:

setindist(mpcObj,ss(eye(Nd)));
where Nd is the number of unmeasured disturbances.

To set the disturbance model for an unmeasured disturbance channel to a static unit gain
using MPC Designer:
On the Tuning tab, select Estimation Models > Input Disturbance Model.

2 In the Input Disturbance Model dialog box, in the Update the model drop-down list,
select specifying a custom model channel by channel.

3 In the Specifications table, in the Disturbance drop-down list, select White
Noise.

4 Specify a Magnitude of 1.
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Input Disturbance Model (mpcl) x

The current unmeasured input disturbance model i2. Custom

@ate the model: |speciﬁring a custom model channel by channel D

~ Description

You can specify disturbance type and magnitude
(in engineering units} for unmeasured input
disturbances.

The settings are converted into a custom input
disturbance model driven by white noise with unit Unmeasursd

wariance. Disturbance
- Specifications
Specify disturbance type and magnitude: _
Channel Disturbance Magnitude
u(2) k WhiteMoise i~ ]1 J
N -

(0| apply| [cancel] [Help)

5 Repeat steps 3 and 4 for each unmeasured disturbance.
6 To apply the changes and update the input disturbance model, click OK or Apply.

For more information about changing the input disturbance model, see “Adjust
Disturbance and Noise Models” on page 3-50.
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Configure Simulation Scenario

You can simulate your MPC controller using unit-variance Gaussian noise unmeasured
disturbance signals, as assumed by the System Identification Toolbox software. This
scenario emulates the experimental conditions under which the data was collected for
identification.

To configure unmeasured disturbance signals, create an MPC simulation option set for
your controller using mpcsimopt. At the MATLAB command line, type:

opt = mpcsimopt(mpcObj);
Configure the UnmeasuredDisturbance option using randn.
opt.UnmeasuredDisturbance = randn(T,Nd);

where T is the number of simulation steps and Nd is the number of unmeasured
disturbances.

Simulate the controller using this option set and an output reference signal, outputRef.
y = sim(mpcObj,T,outputRef,opt);
To configure your simulation in MPC Designer:

1  On the Tuning tab, under Edit Scenario select the simulation scenario you want to
edit.

2 In the Simulation Scenario dialog box, in the Unmeasured Disturbances section,
under Signal, select Gaussian.

3  Specify a Size of 1, which corresponds to a unit variance.
To apply the disturbance from the start of the simulation, specify a Time of 0.
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R OF YT T

Unmeasured Disturbances (inputs t%lD_dnnmals‘.i
=

Channel Mame Nomi{al Signal Size Time \Period
u(2) v@yl 0 \ |Gaussian 1 0 J
N -

5 Repeat steps 2-4 for each unmeasured disturbance channel.

6 To apply the changes and update the MPC Designer response plots, click OK or
Apply.

See Also

Apps
MPC Designer | System Identification

Functions
mpc | sim| ss | ssest

More About

. “About Identified Linear Models” (System Identification Toolbox)
. “Identify Plant from Data”

. “Design Controller Using MPC Designer”

. “Design MPC Controller at the Command Line”
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Generate MATLAB Code from MPC Designer

This topic shows how to generate MATLAB code for creating and simulating model
predictive controllers designed in the MPC Designer app. Generated MATLAB scripts
are useful when you want to programmatically reproduce designs that you obtained
interactively.

To create a MATLAB script:

1

In the MPC Designer app, interactively design and tune your model predictive
controller.

On the Tuning tab, in the Analysis section, click the Export Controller arrow /=

Alternatively, on the MPC Designer tab, in the Result, click Export Controller.

Note If you opened MPC Designer from Simulink, click the Update and Simulate
arrow =

Under Export Controller or Update and Simulate, click Generate Script =,

In the Generate MATLAB Script dialog box, select one or more simulation scenarios
to include in the generated script.

_AE L o

Select scenarios to use with current controller

Select Simulation Scenario
scenariol
[l |scenario2
|__"I*f sCenariod

Generate Script| | Cancel| |Help
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1-88

5 Click Generate Script to create the MATLAB script for creating the current MPC

controller and running the selected simulation scenarios. The generated script opens
in the MATLAB Editor.

In addition to generating a script, the app exports the following to the MATLAB
workspace:

* A copy of the plant used to create the controller, that is the controller internal
plant model

* Copies of the plants used in any simulation scenarios that do not use the default
internal plant model

* The reference and disturbance signals specified for each simulation scenario

See Also

mpc

More About
. “Generate Simulink Model from MPC Designer” on page 5-13



Design MPC Controller for Position Servomechanism

Design MPC Controller for Position Servomechanism

This example shows how to design a model predictive controller for a position
servomechanism using MPC Designer.

System Model

A position servomechanism consists of a DC motor, gearbox, elastic shaft, and load.

The differential equations representing this system are

oy =_k_T[9L _9_M]_5_Lw

J, p ) JL
o (Voo | By n (o O
M Ty R Ju  PIul " P
where,

* Vis the applied voltage.
* T is the torque acting on the load.

o, =0, is the load angular velocity.

@y =0M i the motor shaft angular velocity.
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The remaining terms are constant parameters.

Constant Parameters for Servomechanism Model

Symbol Value (SI Units) Definition

kr 1280.2 Torsional rigidity

kat 10 Motor constant

v 0.5 Motor inertia

L 50/ Load inertia

P 20 Gear ratio

Bu 0.1 Motor viscous friction coefficient
B 25 Load viscous friction coefficient
R 20 Armature resistance

If you define the state variables as
T
Xp Z[QL y, OM COM] ,

then you can model the servomechanism as an LTI state-space system.

0 1 0 0
_kp o BL kr 0 [0 ]
xp: 0 0 1 .X'p+ 0 1%
ki Ry
L7 M
by Ry Putp (RJy |
| P p2J Ju |
9L=[1 00 O]xp
T=|kp 0 —FT O}xp
L p

The controller must set the angular position of the load, 6;, at a desired value by
adjusting the applied voltage, V.
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However, since the elastic shaft has a finite shear strength, the torque, T, must stay
within the range |T| = 78.5 Nm. Also, the voltage source physically limits the applied
voltage to the range |V] < 220 V.

Construct Plant Model

Specify the model constants.

Kt = 1280.2; % Torsional rigidity

Km = 10; % Motor constant

IJm = 0.5; % Motor inertia

J1 = 50*Im; % Load inertia

N = 20; % Gear ratio

Bm = 0.1; % Rotor viscous friction
Bl = 25; % Load viscous friction
R = 20; % Armature resistance

Define the state-space matrices derived from the model equations.

A= 0 1 0 0;
-Kt/J1 -Bl/]J1 Kt/ (N*J1) 0;
0 0 0 1;
Kt/ (Im*N) 0 -Kt/(Im*N"~2) - (Bm+Km~2/R)/Jm];
B=1[0; 0; 0; Km/(R*JIm)];
C=[ 1 0 0 0;
Kt 0 -Kt/N 01];
D = [0; 0O];

Create a state-space model.

plant = ss(A,B,C,D);

Open MPC Designer App

mpcDesigner

Import Plant and Define Signal Configuration

In MPC Designer, on the MPC Designer tab, select MPC Structure.

In the Define MPC Structure By Importing dialog box, select the plant plant model, and
assign the plant I/O channels to the following signal types:

* Manipulated variable — Voltage, V
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* Measured output — Load angular position, 6;
* Unmeasured output — Torque, T
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- MPC Structure

— —

0 Measured Disturbances . 1 Unmeasured .

L L

Selpaints 1 Manipulated Variables . Inputs Outputs
Plant B e 4
{reference) » - W Plan -

0 Unmeasured Disturbances | 1 Measured

L L

—r —

~Select a plant medel or an MPC controller from MATLAE Workspace:

Select Mame Type Order Inputs Outputs
i@ plant £ 4 |1 2
~ Controller Sample Time

Specify MPC controller sample time: |1 |

~ Assign plant ifo channels to desired signal types:

Manipulated variable [MV]} channel indices: |1

Measured disturbance (MD] channel indices: |

|
|
Unmeasured disturbance (UD} channel indices: || |
|
|

Measured output (MO) channel indices: |1
Unmeasured output (U] channel indices: |2
|@' Refresh wnrkspau:e] Define and Impnrt] | Cancel] | Help-|
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Click Define and Import.

MPC Designer imports the specified plant to the Data Browser. The following are also

added to the Data Browser:

* mpcl — Default MPC controller created using plant as its internal model.

* scenariol — Default simulation scenario. The results of this simulation are displayed
in the Input Response and Output Response plots.

Define Input and Output Channel Attributes
On the MPC Designer tab, in the Structure section, click I/O Attributes.

In the Input and Output Channel Specifications dialog box, for each input and output
channel:

* Specify a meaningful Name and Unit.

* Keep the Nominal Value at its default value of 0.

* Specify a Scale Factor for normalizing the signal. Select a value that approximates
the predicted operating range of the signal:
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Channel Name Minimum Value |Maximum Value |Scale Factor
Voltage =220V 220V 440

Theta -1t radians i radians 6.28
Torque -78.5 Nm 78.5 Nm 157
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and out Channel Specifications
Plant Inputs

Channel Type Mame Unit Mominal Value Scale Factor
ufl) rAY Voltage W ] 440

Plant Outputs

Channel Type Mame Unit Meminal Yalue Scale Factor
yil) (o] Theta Radians 0 6.28

yi2) ua Torgque Mrn 0 157

OK | | Apply | | Cancel| |Help

Click OK to update the channel attributes and close the dialog box.
Modify Scenario To Simulate Angular Position Step Response

In the Scenario section, Edit Scenario drop-down list, select scenariol to modify the
default simulation scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 10 seconds.

In the Reference Signals table, keep the default configuration for the first channel.
These settings create a Step change of 1 radian in the angular position setpoint at a
Time of 1 second.

For the second output, in the Signal drop-down list, select Constant to keep the torque
setpoint at its nominal value.
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~ Simulation Settings

Plant used in simulation: |Defautt (controller internal model} "|

Simulation duration [seconds) |1n |

71 Run open-loop simulation [ Use unconstrained MPC

71 Preview references (look ahead) [T Preview measured disturbances (look ahead)

~ Reference Signals (setpoints for all outputs)

Channel Mame Morninal Signal Size Tirne Pericd
ril) Ref of Theta |0 Step - |1 1
() Ref of Tor... |0 Constant -«

Click OK.

The app runs the simulation with the new scenario settings and updates the Input
Response and Output Response plots.
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Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, specify a Sample time of 0.1 seconds.

For the specified sample time, T,, and a desired response time of T, = 2 seconds, select a

prediction horizon, p, such that:
T, = pT;.

Therefore, specify a Prediction horizon of 20.

Specify a Control horizon of 5.
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As you update the sample time and horizon values, the Input Response and Output
Response plots update automatically. Both the input voltage and torque values exceed
the constraints defined in the system model specifications.

Specify Constraints

In the Design section, select Constraints.

In the Constraints dialog box, in the Input Constraints section, specify the Min and
Max voltage values for the manipulated variable (MV).

In the Output Constraints section, specify Min and Max torque values for the
unmeasured output (UO).
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~ Input Constraints
Channel Type Min Max RateMin RateMax
u(l) My -220 220 -Inf Inf

| + Constraint Softening Settings

- Output Constraints
Channel Type Min Max
yil] MO -Inf Inf
yi2) ug -78.5 78.5

| + Constraint Softening Settings

(o) [ (cance )

There are no additional constraints, that is the other constraints remain at their default
maximum and minimum values, —Inf and Inf respectively

Click OK.
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The response plots update to reflect the new constraints. In the Input Response plot,
there are undesirable large changes in the input voltage.

Specify Tuning Weights
In the Design section, select Weights.

In the Weights dialog box, in the Input Weights table, increase the manipulated variable
Rate Weight.
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] i

Input Weights (dimensionless)
Channel Type Weight Rate Weight  Target
u(l) My i 0.4 nominal
Output Weights (dimensionless)
Channel Type Weight
y(L) MO 1
y(2) uo 0
ECR Weight (dimensionless)

Weight on the slack variable: |1nnnuu

OK| | Apply | | Cancel

The tuning Weight for the manipulated variable (MV) is 0. This weight indicates that the
controller can allow the input voltage to vary within its constrained range. The increased
Rate Weight limits the size of manipulated variable changes.

Since the control objective is for the angular position of the load to track its setpoint, the
tuning Weight on the measured output is 1. There is no setpoint for the applied torque,
so the controller can allow the second output to vary within its constraints. Therefore, the
Weight on the unmeasured output (UO) is 0, which enables the controller to ignore the

torque setpoint.

Click OK.
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The response plots update to reflect the increased rate weight. The Input Response is
smoother with smaller voltage changes.

Examine Output Response

In the Output Response plot, right-click the Theta plot area, and select
Characteristics > Peak Response.
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The peak output response occurs at time of 3 seconds with a maximum overshoot of 3%.
Since the reference signal step change is at 1 second, the controller has a peak time of 2
seconds.

Improve Controller Response Time

Click and drag the Closed-Loop Performance slider to the right to produce a more
Aggressive response. The further you drag the slider to the right, the faster the
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controller responds. Select a slider position such that the peak response occurs at 2.7

seconds.
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The final controller peak time is 1.7 seconds. Reducing the response time further results
in overly-aggressive input voltage changes.

Generate and Run MATLAB Script

In the Analysis section, click the Export Controller arrow /=

Under Export Controller, click Generate Script.

In the Generate MATLAB Script dialog box, check the box next to scenariol.

Click Generate Script.
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The app exports a copy of the plant model, plant_C, to the MATLAB workspace, along
with simulation input and reference signals.

Additionally, the app generates the following code in the MATLAB Editor.

%
m
%

676

mpcl.PredictionHorizon
%% specify control horizon

mpcl.ControlHorizon

%% specify

mpcl.Model.
mpcl.Model.

%% specify
mpcl.MV (1)
mpcl.0V(1)
mpcl.0V(2)
%% specify
mpcl.MV (1)
mpcl.MV (1)
%% specify
mpcl.0V(2)
mpcl.0V(2)
%% specify
beta
%% specify

% create MPC controller object with sample time
pcl = mpc(plant C, 0.1);
%% specify prediction horizon

20;

5;

nominal values for inputs and outputs

Nominal.U =
Nominal.Y =

scale factors
.ScaleFactor
.ScaleFactor
.ScaleFactor

constraints

.Min = -220;
.Max

220;
constraints

.Min = -78.5
.Max

78.5;

0;

[0;0];

for inputs and outputs
440;

6.28;

157;

for MV and MV Rate

for OV

’

overall adjustment factor applied to weights

1.2712;

weights

mpcl.Weights.MV = O*beta;
mpcl.Weights.MVRate = 0.4/beta;
mpcl.Weights.0V = [1 O]*beta;
mpcl.Weights.ECR = 100000;

%% specify simulation options

options
options
options
options
options

[
676

mpcsimopt();
.RefLookAhead
.MDLookAhead
.Constraints
.OpenLoop = 'off';
run simulation

’

‘off"';
‘off’';
|on|;

sim(mpcl, 101, mpcl RefSignal, mpcl MDSignal, options);

In the MATLAB Window, in the Editor tab, select Save.

Complete the Save dialog box and then click Save.

In the Editor tab, click Run.
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The script creates the controller, mpc1l, and runs the simulation scenario. The input and
output responses match the simulation results from the app.

Validate Controller Performance In Simulink

If you have a Simulink model of your system, you can simulate your controller and
validate its performance. Simulink functionality is not supported in MATLAB Online™.

Open the model.

open_system('mpc motor')
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Servom echanizm Model

Angle (radians)

mo %

+ my MPC

refj- Angle reference

MPC Controller @ [ L -~
L

=220

Woltage (V) wmin . I_]
2210 tau —m-

— - Torgue (Nm}
max tau Trmin »

Tmax -

This model uses an MPC Controller block to control a servomechanism plant. The
Servomechanism Model block is already configured to use the plant model from the
MATLAB workspace.

The Angle reference source block creates a sinusoidal reference signal with a frequency
of 0.4 rad/sec and an amplitude of m.

Double-click the MPC Controller block.

In the MPC Controller Block Parameters dialog box, specify an MPC Controller from the
MATLAB workspace. Use the mpc1 controller created using the generated script.
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P

"l Black Parameters: MPC Caontroller @
MPC (mask) (link)

The MPC Controller block lets you design and simulate a model predictive
controller defined in the Model Predictive Control Toolbox.

Parameters

MPC Controller mpci| Ciesign
Initial Controller State []

Blo

Click OK.

At the MATLAB command line, specify a torque magnitude constraint variable.

tau = 78.5;
The model uses this value to plot the constraint limits on the torque output scope.

In the Simulink model window, click Run to simulate the model.
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4] Angle (radians) | = || B || E2 4] Woltage () = || = || Z2
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In the Angle scope, the output response, yellow, tracks the angular position setpoint,

blue, closely.

See Also
MPC Controller | MPC Designer | mpc

More About
. “Design Controller Using MPC Designer”
. “Design MPC Controller at the Command Line”
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Desigh MPC Controller for Paper Machine Process

This example shows how to design a model predictive controller for a nonlinear paper
machine process using MPC Designer.

Plant Model

Ying et al. studied the control of consistency (percentage of pulp fibers in aqueous
suspension) and liquid level in a paper machine headbox.

-
Stock: Gp, Np Feed Tank Headbox Wire
- Wet Paper
Hj, Nj —- H§> N:)-—-‘ —...p
-

White Water: G,,,, N,,,

The process is nonlinear and has three outputs, two manipulated inputs, and two
disturbance inputs, one of which is measured for feedforward control.

The process model is a set of ordinary differential equations (ODESs) in bilinear form. The
states are

T
x=[H; Hy N; Ny

* H,; — Feed tank liquid level

* H, — Headbox liquid level

* N, — Feed tank consistency

* N, — Headbox consistency

The primary control objective is to hold H, and N, at their setpoints by adjusting the
manipulated variables:

* G, — Flow rate of stock entering the feed tank

* G, — Flow rate of recycled white water

The consistency of stock entering the feed tank, N, is a measured disturbance, and the
white water consistency, N,,, is an unmeasured disturbance.
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1-112

All signals are normalized with zero nominal steady-state values and comparable
numerical ranges. The process is open-loop stable.

The measured outputs are H,, N;, and N,.

The Simulink S-function, mpc_pmmodel implements the nonlinear model equations. To
view this S-function, enter the following.

edit mpc pmmodel

To design a controller for a nonlinear plant using MPC Designer, you must first obtain a
linear model of the plant. The paper machine headbox model can be linearized
analytically.

At the MATLAB command line, enter the state-space matrices for the linearized model.

A= 1[-1.9300 0 0 0
0.3940 -0.4260 0 0
0 0 -0.6300 0
0.8200 -0.7840 0.4130 -0.4260];
B =[1.2740 1.2740 0 0
0 0 0 0
1.3400 -0.6500 0.2030 0.4060
0 0 0 0];
c=10 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000];
D = zeros(3,4);

Create a continuous-time LTI state-space model.
PaperMach = ss(A,B,C,D);
Specify the names of the input and output channels of the model.

PaperMach.InputName = {'G p','G w','N p','N w'};
PaperMach.OQutputName = {'H 2','N 1','N 2'};

Specify the model time units.
PaperMach.TimeUnit = 'minutes’;

Examine the open-loop response of the plant.

step(PaperMach)
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Step Response
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The step response shows that:

 Both manipulated variables, G, and G,, affect all three outputs.
* The manipulated variables have nearly identical effects on H,.
* The response from G,, to N is an inverse response.

These features make it difficult to achieve accurate, independent control of H, and N,.
Import Plant Model and Define Signal Configuration

Open the MPC Designer app.
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mpcDesigner

In MPC Designer, on the MPC Designer tab, in the Structure section, click MPC
Structure.

In the Define MPC Structure By Importing dialog box, select the PaperMach plant model
and assign the plant I/O channels to the following signal types:

¢ Manipulated variables — G, and G,,

* Measured disturbance — N,
* Unmeasured disturbance — N,,

* Measured outputs — H,, N,, and H,
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- MPC Structure

— —

1 Measured Disturbances . U Unmeasured .

L L

Selpaints 2 Manipulated Variables . Inputs Outputs
Plant B e 4
{reference) » - W Plan -

1 Unmeasured Disturbances | 3 Measured

L L

—r —

~Select a plant medel or an MPC controller from MATLAE Workspace:

Select Mame Type Order Inputs Outputs
i@ PaperiMach 55 4 |4 2
~ Controller Sample Time

Specify MPC controller sample time: |1 |

~ Assign plant ifo channels to desired signal types:

Manipulated variable [MV] channel indices: |[1_'2]

Measured disturbance (MD] channel indices: |3

Measured output (MO} channel indices: |[1_'2;3]

|
|
Unmeasured disturbance (UD} channel indices: |4 |
|
|

Unmeasured output (U] channel indices: ||

|@' Refresh wnrkspau:e] _Deﬁne and Impnrt] | Cancel] |Ilp|
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Tip To find the correct channel indices, click the PaperMach model Name to view
additional model details.

Click Define and Import.

The app imports the plant to the Data Browser and creates a default MPC controller
using the imported plant.

Define Input and Output Channel Attributes
In the Structure section, select I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Unit column, define the
units for each channel. Since all the signals are normalized with zero nominal steady-state
values, keep the Nominal Value and Scale Factor for each channel at their default
values.

Input and Output Channel Specifications x
~ Plant Inputs
Channel Type Marne Unit Mominal Value Scale Factor
u(l) MY G_p kg/h 0 1 -
u(2) MY G_w kg/'h 0 1 L
u(F) MD M_p % 0 1 N
u(4) upD M _w % 0 1 -
- Plant Qutputs
Channel Type Mame Unit Meorminal Value Scale Factor
yil] MO H_2 m 0
yi2) MQ M_1 % 0
yi3) MO M_2 % 0

‘ok| [apply| |cancel| [Hei|

Click OK to update the channel attributes and close the dialog box.
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Specify Controller Sample Time and Horizons

On the Tuning tab, in the Horizon section, keep the Sample time, Prediction Horizon,
and Control Horizon at their default values.

Specify Manipulated Variable Constraints
In the Design section, click Constraints.

In the Constraints dialog box, in the Input Constraints section, specify value
constraints, Min and Max, for both manipulated variables.

onstraints (mpcl]

Input Constraints

Channel Type Min Max RateMin Ratefax
u(l) MY -10 10 -Inf Inf
u(2) MV -10 10 -Inf Inf

+ Constraint Softening Settings

Ou

Click OK.

Specify Initial Tuning Weights
In the Design section, click Weights.

In the Weights dialog box, in the Input Weights section, increase the Rate Weight to
0.4 for both manipulated variables.

In the Output Weights section, specify a Weight of 0 for the second output, N;, and a
Weight of 1 for the other outputs.
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Input Weights (dimensionless)
Channel Type Weight Rate Weight  Target
ufl) MV 0 0.4 norminal
ul(2) hAY 0 0.4 norminal
Output Weights (dimensionless)
Channel Type Weight
y(1) MO 1
yi2) MO
yi3) MO
ECR Weight (dimensionless)

Weight on the slack variable: |1UUUUU

OK| | Apply | | Cancel| |Help

Increasing the rate weight for manipulated variables prevents overly-aggressive control
actions resulting in a more conservative controller response.

Since there are two manipulated variables, the controller cannot control all three outputs
completely. A weight of zero indicates that there is no setpoint for N;. As a result, the
controller can hold H, and N, at their respective setpoints.

Simulate H, Setpoint Step Response
On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenariol.
In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Reference Signals table, in the Signal drop-down list, select Step for the first
output. Keep the step Size at 1 and specify a step Time of 0.
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In the Signal drop-down lists for the other output reference signals, select Constant to
hold the values at their respective nominal values. The controller ignores the setpoint for
the second output since the corresponding tuning weight is zero.

Simulation Scenano: scenanol

~ Simulation Settings

Plant used in simulation: |DefauH: [controller internal model) "'|

Simulation duration [minutes) |3CI |

7 Run open-loop simulation [ Use unconstrained MPC

[T Preview references (look ahead) [ Preview measured disturbances (look ahead)

~ Reference Signals (setpoints for all outputs)

Channel Mame Mominal Signal Size Tirne Pericd

r(1) Refof H2 |D Step - |1 0 N
r(2) Refof N1 [0 Constant (3
r(3) Refof N2 |0 Constant 2

Click OK.

The app runs the simulation with the new scenario settings and updates the Input
Response and Output Response plots.
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The initial design uses a conservative control effort to produce a robust controller. The
response time for output H, is about 7 minutes. To reduce this response time, you can

decrease the sample time, reduce the manipulated variable rate weights, or reduce the
manipulated variable rate constraints.

Since the tuning weight for output N; is zero, its output response shows a steady-state
error of about —0. 25.

Adjust Weights to Emphasize Feed Tank Consistency Control

On the Tuning tab, in the Design section, select Weights.

In the Weights dialog box, in the Output Weights section, specify a Weight of 0. 2 for
the first output, H,.
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The controller places more emphasis on eliminating errors in feed tank consistency, N,,
which significantly decreases the peak absolute error. The trade-off is a longer response
time of about 17 minutes for the feed tank level, H,.

Test Controller Feedforward Response to Measured Disturbances

On the MPC Designer tab, in the Scenario section, click Plot Scenario > New
Scenario.

In the Simulation Scenario dialog box, specify a Simulation duration of 30 minutes.

In the Measured Disturbances table, specify a step change in measured disturbance,
N, with a Size of 1 and a step Time of 1. Keep all output setpoints constant at their
nominal values.
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~ Simulation Settings

Plant used in simulation: |Defautt (controller internal model} '|

Simulation duration [minutes) |3n |

71 Run open-loop simulation [ Use unconstrained MPC

71 Preview references (look ahead) [T Preview measured disturbances (look ahead)

~ Reference Signals (setpoints for all outputs)

Channel Mame Morninal Signal Size Tirne Pericd

r{1) Refof H 2 |0 Constant -« -
r(2) Refof N1 |0 Constant (4
{E] FefofM 2 |0 Constant i

~ Measured Disturbances (inputs to MD channels)

Channel Mame Meminal Signal Size Tirme Pericd
u3) IN_p 0 Step -1 1

Click OK to run the simulation and display the input and output response plots.
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As shown in the NewScenario: Output plot, both H, and N, deviate little from their

setpoints.

Experiment with Signal Previewing

In the Data Browser, in the Scenarios section, right-click NewScenario, and select

Edit.

In the Simulation Scenario dialog box, in the Simulation Settings section, check the

Preview measured disturbances option.

Click Apply.
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The manipulated variables begin changing before the measured disturbance occurs
because the controller uses the known future disturbance value when computing its
control action. The output disturbance values also begin changing before the disturbance
occurs, which reduces the magnitude of the output errors. However, there is no
significant improvement over the previous simulation result.

In the Simulation Scenario dialog box, clear the Preview measured disturbances
option.

Click OK.
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Rename Scenarios

With multiple scenarios, it is helpful to provide them with meaningful names. In the Data
Browser, in the Scenarios section, double-click each scenario to rename them as shown:

w Scenarios

ServoResponse

Feedforward

Test Controller Feedback Response to Unmeasured Disturbances

In the Data Browser, in the Scenarios section, right-click Feedforward,and select
Copy.

Double-click the new scenario, and rename it Feedback.
Right-click the Feedback scenario, and select Edit.

In the Simulation Scenario dialog box, in the Measured Disturbances table, in the
Signal drop-down list, select Constant to remove the measured disturbance.

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step to
simulate a sudden, sustained unmeasured input disturbance.

Set the step Size to 1 and the step Time to 1.
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RefofM 2 |0

Measured Disturbances (inputs to MD channels)
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u() IN_w o Step v |1 1

Click OK to update the scenario settings, and run the simulation.

In the Data Browser, in the Scenarios section, right-click Feedback, and select Plot.
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The controlled outputs, H, and N,, both exhibit relatively small deviations from their
setpoints. The settling time is longer than for the original servo response, which is typical.

On the Tuning tab, in the Analysis section, click Review Design to check the controller
for potential run-time stability or numerical problems.

The review report opens in a new window.
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Test Status

MPC Object Creation Pass

QP Hessian Matrnix Validitv

Controller Internal Stabilitv Pass
Closed-Loop Nominal Stabilitv Pass

Clozed-Loop Steadv-5State Gains

Hard MV Constramts Pass
Other Hard Constraints Pass
Soft Constraints Pass
Memory 5Size for MPC Data Pass

The review flags two warnings about the controller design. Click the warning names to
determine whether they indicate problems with the controller design.

The Closed-Loop Steady-State Gains warning indicates that the plant has more
controlled outputs than manipulated variables. This input/output imbalance means that
the controller cannot eliminate steady-state error for all of the outputs simultaneously. To
meet the control objective of tracking the setpoints of H, and N,, you previously set the
output weight for N, to zero. This setting causes the QP Hessian Matrix Validity
warning, which indicates that one of the output weights is zero.

Since the input/output imbalance is a known feature of the paper machine plant model,
and you intentionally set one of the output weights to zero to correct for the imbalance,
neither warning indicates an issue with the controller design.

Export Controller to MATLAB Workspace

A

On the MPC Designer tab, in the Result section, click Export Controller Iﬂl
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In the Export Controller dialog box, check the box in the Select column.

In the Export As column, specify MPC1 as the controller name.

E’ alu i DlE
Export Controllers to MATLAB workspace

MPC Controller Export As
“mpcl MPC1

Export| | Cancel| |Help

Click Export to save a copy of the controller to the MATLAB workspace.
Open and Simulate Simulink Model

If you have a Simulink model of your system, you can simulate your controller and
validate its performance. Simulink functionality is not supported in MATLAB Online.

Open the model.

open_system('mpc papermachine')
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O utputs

[0 0 0]

mpc_pmmodel
1 S-Function
Unmeasured
Disturbance
mo
| I - my MPC ref
M md
MPC Controller

Setpoints

0

M easured
Disturbance

The MPC Controller block controls the nonlinear paper machine plant model, which is

defined using the S-Function mpc_pmmodel.

The model is configured to simulate a sustained unmeasured disturbance of size 1.

Double-click the MPC Controller block.
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i

“& Function Block Parameters: MPC Controller @
MPC (mask) (link)

The MPC Controller block lets you design and simulate a model predictive
controller defined in the Model Predictive Control Toolbox.

Parameters

MPC Ccftroller MPC1|

Design

Initial Controller

Block Options

General Online Features | Default Conditions | Others |
Additi

Measured disturbance (md)

riable (ext.mv)

Additional Outports

["] Optimal cost (cost)

["] optimal control sequence {mv.seq)

["] Optimization status (qp.status)

["] Estimated plant, disturbance and noise model states (est.state)

State Estimation

[] use custom estimated states instead of measured outputs (x[k|k])

[ OK ][ Cancel H Help Apply

-
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The MPC Controller block is already configured to use the MPC1 controller that was
previously exported to the MATLAB workspace.

Also, the Measured disturbance option is selected to add the md inport to the controller
block.

Simulate the model.

4| Qutputs o || B ER

File Tools View Simulation Help u

R NON > = QB &£ F-

Ready T=30.000

In the Outputs plot, the responses are almost identical to the responses from the
corresponding simulation in MPC Designer. The yellow curve is H,, the blue is N;, and
the red is N,.
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i =)

] MVs E@

File Tools View Simulation Help N

-l ae® P =R RO I R VR

Ready T=30.000

Similarly, in the MVs scope, the manipulated variable moves are almost identical to the
moves from corresponding simulation in MPC Designer. The yellow curve is G, and the
blue is G,,,.

These results show that there are no significant prediction errors due to the mismatch
between the linear prediction model of the controller and the nonlinear plant. Even
increasing the unmeasured disturbance magnitude by a factor of four produces similarly
shaped response curves. However, as the disturbance size increases further, the effects of
nonlinearities become more pronounced.
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Increase Unmeasured Disturbance Magnitude

In the Simulink model window, double-click the Unmeasured Disturbance block.

In the Unmeasured Disturbance properties dialog box, specify a Constant value of 6.5.
Click OK.

Simulate the model.

s )

4. Outputs = || =] ER

File Tools View Simulation Help o

@-la® kP =R RO R VR

Ready T=30.000
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| Mg = [=] 23

File Tools View Simulation Help N

-l ae® P =R RO I R VR

Ready T=30.000

The mismatch between the prediction model and the plant now produces output
responses with significant differences. Increasing the disturbance magnitude further
results in large setpoint deviations and saturated manipulated variables.

References

[1] Ying, Y., M. Rao, and Y. Sun “Bilinear control strategy for paper making process,”
Chemical Engineering Communications (1992), Vol. 111, pp. 13-28.

1-135



1 Controller Creation

See Also
MPC Controller | MPC Designer

More About
. “Design Controller Using MPC Designer”
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Control of an Inverted Pendulum on a Cart

This example uses a model predictive controller (MPC) to control an inverted pendulum
on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
disp('Simulink Control Design is required to run this example.')
return
end
Add example file folder to MATLAB® path.
addpath(fullfile(matlabroot, 'examples', 'mpc', 'main'));
Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.
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Disturbance dF

Mass m .
pen

Length L g =9.81 m/s?
Mass m_
Damping K,

Input F

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc pendcartPlant’;
load system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'], 'force")
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Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

* The cart is stationary at x = 0.

* The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

* Cart can be moved to a new position between -10 and 10 with a step setpoint change.

* When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

* When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart
should return to its original position with a maximum displacement of 1. The
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pendulum should also return to the upright position with a peak angle displacement of
15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

Control Structure

For this example, use a single MPC controller with:

* One manipulated variable: Variable force F.
* Two measured outputs: Cart position x and pendulum angle theta.
* One unmeasured disturbance: Impulse disturbance dF.

mdWMPC = 'mpc_pendcartImplicitMPC';
open_system(mdlMPC)

Disturbance
1
Signal 1
® P
_I—de dF '

%_dot i

- x_dot

¥ mo
theta B
F

- B
= Rl _ raf theta_dot thata,_dot >

» Pendulum and Cart Systam

theta Ref

|

Animation

Il
il

Copyright 19%0-2015 The Math\Works, Inc.

Although cart velocity x_dot and pendulum angular velocity theta dot are available from
the plant model, to make the design case more realistic, they are excluded as MPC
measurements.
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While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction,
linearize the Simulink plant model at the initial operating point.

Specify linearization input and output points.

io(1l) = linio([mdlPlant '/dF'],1, 'openinput');

io(2) = linio([mdlPlant '/F'],1, 'openinput');

io(3) = linio([mdlPlant '/Pendulum and Cart System'],1, 'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3, 'openoutput');

Create operating point specifications for the plant initial conditions.
opspec = operspec(mdlPlant);
The first state is cart position x, which has a known initial state of 0.

opspec.States(1l).Known = true;
opspec.States(1l).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;
opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport', false);
op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);
plant.InputName = {'dF';'F'};
plant.OQutputName = {'x'; 'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =
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0
-11.9115
-3.2138
5.1253

The plant has an integrator and an unstable pole.
bdclose(mdlPlant)

MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is
specified as an unmeasured disturbance used by the MPC controller for better
disturbance rejection. Set the plant signal types.

plant = setmpcsignals(plant,'ud',1, 'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;

PredictionHorizon = 50;

ControlHorizon = 5;

mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

There is a limitation on how much force can be applied to the cart, which is specified as
hard constraints on manipulated variable F.

mpcobj .MV.Min
mpcobj .MV.Max

-200;
200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj .MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.
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mpcobj .Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

mpcobj .Weights.0V = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by
multiplying the default disturbance model gains by a factor of 10.

Update the input disturbance model.

disturbance model = getindist(mpcobj);
setindist(mpcobj, 'model’',disturbance model*10);

Update the output disturbance model.

disturbance model = getoutdist(mpcobj);
setoutdist(mpcobj, 'model',disturbance model*10);

Closed-Loop Simulation
Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)
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In the nonlinear simulation, all the control objectives are successfully achieved.

Discussion

It is important to point out that the designed MPC controller has its limitations. For
example, if you increase the step setpoint change to 15, the pendulum fails to recover its
upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the
prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.
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A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.0V(2).Min -pi/2;
mpcobj.0V(2).Max = pi/2;
mpcobj .Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate
models at different angle to improve prediction. Another example “Gain-Scheduled MPC
Control of an Inverted Pendulum on a Cart” shows how to use gain scheduling MPC to
achieve the longer distances.

Remove the example file folder from the MATLAB path, and close the Simulink model.

rmpath(fullfile(matlabroot, 'examples', 'mpc', 'main'));
bdclose(mdlMPC)

See Also

More About

. “Explicit MPC Control of an Inverted Pendulum on a Cart” on page 7-41
. “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-66
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Thermo-Mechanical Pulping Process with Multiple
Control Objectives

This example shows how to control a thermo-mechanical pulping (TMP) plant with a
model predictive controller.

Plant Description

The following diagram shows a typical process arrangement for a two stage TMP
operation. Two pressured refiners operate in sequence to produce a mechanical pulp
suitable for making newsprint.

The primary objective of controlling the TMP plant is to regulate the energy applied to the
pulp by the electric motors which drive each refiner to derive pulp with good physical
properties without incurring excess energy costs.

The secondary control objective is to regulate the ratio of dry mass flow rate to overall
mass flow rate (known as consistency) measured at the outlet of each refiner.

In practice, these objectives amount to regulating the primary and secondary refiner
motor loads, and the primary and secondary refiner constancies, subject to the following
output constraints:

(1) Maintain the power on each refiner below the maximum rated values.

(2) Maintain the vibration level on the two refiners below a critical level to prevent refiner
plate clash.

(3) Limit the measured consistency to prevent blow line plugging and fiber damage.

The manipulated variables for this plant include:

* Gap controller setpoints for regulating the distance between the refiner plates
» Dilution flow rates to the two refiners
* RPM of the screw feeder

Physical limits are also imposed on each of these inputs.
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Modeling of the TMP Plant in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')

return
end
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The following Simulink® model represents a TMP plant and an MPC Controller designed
for the control objectives described above. The model is opened and plant data is
initialized:

open_system('mpc_tmpdemo')

mpctmpinit;
mo
_— MPC Set points
ref (4
Feed pm PriVibraion fb———
Pri gap set point
Pri. consistency ———————
L Pri dil flow set paint

Sec. vibration pb———————— =

Sac. gap set point
Pri. motor koad »

Mominal fiber water filling factor Sec. dilution set paint
Fed | p{ Chip fiber dansity Sac. consistency b
Flh LI | Chip mixture density Sac. motor koad -
Mominal inlet slurry density TMP Refining Line ¥
Pri. motor load C]
¥
Sac, consistancy C]
¥
Sec. motor load C]

Caopyright 1920-2014 The MathWaorks, Inc.

The MPC controller is represented by an MPC object in the workspace. It is loaded from a
previously saved design:
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load mpc_tmpdemodata;
mpcobj

MPC object (created on 30-Mar-2004 17:20:31):

Sampling time: 0.5 (seconds)
Prediction Horizon: 20
Control Horizon: 5

Plant Model:

5 manipulated variable(s) -->| 7 states |

| |--> 6 measured output(s)
0 measured disturbance(s) -->| 5 inputs |

| |--> 0 unmeasured output(s)
0 wunmeasured disturbance(s) -->| 6 outputs |

Disturbance and Noise Models:
OQutput disturbance model: user specified (type "getoutdist(mpcobj)" for detail
Measurement noise model: user specified (type "mpcobj.Model.Noise" for detail

Weights:
ManipulatedVariables: [0 0 0 0 O]
ManipulatedVariablesRate: [0.1000 10 0.1000 10 0.1000]
OQutputVariables: [0 10 0 1 10 1]
ECR: 1000000

State Estimation: Default Kalman Filter (type "getEstimator(mpcobj)" for details)

Constraints:
0 <= Feed rpm <= 35, -10 <= Feed rpm/rate <= Inf,
0 <= Pri. gap set point <=1, -10 <= Pri. gap set point/rate <= Inf, -!
70 <= Pri. dil. flow set point <= 250, -10 <= Pri. dil. flow set point/rate <= Inf,

70 <= Sec. dil flow set point <= 250, -10 <= Sec. dil flow set point/rate <= Inf,
The controller was designed using the MPC Designer app.

Tuning the Controller Using the MPC Designer App

Click the "Design" button in the MPC Controller block dialog to launch the MPC Designer
app.
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In the Tuning tab, click Weights to open the Weights dialog box. To put more emphasis on
regulating primary and secondary refiner motor loads and constancies, specify the input
and output weights as follows:
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~ Input Weights (dimensionless)
Channel Type Weight Rate Weight
u(l) MY 0 0.1 -
uld) MY 0 10 =
u(3) MY 0 0.1 i
u(d) MY 0 10 b
- Output Weights (dimensionless)
Channel Type Weight
y(1) MO 0 -
v(2) MO 10 E|
y(3) MO 0
yid) MO 1 R
- ECR Weight (dimensionless)
Weight on the slack variable: |1ﬂﬂﬂﬂﬂﬂ |
|E| | Apph.r] | Can u:el.| |Klp|

In the MPC Designer tab, click Edit Scenario to open the Simulation Scenario dialog box.
To simulate a primary refiner motor load setpoint change from 8 to 9 MW without a model
mismatch, specify the simulation scenario settings as follows:
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~ Simulation Settings
Plant used in Simulation: |Defautt [controller internal model) '|
Simulation duration [seconds) |1n |
71 Run open loop simulation 71 Use unconstrained MPC
[T Preview references (look ahead) [T Preview measured disturbances (look ahead)
~ Reference Signals (setpoints for all outputs)

Channel Mame Mominal  Signal Size Tirne Peri...
r{d}) Ref of Pri. motor load 8 Step - |1 1 )L
r(5) Ref of Sec. consistency 0.3 Constant  « e
r{) Ref of 5ec. motor load 7 Constant  « -

- Output Disturbances (added at MO channels)

Channel Mame Mominal Signal Size Time Pericd
yil) Pri. vibration|0 Constant - -
y(2) Pri. consist...|0 Constant - Y
PIE)] Sec. vibrati... |0 Constant S

 Load Disturbances (added at MV channels)

Channel Mame Mominal Signal Size Time Pericd
ull) Feed rpm [0 Constant - -
uf2) Pri. gap set...0 Constant m
IE)] Pri. dil. flo... [0 Constant  « i

|E| |Apph.r| | Canu:el] |Klp|

The effect of design changes can be observed immediately in the response plots.
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Simulating the Design in Simulink®

The controller can be tested on the non-linear plant by running the simulation in
Simulink®. In the Tuning tab, in the Update and Simulate drop-down list, select Update
Block and Run Simulation to export the current controller design to the MATLAB
workspace and run the simulation in Simulink.

The output of the 3 scopes show the response to initial setpoints with:

* Primary consistency of 0.4

* Secondary motor load of 6 MW

* Secondary consistency of 0.3
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bdclose('mpc_tmpdemo')

See Also
MPC Controller | MPC Designer | mpc

More About
. “Design MPC Controller in Simulink”
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Aircraft with Unstable Poles

1-156

This example shows how to control an unstable aircraft with saturating actuators.

For an example that controls the same plant using an explicit MPC controller, see
“Explicit MPC Control of an Aircraft with Unstable Poles”.

Define Aircraft Model

The linear open-loop dynamic model of the aircraft has the following state-space matrices:

A =1[-0.0151 -60.5651 0 -32.174;
-0.0001 -1.3411 0.9929 0;
0.00018 43.2541 -0.86939 0;
0 0 1 01;
B =1[-2.516 -13.136;
-0.1689 -0.2514;
-17.251 -1.5766;
0 0]1;
C=[0100;
0001];
D =1[0 0;
0 0];

Create the plant, and specify the initial states as zero.

plant = ss(A,B,C,D);
x0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles. The attack and pitch
angles are measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

ans =

-7.6636 + 0.00001
5.4530 + 0.00001
-0.0075 + 0.05561
-0.0075 - 0.05561
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Specify Controller Constraints

Both manipulated variables are constrained between +/- 25 degrees. Since the plant
inputs and outputs are of different orders of magnitude, you also use scale factors to
facilitate MPC tuning. Typical choices of scale factor are the upper/lower limit or the
operating range.

MV = struct('Min', {-25,-25}, 'Max',{25,25}, 'ScaleFactor',{50,50});

Both plant outputs have constraints to limit undershoots at the first prediction horizon.
You also specify scale factors for outputs.

0OV = struct('Min',{[-0.5;-Inf],[-100;-Inf]}, 'Max',{[0.5;Inf],[100;Inf]}, 'ScaleFactor’,-

Specify Controller Tuning Weights

The control task is to get zero offset for piecewise-constant references, while avoiding

instability due to input saturation. Because both MV and OV variables are already scaled
in MPC controller, MPC weights are dimensionless and applied to the scaled MV and OV
values. In this example, you penalize the two outputs equally with the same OV weights.

Weights = struct('MvV',[0 O], 'MVRate',[0.1 0.1],'0V',[10 10]);

Create MPC Controller

Create an MPC controller with the specified plant model, sample time, and horizons.

Ts = 0.05; % Sample time

p = 10; % Prediction horizon
m= 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Simulate closed-loop control of the linear plant model in Simulink. To do so, for the MPC
Controller block, set the MPC Controller property to mpcobj.
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mdl = 'mpc_aircraft';
open_system(mdl)
sim(mdl)
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The closed-loop response shows good setpoint tracking performance.

References

[1] P. Kapasouris, M. Athans, and G. Stein, "Design of feedback control systems for
unstable plants with saturating actuators", Proc. IFAC Symp. on Nonlinear Control
System Design, Pergamon Press, pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear
systems via predictive reference management", IEEE® Trans. Automatic Control, vol.
AC-42, no. 3, pp. 340-349, 1997.

bdclose(mdl)

See Also
MPC Controller | mpc



See Also

More About
. “Design MPC Controller at the Command Line”

1-161






Model Predictive Control Basics

* “Controller State Estimation” on page 2-2
* “Optimization Problem” on page 2-9
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2 Model Predictive Control Basics

Controller State Estimation

2-2

Controller State Variables

As the controller operates, it uses its current state, x,, as the basis for predictions. By
definition, the state vector is the following:

xe (R)=[xp () xg) xgq(®) xp ).

c

Here,

* X is the controller state, comprising n,, + n,,; + n,,4 + Ny, state variables.
* X, is the plant model state vector, of length n,,.

* X, is the input disturbance model state vector, of length n,;,.

*  X,q is the output disturbance model state vector, of length n,.

* X, is the measurement noise model state vector, of length n,,,.

Thus, the variables comprising x, represent the models appearing in the following
diagram of the MPC system.
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Some of the state vectors may be empty. If not, they appear in the sequence defined
within each model.

By default, the controller updates its state automatically using the latest plant
measurements. See “State Estimation” on page 2-4 for details. Alternatively, the
custom state estimation feature allows you to update the controller state using an
external procedure, and then supply these values to the controller. See “Custom State
Estimation” on page 3-59 for details.

State Observer
Combination of the models shown in the diagram yields the state observer:
x.(k+1)=Ax, (k)+Bu, (k)
y(k)=Cx.(k)+Du, (k).

MPC controller uses the state observer in the following ways:

+ To estimate values of unmeasured states needed as the basis for predictions (see
“State Estimation” on page 2-4).
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» To predict how the controller’s proposed manipulated variable (MV) adjustments will
affect future plant output values (see “Output Variable Prediction” on page 2-7).

The observer’s input signals are the dimensionless plant manipulated and measured
disturbance inputs, and the white noise inputs to the disturbance and noise models:

The observer’s outputs are the n, dimensionless plant outputs.

In terms of the parameters defining the four models shown in the diagram, the observer’s
parameters are:

A, ByCy 0 0 B,, B,, B,yDy 0 0
Aol O Aa 0 0| p |0 0 By 0 0
0 0 Ay O 0 o0 0 B,y O

0 0 0 A, 00 0 0 B,|
Cn Dn

CZ Cp DpdCL-d Cod 0 5 D= 0 Dpv DpdDid Dod 0 .

Here, the plant and output disturbance models are resequenced so that the measured
outputs precede the unmeasured outputs.

State Estimation

In general, the controller states are unmeasured and must be estimated. By default, the
controller uses a steady-state Kalman filter that derives from the state observer. (See
“State Observer” on page 2-3.)

At the beginning of the kth control interval, the controller state is estimated with the
following steps:

1 Obtain the following data:

* x.(k|k-1) — Controller state estimate from previous control interval, k-1

* u%(k-1) — Manipulated variable (MV) actually used in the plant from k-1 to k
(assumed constant)
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* u%(k-1) — Optimal MV recommended by MPC and assumed to be used in the
plant from k-1 to k

¢ y(k) — Current measured disturbances

*  Yn() — Current measured plant outputs

* B, B, — Columns of observer parameter B corresponding to u(k) and v(k) inputs
* C,, — Rows of observer parameter C corresponding to measured plant outputs

* D,, — Rows and columns of observer parameter D corresponding to measured
plant outputs and measured disturbance inputs

* L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in
calculations.

Revise x,(k|k-1) when u(k-1) and u°P*(k-1) are different:
xp® (k| k=1) = x, (k| k=1)+ B, [u™ (k=1)-u* (k-1)].
Compute the innovation:
e(k) = Y (B) =] Cpx™ (Kl k=1)+ Dy 0 () |
Update the controller state estimate to account for the latest measurements.
x.(k|k) =x.%" (k| k—1)+ Me(k).

Then, the software uses the current state estimate x,(k|k) to solve the quadratic
program at interval k. The solution is u°P(k), the MPC-recommended manipulated-
variable value to be used between control intervals k and k+1.

Finally, the software prepares for the next control interval assuming that the
unknown inputs, w;y(k), wye(k), and w,(k) assume their mean value (zero) between

times k and k+1. The software predicts the impact of the known inputs and the
innovation as follows:

x,(k+1|k)= Axl®" (k| k—1)+ B,u’" (k)+ B,v(k)+ Le(k).

2-5



2 Model Predictive Control Basics

2-6

Built-in Steady-State Kalman Gains Calculation

Model Predictive Control Toolbox software uses the kalman command to calculate
Kalman estimator gains L and M. The following assumptions apply:
» State observer parameters A, B, C, D are time-invariant.

* Controller states, x,, are detectable. (If not, or if the observer is numerically close to
undetectability, the Kalman gain calculation fails, generating an error message.)

* Stochastic inputs w(k), w,q(k), and w,(k) are independent white noise, each with zero
mean and identity covariance.

* Additional white noise w,(k) and w,(k) with the same characteristics adds to the
dimensionless u(k) and v(k) inputs respectively. This improves estimator performance
in certain cases, such as when the plant model is open-loop unstable.

Without loss of generality, set the u(k) and v(k) inputs to zero. The effect of the stochastic
inputs on the controller states and measured plant outputs is:

x.(k+1)=Ax, (k)+Bw(k)
IYm (k) =C,x, (k)+ Dy,w (k)

Inputs to the kalman command are the state observer parameters A, C,,, and the
following covariance matrices:

Q= E{waTBT} =BBT
R=E{D,ww" D)} =D, D}

N =E{Bww" D} = BD].

Here, E{...} denotes the expectation.
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Output Variable Prediction

Model Predictive Control requires prediction of noise-free future plant outputs used in
optimization. This is a key application of the state observer (see “State Observer” on page
2-3).

In control interval k, the required data are as follows:

* p — Prediction horizon (number of control intervals, which is greater than or equal to
D

* x.(k|k) — Controller state estimates (see “State Estimation” on page 2-4)

* v(k) — Current measured disturbance inputs (MDs)

* v(k+ilk) — Projected future MDs, where i=1:p-1. If you are not using MD previewing,
then v(k+ilk) = v(k).

» A, B, B, C, D, — State observer constants, where B, B,, and D, denote columns of
the B and D matrices corresponding to inputs u and v. D, is a zero matrix because of
no direct feedthrough

Predictions assume that unknown white noise inputs are zero (their expectation). Also,

the predicted plant outputs are to be noise-free. Thus, all terms involving the

measurement noise states disappear from the state observer equations. This is equivalent
to zeroing the last n,, elements of x.(k|k).

Given the above data and simplifications, for the first step the state observer predicts:
x.(k+1| k)= Ax, (k|k)+ B,u(k|k)+B,v(k).

Continuing for successive steps, i = 2:p, the state observer predicts:
x.(k+i|k)=Ax, (k+i-1|k)+Bu(k+i-1|k)+By(k+i-1|k).

At any step, i = 1:p, the predicted noise-free plant outputs are:
y(k+i|k)=Cx, (k+i|k)+Dy(k+i|k).

All of these equations employ dimensionless plant input and output variables. See
“Specify Scale Factors” on page 1-18. The equations also assume zero offsets. Inclusion of
nonzero offsets is straightforward.
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For faster computations, the MPC controller uses an alternative form of the above
equations in which constant terms are computed and stored during controller
initialization. See “QP Matrices” on page 2-14.

See Also

kalman

More About

. “MPC Modeling”

. “Optimization Problem” on page 2-9

. “Custom State Estimation” on page 3-59



Optimization Problem

Optimization Problem

Overview

Model predictive control solves an optimization problem - specifically, a quadratic
program (QP) - at each control interval. The solution determines the manipulated
variables (MVs) to be used in the plant until the next control interval.

This QP problem includes the following features:

* The objective, or "cost", function — A scalar, nonnegative measure of controller
performance to be minimized.

* Constraints — Conditions the solution must satisfy, such as physical bounds on MVs
and plant output variables.

* Decision — The MV adjustments that minimize the cost function while satisfying the
constraints.

The following sections describe these features in more detail.

Standard Cost Function

The standard cost function is the sum of four terms, each focusing on a particular aspect
of controller performance, as follows:

J(Zk):Jy(Zk)+Ju(Zk)+JAu(zk)+Js (Zk).

Here, z; is the QP decision. As described below, each term includes weights that help you
balance competing objectives. While the MPC controller provides default weights, you
will usually need to adjust them to tune the controller for your application.

Output Reference Tracking

In most applications, the controller must keep selected plant outputs at or near specified
reference values. An MPC controller uses the following scalar performance measure for
output reference tracking:

n b (w) ?
Iy ()= y’J[rj(k+i|k)—yj(k+i|k)] .
jeli=1| 8

2-9



2 Model Predictive Control Basics

2-10

Here,

* k — Current control interval.

* p — Prediction horizon (number of intervals).
* n, — Number of plant output variables.

* 2, — QP decision, given by:

2! :[u(k|k)T wk+1|B)T - wk+p-1|k)T ek].

* yk+i|k) — Predicted value of jth plant output at ith prediction horizon step, in
engineering units.

* ri(k+ilk) — Reference value for jth plant output at ith prediction horizon step, in
engineering units.

sJy- — Scale factor for jth plant output, in engineering units.

w? . — Tuning weight for jth plant output at ith prediction horizon step
(dimensionless).

The values ny, p, s7, and w; . are constant controller specifications. The controller
receives reference values r(]k+1|k for the entire prediction horizon. The controller uses
the state observer to predlct the plant outputs, y;(k+i|k), which depend on manipulated
variable adjustments (z;), measured disturbances (MD), and state estimates. At interval k,
the controller state estimates and MD values are available. Therefore, ], is a function of 2,
only.

Manipulated Variable Tracking

In some applications, such as when there are more manipulated variables than plant
outputs, the controller must keep selected manipulated variables (MVs) at or near
specified target values. An MPC controller uses the following scalar performance measure
for manipulated variable tracking:

2

J, (Zk)_zz [ k+l|k) j,target (k+l|k):|

j=1i=0
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Here,

* k — Current control interval.

* p — Prediction horizon (number of intervals).
* n, — Number of manipulated variables.

* 2, — QP decision, given by:

z,{=[u(k|k)T wk+1 BT - wk+p-1|k)T gk]

*  Ujtarge(k+ilk) — Target value for jth MV at ith prediction horizon step, in engineering
units.

s’ — Scale factor for jth MV, in engineering units.

w;' j — Tuning weight for jth MV at ith prediction horizon step (dimensionless).

The values n,, p, s%, and wy; are constant controller specifications. The controller
receives u;qrge(k+1|k) Values for the entire horizon. The controller uses the state observer
to predict the plant outputs. Thus, J, is a function of z; only.

Manipulated Variable Move Suppression

Most applications prefer small MV adjustments (moves). An MPC constant uses the
following scalar performance measure for manipulated variable move suppression:

[ (B+i|k)—u; (k+i-1]k)]

YMCOEDY Z

Jj=11i=0

Here,

* k — Current control interval.

* p — Prediction horizon (number of intervals).
* n, — Number of manipulated variables.

* 2, — QP decision, given by:

2 =[uk| D" wk+1R)" - uwkep-11R .
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s’ — Scale factor for jth MV, in engineering units.

w,A;‘ — Tuning weight for jth MV movement at ith prediction horizon step
(dimensionless).

The values n,, p, %, and 2% are constant controller specifications. u(k-1|k) = u(k-1),
which are the known MVs from the previous control interval. J,, is a function of z; only.

In addition, a control horizon m < p (or MV blocking) constrains certain MV moves to be
Zero.

Constraint Violation

In practice, constraint violations might be unavoidable. Soft constraints allow a feasible
QP solution under such conditions. An MPC controller employs a dimensionless,
nonnegative slack variable, g, which quantifies the worst-case constraint violation. (See
“Constraints” on page 2-13) The corresponding performance measure is:

2
Je (21) = Pet-
Here,
* 2, — QP decision, given by:
27 =[u(k|k)T wk+1 BT o wk+p-1|k)T ek]-

* & — Slack variable at control interval k (dimensionless).

* p, — Constraint violation penalty weight (dimensionless).
Alternative Cost Function

You can elect to use the following alternative to the standard cost function:
-1

I(z)= Y [ &) (k+i)Qey (k+i)|+] el (k+i)Rye, (k+i)|+] au” (k+i)Ry,bu(k+i) [}+p &f.
0

S

~.
Il

Here, Q (n,by-n)), R,, and R,, (n,-by-n,) are positive-semi-definite weight matrices, and:
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ey (i+k)=S [r(k+i+1k)-yk+i+1|k)]
ey (i+k) = S, [ targer (R + il k) —ulk+i | )]

Au(k+i)= S, [u(k+ilk)-uk+i-1|k)].

Also,

* S, — Diagonal matrix of plant output variable scale factors, in engineering units.
+ S, — Diagonal matrix of MV scale factors in engineering units.

* r(k+1]k) — n, plant output reference values at the ith prediction horizon step, in
engineering units.

¢ y(k+1|k) — n, plant outputs at the ith prediction horizon step, in engineering units.
* 2, — QP decision, given by:

27 :[u(k|k)T wk+1|RT - wk+p-1|pT ek].
Ugarger(k+i|k) — n, MV target values corresponding to u(k+i|k), in engineering units.

Output predictions use the state observer, as in the standard cost function.

The alternative cost function allows off-diagonal weighting, but requires the weights to be
identical at each prediction horizon step.

The alternative and standard cost functions are identical if the following conditions hold:

The standard cost functions employs weights w? jowl and wf}‘ that are constant
with respect to the index, i = 1:p.

* The matrices Q, R,, and R,, are diagonal with the squares of those weights as the
diagonal elements.

Constraints

Certain constraints are implicit. For example, a control horizon m < p (or MV blocking)
forces some MV increments to be zero, and the state observer used for plant output
prediction is a set of implicit equality constraints. Explicit constraints that you can
configure are described below.
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Bounds on Plant Outputs, MVs, and MV Increments

The most common MPC constraints are bounds, as follows.

yj,min (l) . yj (k+i|k) yj,max(i) . . .
—y_ngjy,min(l)S 5 < 5 +£ijy,max(L)’ i=1:p, j=1l:n,
S% S S
J J J
Uimin (1 o oui(k+i-1k) u; i L )
Jmlun( )—ngJl‘fmin(l)S J( g )S szx( )+€kVJl‘fmax(L)’ i=1:p, j=1:n,
Sj Sj Sj
Au: . (i o Aui(k+i-1k) Au; i o )
%’l()_‘gkvﬁ%m(l)s J( . )S J,m;x( )+6ka,ffwx(l)’ i=1l:p, j=1:n,.
5j 5 5j

Here, the V parameters (ECR values) are dimensionless controller constants analogous to
the cost function weights but used for constraint softening (see “Constraint Softening” on
page 1-8). Also,

* &, — Scalar QP slack variable (dimensionless) used for constraint softening.

sJy. — Scale factor for jth plant output, in engineering units.

u
& —
J
*  Yimin(1), Yjmax(i) — lower and upper bounds for jth plant output at ith prediction horizon
step, in engineering units.

Scale factor for jth MV, in engineering units.

*  Ujmin(1), Ujmax(i) — lower and upper bounds for jth MV at ith prediction horizon step, in
engineering units.

*  AUj (i), AUjma(i) — lower and upper bounds for jth MV increment at ith prediction
horizon step, in engineering units.

Except for the slack variable non-negativity condition, all of the above constraints are
optional and are inactive by default (i.e., initialized with infinite limiting values). To
include a bound constraint, you must specify a finite limit when you design the controller.

QP Matrices

This section describes the matrices associated with the model predictive control
optimization problem described in “Optimization Problem” on page 2-9.
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Prediction

Assume that the disturbance models described in “Input Disturbance Model” are unit
gains; that is, d(k) = n4(k) is white Gaussian noise. You can denote this problem as

x| “lac|4 BClp Bl p BB |BP| cfc D,
Xq 0 A 0 0 B
Then, the prediction model is:
x(k+1) = Ax(k) +B,u(k) +B,v(k)+Bgny(k)
y(k) = Cx(k) +D,v(k) +Dgny(k)

Next, consider the problem of predicting the future trajectories of the model performed at
time k=0. Set n,(i)=0 for all prediction instants i, and obtain

yi|0)=C
h=0 j=0

, i1 h
Aix0)+ Y Az—l[ Bu[u(—l)+ Y Au j)]+ B(h) ]]+va(i)

This equation gives the solution

y@) Au(0) v(0)
= Sxx(0)+ Sulu(—1)+ Su +H ..

v

¥(p) Au(p-1) u(p)

where
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Optimization Variables

Let m be the number of free control moves, and let z= [zy; ...; Zy-1]. Then,

Au(0) 2y
=Jy
Au(p-1) z

m-1

where Jy; depends on the choice of blocking moves. Together with the slack variable ¢,
vectors 2, ..., Z,.; constitute the free optimization variables of the optimization problem.
In the case of systems with a single manipulated variables, z, ..., z,.; are scalars.

Consider the blocking moves depicted in the following graph.

2-16



Optimization Problem

2 i i i i i i
0 1 2 3 o 5 G 7

Frediction Time - k

Blocking Moves: Inputs and Input Increments for moves = [2 3 2]

This graph corresponds to the choice moves=[2 3 2], or, equivalently, u(0)=u(1),
u(2)=u(3)=u(4), u(d)=u(6), A u(0)=20, A u(2)=2z1, A u(5)=22, A u(1)=A u(3)=A u(4)=A
u(6)=0.

Then, the corresponding matrix Jy, is
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Cost Function

Standard Form

The function to be optimized is

J

where

W, =

T

T

w0 || Uarget(0 u(©0) U arge (0) Au(0) Au(0)

(z,6) = R w2 T T w2,
WUp-1] |Ugrgs(p-1) wWp-D| |Ugrgs(r—-1D Au(p-1) Au(p-1)
YT [rT) ([y®] [r@

+ R D W:)? — ... +p£82
¥p)| |r(p) ¥p)| | r(p)
: u u u u
dlag(wo,l,woz,. WGy 5o Wy 1 10 w”p_1,2,..., w”p_l’nu )
T Au . Au Au Au Au Au
Wy, = dlag(wo,l,wo,z,...,wo’nu ""’wp—l,l’wp—1,2""’wp—1,nu )

w, =

3 Y Y
dlag(wl,l, Wy g5+

Y Y Y Yy
,wl’ny ,...,wp,l,wpyz,...,wp’ny)

Finally, after substituting u(k), Au(k), y(k), J(z) can be rewritten as

rol" v
J(z,s):p££2+zTKAuz+2 | K| e
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T
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T

K, +x0TK, |z

utarget(p -1
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where
v(0) r(1)
¢y =8,x2(0)+ S u-D+H,| - |-
v(p)| | r(p)
I 1 utarget(o)
Ip utarget (p -1
Here, I; = ... = I, are identity matrices of size n,,.

Note You may want the QP problem to remain strictly convex. If the condition number of
the Hessian matrix K,y is larger than 10'%, add the quantity 10*sqrt (eps) on each
diagonal term. You can use this solution only when all input rates are unpenalized
(WAu=0) (see “Weights”).

Alternative Cost Function

If you are using the alternative cost function shown in “Alternative Cost Function” on
page 2-12, “Equation 2-2”, then “Equation 2-1” is replaced by the following:

W, = blkdiag(R,,... R, )
W), = blkdiag(R,, ..., Ry, )

W, =blkdiag(Q,...,Q) (2-3)

In this case, the block-diagonal matrices repeat p times, for example, once for each step
in the prediction horizon.

You also have the option to use a combination of the standard and alternative forms. For
more information, see “Weights”.

Constraints
Next, consider the limits on inputs, input increments, and outputs along with the

constraint €= 0.
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Ymin D -V (D) @) T Ymax(D +EV i (1)

Ymin (P) — Vi (D) y(p) Ymax(P) +EV3ax(D)

Upyin (0)—€ V. (0) u(0) Upax (0)+ €V (0)
< <

Upin (-1 —eVE (p-1) up-1) Upax(P—D+eVE _(p-1)

Au . (0)— VAL (0) 4u(0) Al ax(0) +£ VAL (0)
Au(p-1)
| Apyin(P=D = Vil (p-1)| ~ " | Attax(p-D +e Vit (p-1)|

Note To reduce computational effort, the controller automatically eliminates extraneous
constraints, such as infinite bounds. Thus, the constraint set used in real time may be
much smaller than that suggested in this section.

Similar to what you did for the cost function, you can substitute u(k), Au(k), y(k), and
obtain

v(0)
M,z+ M e <My, +M,| - |+ Mu(-1)+ M, x(0)
U(p) (2_4)

In this case, matrices M,, M,, My;,, M,, M,, and M, are obtained from the upper and lower
bounds and ECR values.

Unconstrained Model Predictive Control
The optimal solution is computed analytically

T
r]" v(0) Uparger(0)
Z=-K| | K.+ - |K +uDTK + K, +x07K,

r

r(p) v(p) Usgrget(P—1)



See Also

and the model predictive controller sets Au(k)=z*,, u(k)=u(k-1)+Au(k).

See Also

More About

. “Adjust Disturbance and Noise Models” on page 3-50
. “Time-Varying Weights and Constraints” on page 3-6
. “Terminal Weights and Constraints” on page 3-36
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The model predictive controller QP solver converts an MPC optimization problem to the
general form QP problem

Min (% X*Hx+ f%x)

subject to the linear inequality constraints
Ax=b

where

* xis the solution vector.

* H is the Hessian matrix. This matrix is constant when using implicit MPC without
online weight changes.

* A is a matrix of linear constraint coefficients. This matrix is constant when using
implicit MPC.

* b and fare vectors.

At the beginning of each control interval, the controller computes H, f, A, and b or, if they
are constant, retrieves their precomputed values.

The toolbox uses the KWIK algorithm [1] to solve the QP problem, which requires the
Hessian to be positive definite. In the first control step, KWIK uses a cold start, in which
the initial guess is the unconstrained solution described in “Unconstrained Model
Predictive Control” on page 2-20. If x satisfies the constraints, it is the optimal QP
solution, x*, and the algorithm terminates. Otherwise, at least one of the linear inequality
constraints must be satisfied as an equality. In this case, KWIK uses an efficient,
numerically robust strategy to determine the active constraint set satisfying the standard
optimization conditions. In the following control steps, KWIK uses a warm start. In this
case, the active constraint set determined at the previous control step becomes the initial
guess for the next.

Although KWIK is robust, consider the following:

* One or more linear constraints can be violated slightly due to numerical round-off
errors. The toolbox employs a nonadjustable relative tolerance. This tolerance allows
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constraint violations of 10 times the magnitude of each term. Such violations are
considered normal and do not generate warning messages.

» The toolbox also uses a nonadjustable tolerance when testing for an optimal solution.

» The search for the active constraint set is an iterative process. If the iterations reach a
problem-dependent maximum, the algorithm terminates. For some controller
configurations, the default maximum iterations can be very large, which can make the
QP solver appear to stop responding (see “Optimizer”).

» If your problem includes hard constraints, these constraints can be infeasible
(impossible to satisfy). If the algorithm detects infeasibility, it terminates immediately.

In the last two situations, with an abnormal outcome to the search, the controller retains
the last successful control output. For more information, see, the mpcmove command. You
can detect an abnormal outcome and override the default behavior as you see fit.

Suboptimal QP Solution

For a given MPC application with constraints, there is no way to predict how many QP
solver iterations are required to find an optimal solution. Also, in real-time applications
the number of iterations can change dramatically from one control interval to the next. In
such cases, the worst-case execution time can exceed the limit that is allowed on the
hardware platform and determined by controller sample time.

You can guarantee the worst-case execution time for your MPC controller by applying a
suboptimal solution after the number of optimization iterations exceeds a specified
maximum value. To set the worst-case execution time, first determine the time needed for
a single optimization iteration by experimenting with your controller under nominal
conditions. Then, set an upper bound on the number of iterations per control interval. For
example, if it takes around 1 ms to compute each iteration on the hardware and the
controller sample time is 10 ms, set the maximum number of iterations to be no greater
than 10.

MPCobj.Optimizer.MaxIter = 10;

By default, an MPC controller object has a lower bound of 120 on the maximum number
of iterations.

By default, when the solver reaches the maximum number of solver iterations without an
optimal solution, the controller holds the manipulated variables at their previous values.
To use the suboptimal solution reached after the final iteration, set the
UseSuboptimalSolution option to true.
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MPCobj .Optimizer.UseSuboptimalSolution = true;
While the solution is not optimal, when applied, it satisfies all your specified constraints.

There is no guarantee that the suboptimal solution performs better than holding the
controller output constant. You can simulate your system using both approaches, and
select the configuration that provides better controller performance.

For an example, see “Use Suboptimal Solution in Fast MPC Applications” on page 5-89.

Custom QP Application

To access the built-in KWIK solver for applications that require solving online QP
problems, use the mpcqpsolver command. This option is useful for:

* Advanced MPC applications that are beyond the scope of Model Predictive Control
Toolbox software.
* Custom QP applications, including applications that require code generation.

Custom QP Solver

Model Predictive Control Toolbox software lets you specify a custom QP solver for your
MPC controller. This solver is called in place of the built-in qpkwik solver at each control
interval. This option is useful for:

» Validating your simulation results or generating code with a third-party solver.

* Large MPC problems where the built-in KWIK solver runs slowly or fails to find a
feasible solution.

You can define a custom solver for simulation or for code generation. In either instance,
you define the custom solver using a custom function and configure your controller to use
this custom function.
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Custom Solver

Affected MATLAB

Affected Simulink

Function Functions Blocks
Simulation mpcCustomSolver. |* sim * MPC Controller
Set Il + mpcmove + Adaptive MPC
e .
Optimizer.Custom |Supports: * mpcmoveAdapti Corit.mluer
Solver to true. e * Multiple MPC
* MATLAB code Controllers

e mpcmoveMultip

SolverCodeGen to
true.

Optimizer.Custom
Solver is ignored.

¢ MATLAB code
suitable for code
generation

e C/C++ code

Optimizer.Custom |* MEX files le

Solve rCodeGen is + mpcmoveCodeGe

ignored. neration

Code Generation |mpcCustomSolverC |+ mpcMoveCodeGe
odeGen.m neration

Set

Optimizer.Custom |Supports:

Implement Custom Solver for Simulation

To simulate an MPC controller with a custom QP solver:

1 Copy the solver template file to your working folder or anywhere on the MATLAB
path, and rename it mpcCustomSolver.m. To copy the solver template to your
current working folder, type the following at the MATLAB command line.

src =

which('mpcCustomSolver.txt');

dest = fullfile(pwd, 'mpcCustomSolver.m");
copyfile(src,dest,'f');

2  Modify mpcCustomSolver.m by adding your own custom solver. Your solver must be
able to run in MATLAB and be implemented in a MATLAB script or MEX-file.

3  Configure your MPC controller MPCobj to use the custom solver.

MPCobj.Optimizer.CustomSolver =

true;

The software now uses your custom solver for simulation in place of the built-in QP

KWIK solver.
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4

Simulate your controller. For more information, see “Simulation”.

For an example, see “Simulate MPC Controller with a Custom QP Solver” on page 5-78.

Implement Custom Solver for Code Generation

You can generate code for MPC controllers that use a custom QP solver written in either
C/C++ code or MATLAB code suitable for code generation. Doing so:

At the command line requires MATLAB Coder™ software.

In Simulink requires Simulink Coder or Simulink PL.C Coder™ software.

To generate code for MPC controllers that use a custom QP solver:

1

Copy the solver template file to your working folder or anywhere on the MATLAB
path, and rename it mpcCustomSolverCodeGen.m. To copy the MATLAB code
template to your current working folder, type the following at the MATLAB command
line.

src = which('mpcCustomSolverCodeGen TemplateEML.txt"');
dest = fullfile(pwd, 'mpcCustomSolverCodeGen.m");
copyfile(src,dest,'f');

Alternatively, you can use the C template.

src = which('mpcCustomSolverCodeGen TemplateC.txt');
dest = fullfile(pwd, 'mpcCustomSolverCodeGen.m");
copyfile(src,dest,'f');

Modify mpcCustomSolverCodeGen.m by adding your own custom solver.
Configure your MPC controller MPCobj to use the custom solver.

MPCobj .Optimizer.CustomSolverCodeGen = true;

The software now uses your custom solver for code generation in place of the built-in
QP KWIK solver.

Generate code for the controller. For more information, see “Generate Code and
Deploy Controller to Real-Time Targets” on page 9-2.

For an example, see “Simulate and Generate Code for MPC Controller with Custom QP
Solver” on page 9-61.
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Implement Custom Solver for Simulation and Code Generation

You can implement the same custom QP solver for both simulation and code generation.
To do so, you must:

* Setboth Optimizer.CustomSolver and Optimizer.CustomSolverCodeGen to
true.

* Create both mpcCustomSolver.mand mpcCustomSolverCodeGen.m.

During simulation, your controller uses the mpcCustomSolver.m custom function. For

code generation, your controller uses the mpcCustomSolverCodeGen.m custom
function.

You can specify the same MATLAB code in both custom solver functions, provided the
code is suitable for code generation.

If you implement mpcCustomSolverCodeGen.m using C/C++ code, create a MEX file
using the code. You can then call this MEX file from mpcCustomSolver.m. For more
information on creating and using MEX files, see “C MEX File Applications” (MATLAB).

Custom Solver Argument Descriptions

When you implement a custom QP solver, your custom function must have one of the
following signatures:

*  When using a custom solver for simulation:

function [x,status] = mpcCustomSolver(H,f,A,b,x0)
* When using a custom solver for code generation:

function [x,status] = mpcCustomSolverCodeGen(H,f,A,b,x0)
In both cases, your custom solver has the following input and output arguments:
* His a Hessian matrix, specified as an n-by-n symmetric positive definite matrix, where

n is the number of optimization variables.

» fis the multiplier of objective function linear term, specified as a column vector of
length n.

* Ais a matrix of linear inequality constraint coefficients, specified as an m-by-n matrix,
where m is the number of constraints.

* b is the right side of inequality constraint equation, specified as a column vector of
length m.
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X0 is an initial guess for the solution, specified as a column vector of length n.

X is the optimal solution, returned as a column vector of length n.

status is a solution validity indicator, returned as an integer according to the

following:

Value |Description

>0 X is optimal. status represents the number of iterations performed
during optimization.

0 The maximum number of iterations was reached without finding an
optimal solution. The solution, X, may be suboptimal or infeasible.
If the Optimizer.UseSuboptimalSolution property of your controller
is true, the controller uses the suboptimal solution in X when status is
0.

-5 The problem appears to be infeasible, that is, the constraint Ax > 5
cannot be satisfied.

-2 An unrecoverable numerical error occurred.

References

[1] Schmid, C. and L.T. Biegler, "Quadratic programming methods for reduced Hessian
SQB" Computers & Chemical Engineering, Vol. 18, Number 9, 1994, pp. 817-832.

See Also

mpc | mpcmove | mpcgpsolver

More About

“Optimization Problem” on page 2-9

“Simulate MPC Controller with a Custom QP Solver” on page 5-78
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Setting Targets for Manipulated Variables

This example shows how to design a model predictive controller for a plant with two
inputs and one output with target setpoint for a manipulated variable.

Define Plant Model

The linear plant model has two inputs and two outputs.

[3 1];

[1 2*%.3 1];

[2 1];

[1 2*%.5 1];

plant = ss(tf({N1,N2},{D1,D2}));
A plant.A;

B plant.B;

C plant.C;

D plant.D;

x0 = [0 00 0]';

Design MPC Controller

Create MPC controller.

Ts = 0.4; % Sample time
mpcobj = mpc(plant,Ts,20,5);

Specify weights.

mpcobj .weights.manipulated = [0.3 0]; % weight difference MV#1 - Target#l
mpcobj.weights.manipulatedrate = [0 O];

mpcobj .weights.output = 1;

Define input specifications.

mpcobj .MV = struct('RateMin',{-0.5;-0.5}, 'RateMax',{0.5;0.5});

Specify target setpoint u = 2 for the first manipulated variable.

mpcobj .MV (1) .Target=2;

Simulation Using Simulink®

To run this example, Simulink® is required.
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if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink(R) is required to run this example.')

return

end

Simulate.

mdl = 'mpc utarget';
open_system(mdl)

sim(mdl);
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See Also
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Ready T=10.000

bdclose(mdl)

See Also
MPC Controller | mpc

More About
. “Signal Types”
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Time-Varying Weights

As explained in “Optimization Problem” on page 2-9, the w¥, w%, and w*" weights can
change from one step in the prediction horizon to the next. Such a time-varying weight is
an array containing p rows, where p is the prediction horizon, and either n, or n, columns
(number of OVs or MVs).

Using time-varying weights provides additional tuning possibilities. However, it
complicates tuning. Recommended practice is to use constant weights unless your
application includes unusual characteristics. For example, an application requiring
terminal weights must employ time-varying weights. See “Terminal Weights and
Constraints” on page 3-36.

You can specify time-varying weights in MPC Designer. In the Weights dialog box,
specify a time-varying weight as a vector. Each element of the vector corresponds to one
step in the prediction horizon. If the length of the vector is less than p, the last weight
value applies for the remainder of the prediction horizon.



Time-Varying Weights and Constraints

vieights impcl)
Input Weights (dimensionless) P
Channel Type Weight Rate Weight arget
u(l) My i [010203] |gominal
Output Weights (dimensionless)
Channel Type Weight
y(L) MO 1
yi2) uo 0
ECR Weight (dimensionless)

Weight on the slack variable: |1UUUUU

OK| | Apply | | Cancel| |Help

Note For any given input channel, you can specify different vector lengths for Rate
Weight and Weight. However, if you specify a time-varying Weight for any input
channel, you must specify a time-varying Weight for all inputs using the same length
weight vectors. Similarly, all input Rate Weight values must use the same vector length.

Also, if you specify a time-varying Weight for any output channel, you must specify a
time-varying Weight for all output using the same length weight vectors.

Time-Varying Constraints

When bounding an MV, OV, or MV increment, you can use a different bound value at each
prediction-horizon step. To do so, specify the bound as a vector of up to p values, where p
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is the prediction horizon length (number of control intervals). If you specify n < p values,
the nth value applies for the remaining p - n steps.

You can remove constraints at selected steps by specifying Inf (or -Inf).

If plant delays prevent the MVs from affecting an OV during the first d steps of the
prediction horizon and you must include bounds on that OV, leave the OV unconstrained
for the first d steps.

You can specify time-varying constraints in MPC Designer. In the Constraints dialog box,
specify a vector for each time-varying constraint.

Constraints (mpcl) »

" Input Constraints

Channel Type Min RateMin RateMax
uf(l) MV -Inf [Inf10] nf Inf
u() MV -Inf - -Inf Inf

| + Constraint Softening Settings

- Qutput Constraints
Channel Type Min ;
yil) MO -Inf I[10 5]
yi2) MO -Inf T firt—

| + Constraint Softening Settings

|ﬁ| | Apply| | Cancel| |E|
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See Also

More About

. “Optimization Problem” on page 2-9

. “Terminal Weights and Constraints” on page 3-36
. “Vary Input and Output Bounds at Run Time”
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Constraints on Linear Combinations of Inputs and
Outputs

3-10

You can constrain linear combinations of plant input and output variables. For example,
you can constrain a particular manipulated variable (MV) to be greater than a linear
combination of two other MVs. The general form of such constraints is the following:

Eu(k+i|lk)+Fy(k+i|k)+Svk+i|k) <G +¢,V.

* & — QP slack variable used for constraint softening (See “Constraint Softening” on
page 1-8)

* u(k+ilk) — n, MV values, in engineering units

* y(k+ilk) — n, predicted plant outputs, in engineering units

* v(k+ilk) — n, measured plant disturbance inputs, in engineering units
* E F, S, G, and V are constants

As with the QP cost function, output prediction using the state observer makes these
constraints a function of the QP decision.

Mixed input/output constraints are dimensional by default.
Run-time updating of mixed input/output constraints is supported at the command line

and in Simulink. For more information, see “Update Constraints at Run Time” on page 5-
30.

Note Using mixed input/output constraints is not supported in MPC Designer.

See Also

getconstraint | setconstraint
More About

. “Optimization Problem” on page 2-9

. “Update Constraints at Run Time” on page 5-30
. “Using Custom Input and Output Constraints”
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“Nonlinear Blending Process with Custom Constraints”
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Using Custom Input and Output Constraints
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This example shows how to design model predictive controller with mixed input/output

constraints.

Design MPC Controller

The basic setup of the MPC controller includes:
* A double integrator as the prediction model
* Prediction horizon of 20

* Control horizon of 20

* Input constraints -1 <= u(t) <=1

plant = tf(1,[1 0 0]);

Ts = .1;
p = 20;
m = 20;

mpcobj = mpc(plant,Ts,p,m);
mpcobj .MV = struct('Min',-1, 'Max',1);

Define Mixed Input/Output (1/0) Constraint

o° o o° o° o o°

Prediction model

Sampling time

Prediction horizon

Control horizon

MPC object

Input saturation constraints

The sum of the input u(t) and output y (t) must be nonnegative and smaller than 1.2:

0 <= u(t) + y(t) <= 1.2

To impose this combined (mixed) I/O constraint, formulate it as a set of inequality

constraints involving u(t) and y(t):

u(t) + y(t) <= 1.2
-u(t) + -y(t) <=0

setconstraint(mpcobj,[1;-11,[1;-11,[1.2;01);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink(R) is required to run this example.')
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return
end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.

mdl = 'mpc_mixedconstraints';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation
High Limit
| mo
MPC u® o 1 ol 1 yt) -
t) I g g I ol _.l..D
W ref Integrator 1 Integrator 2 "
SLIM u+y
» (]
Control Action Low Limnit
’ )

f
Copyright 1990-2012 The MathWarks, Inc. Outputs/Referances
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As you can see, the MPC Controller always keeps the sum u+y between 0 and 1.2 while
tracking the reference signal r=1.

bdclose(mdl);

See Also

setconstraint

More About

“Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
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Use Custom Constraints in Blending Process
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This example shows how to design an MPC controller for a blending process using custom
input and output constraints.

Blending Process

A continuous blending process combines three feeds in a well-mixed container to produce
a blend having desired properties. The dimensionless governing equations are:

where

* V is the mixture inventory (in the container).

i is the plow rate for the ith feed.

@ is the rate at which the blend is being removed from inventory, that is the demand.
7ij is the concentration of constituent J in feed i.

i is the concentration of constituent . in the blend.
e T istime.

In this example, there are two important constituents, J = 1 and 2.

The control objectives are targets for the two constituent concentrations in the blend, and

the mixture inventory. The challenge is that the demand, ¢, and feed compositions, 7,
vary. The inventory, blend compositions, and demand are measured, but the feed
compositions are unmeasured.

At the nominal operating condition:

Feed 1, ©1, (mostly constituent 1) is 80% of the total inflow.

Feed 2, 2, (mostly constituent 2) is 20%.

Feed 3, ©4, (pure constituent 1) is not used.



Use Custom Constraints in Blending Process

The process design allows manipulation of the total feed entering the mixing chamber, ¥,
and the individual rates of feeds 2 and 3. In other words, the rate of feed 1 is:

{_'J|_ = 1’_'J_||' 1’_'.I3 ¥ o
Each feed has limited availability:
0 E L _'“ O max

The equations are normalized such that, at the nominal steady state, the mean residence
time in the mixing container is 7 = 1.

The constraint @1Lma = 0.8 g imposed by an upstream process, and the constraints
P2max = O3max = 0.6 are imposed by physical limits.
Define Linear Plant Model

The blending process is mildly nonlinear, however you can derive a linear model at the
nominal steady state. This approach is quite accurate unless the (unmeasured) feed
compositions change. If the change is sufficiently large, the steady-state gains of the
nonlinear process change sign and the closed-loop system can become unstable.

Specify the number of feeds, ni, and the number of constituents, nc.

ni
nc

3;
2;

Specify the nominal flow rates for the three input streams and the output stream, or
demand. At the nominal operating condition, the output flow rate is equal to the sum of
the input flow rates.

Fin_nom = [1.6,0.4,0];
F nom = sum(Fin_nom);

Define the nominal constituent compositions for the input feeds, where cin nom(i, j)
represents the composition of constituent i in feed j.

cin nom = [0.7 0.2 0.8;0.3 0.8 0];

Define the nominal constituent compositions in the output feed.

cout _nom = cin nom*Fin nom'/F nom;

3-17



3 Controller Refinement

3-18

Normalize the linear model such that the target demand is 1 and the product composition
is 1.

fin nom = Fin nom/F nom;
gij = [cin_nom(1,:)/cout nom(1l); cin nom(2,:)/cout nom(2)];

Create a state-space model with feed flows F1, F2, and F3 as MVs:

A = [zeros(1l,nc+l); zeros(nc,1l) -eye(nc)];
Bu = [ones(1,ni); gij-1]1;

Change the MV definition to [FT, F2, F3] where F1 = FT - F2 - F3
Bu = [Bu(:,1), Bu(:,2)-Bu(:,1), Bu(:,3)-Bu(:,1)];
Add the measured disturbance, blend demand, as the 4th model input.

Bv = [-1; zeros(nc,1)];
B = [Bu Bv];

Define all of the states as measurable. The states consist of the mixture inventory and the
constituent concentrations.

C = eye(nc+l);
Specify that there is no direct feed-through from the inputs to the outputs.
D = zeros(nc+1l,ni+l);

Construct the linear plant model.

Model = ss(A,B,C,D);

Model.InputName = {'F T','F 2','F 3','F'};
Model.InputGroup.MV = 1:3;
Model.InputGroup.MD = 4;

Model.OutputName = {'V','c 1','c 2'};

Create MPC Controller

Specify the sample time, prediction horizon, and control horizon.

Ts = 0.1;
p = 10;
m=3;

Create the controller.



Use Custom Constraints in Blending Process

mpcobj = mpc(Model,Ts,p,m);

The outputs are the inventory, y(1), and the constituent concentrations, y(2) and y(3).
Specify nominal values of unity after normalization for all outputs.

mpcobj.Model.Nominal.Y = [1 1 1];

Specify the normalized nominal values the manipulated variables, u(1), u(2) and u(3),
and the measured disturbance, u(4).

mpcobj .Model.Nominal.U = [1 fin nom(2) fin nom(3) 11];

Specify output tuning weights. Larger weights are assigned to the first two outputs
because we want to pay more attention to controlling the inventory, and the composition
of the first constituent.

mpcobj .Weights.0V = [1 1 0.5];

Specify the hard bounds (physical limits) on the manipulated variables.

umin = [0 0 O];

umax = [2 0.6 0.6];

for i = 1:3
mpcobj.MV(i).Min = umin(i);
mpcobj.MV(i).Max = umax(i);
mpcobj.MV(i).RateMin = -0.1;
mpcobj.MV(i).RateMax = 0.1;

end

The total feed rate and the rates of feed 2 and feed 3 have upper bounds. Feed 1 also has
an upper bound, determined by the upstream unit supplying it.

Specify Custom Constraints

Given the specified upper bounds on the feed 2 and 3 rates (0.6), it is possible that their

sum could be as much as 1.2. Since the nominal total feed rate is 1.0, the controller can

request a physically impossible condition, where the sum of feeds 2 and 3 exceeds the

total feed rate, which implies a negative feed 1 rate.

The following constraint prevents the controller from requesting an unrealistic ©1 value.
O0<dy =g —ds—dy < 0.8

Specify this constraint in the form Eu + Fy = g,
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E
g

[-111;1-1-1];
[0;0.8];

Since no outputs are specified in the mixed constraints, set their coefficients to zero.
F = zeros(2,3);

Specify that both constraints are hard (ECR = 0).

v = zeros(2,1);

Specify zero coefficients for the measured disturbance.

h = zeros(2,1);

Set the custom constraints in the MPC controller.
setconstraint(mpcobj,E,F,qg,v,h)

Open and Simulate Model in Simulink

sys = 'mpc_blendingprocess’;
open_system(sys)
sim(sys)
mo
) |
” ” mv MPC ref [r11]
[ Setpoints
md
Inputs

L
Demand
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¥
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Blending
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The MPC controller controls the blending process. The block labeled Blending
incorporates the previously described model equations and includes an unmeasured step
disturbance in the constituent 1 feed composition.

The Demand, %, is modeled as a measured disturbance. The operator can vary the demand
value, and the resulting signal goes to both the process and the controller.

The model simulates the following scenario:

* At 7 =0, the process is operating at steady state.
* At =1, the Total Demand decreases from ¢ = 1.0 to @ = 0.9
* At 7 = 2, there is a large step increase in the concentration of constituent 1 in feed 1,

from 1.17 to 2.17.

The controller maintains the inventory very close to its setpoint, but the severe
disturbance in the feed composition causes a prediction error and a large disturbance in
the blend composition, especially for constituent 1, c_1. However, the controller recovers
and drives the blend composition back to its setpoint.

Verify Effect of Custom Constraints

Plot the feed rate signals.

figure
plot(MVs.time, [MVs.signals(1l).values(:,b2),
(MVs.signals(2).values + MVs.signals(3).values),
(MVs.signals(1l).values(:,2)-MVs.signals(2).values-MVs.signals(3).values)])
grid
legend('FT','F2+F3','F1")
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The total feed rate, FT, and the sum of feed rates F2 and F3 coincide for 1.7 = 7 < 2.2 If

the custom input constraints had not been included, the controller would have requested
an impossible negative feed 1 rate, F1, during this period.

bdclose(sys)

See Also

setconstraint
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See Also

More About
. “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
. “Nonlinear Blending Process with Custom Constraints”
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Nonlinear Blending Process with Custom Constraints

3-26

This example shows how to use constraints on a combination of inputs and outputs to
control a nonlinear blending process.

About the Blending Process

A continuous blending process combines three streams in a well-mixed vessel to produce
a blend with desired properties. These properties depend on concentrations of two key
constituents:

* Feed rates
* Inventory of materials in the blending vessel.

Let the feed rates be F1, F2, and F3, and the total FT = F1 + F2 + F3. The plant
configuration allows F2, F3, and FT to be controlled independently. Therefore, F1 = FT -
F2 - F3 is determined by difference.

The control objective is to adjust the feed rates in order to keep the concentrations in the
vessel near target values. The MPC controller must also control the total inventory of
material in the blending vessel.

The process operates under the following constraints:
* Physical limitations require @ <= FT <= 2and 0 <= F2, F3 <= 0.6.

* Each feed has limited availability. For F2 and F3, maximum availability equals the
physical limit 0.6. For F1, a maximum availability of 0.8 is imposed by an upstream
process.

During operation, it is important to prevent the controller from requesting FT < F2 +
F3, which implies F1 < 0 which is impossible. Similarly, FT > F2 + F3 + 0.8,
implying F1 > 0.8 should also be avoided. This can be accomplished using MPC
controller with a mixed constraint (constraints on input and output combinations).

System disturbances include the feed stream compositions and the demand for blended
material, F, defined as the rate at which material leaves the blending vessel. This is set by
a downstream process. From the point of view of the blending process, F is a measured
disturbance. Feed composition disturbances are unmeasured.

Measurements available for feedback control include the constituent concentrations in
the vessel and the blend inventory.
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Define Linear Model for the Blending Process

Create a linear approximation -- a state-space model based on the nominal operating
point:

ni = 3; % number of feed streams

nc = 2; % number of components

Fin nom = [1.6, 0.4, 0]; % Nominal flow rate for the ith feed stream

F nom = sum(Fin_nom); % Nominal flow rate for the exit stream (demand)

cin nom = [0.7 0.2 0.8 % Nominal composition for jth constituent in the ith feed -

0.3 0.8 0];
cout _nom = cin _nom*Fin nom'/F nom; % Nominal product composition

Normalize the linear model such that the target demand is 1 and the product composition
is 1:

fin _nom = Fin_nom/F _nom;
gij = [cin_nom(1,:)/cout nom(1)
cin_nom(2,:)/cout nom(2)];

Create the state-space model with feed flows [F1, F2, F3] as MVs:

A = [ zeros(1l,nc+l)
zeros(nc,1) -eye(nc)l;
Bu = [ones(1,ni)
gij-11;
% Change MV definition to [FT, F2, F3] where F1 = FT - F2 - F3
Bu = [Bu(:,1), Bu(:,2)-Bu(:,1), Bu(:,3)-Bu(:,1)];
% Add the blend demand as the 4th model input, a measured disturbance
Bv = [-1
zeros(nc,1)];
= [Bu Bv];
All the states (inventory and compositions) are measurable
= eye(nc+l);
No direct feed-through term
= zeros(nc+l,ni+l);
Construct the plant model
Model = ss(A, B, C, D);

o O o° M ° W

Model.InputName = {'F T','F 2','F 3','F'};
Model.InputGroup.MV = 1:3;
Model.InputGroup.MD = 4;

Model.OutputName = {'V','c 1','c 2'};
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Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1;
p = 10;
m=3;

mpcobj = mpc(Model, Ts, p, m);

The outputs are the inventory y (1) and the constituent concentrations y(2) and y(3).
Specify nominal values of unity after normalization:

mpcobj .Model.Nominal.Y = [1 1 1];

The manipulated variables are ul = FT, u2 = F2, u3 = F3. Specify nominal values
after normalization:

mpcobj.Model.Nominal.U = [1 fin_nom(2) fin_nom(3) 11;

Specify output tuning weights. Larger weights are assigned to the first two outputs
because we pay more attention to controlling the inventory and composition of the first
blending material:

mpcobj.Weights.0V = [1 1 0.5];

Specify the hard bounds (physical limits) on the manipulated variables:

umin = [0 O 0O];

umax = [2 0.6 0.6];

for i = 1:3
mpcobj.MV(i).Min = umin(i);
mpcobj.MV(i).Max = umax(i);
mpcobj.MV(i).RateMin = -0.1;
mpcobj.MV(i).RateMax = 0.1;

end

Specify Mixed Constraints

Impose the following constraints on the control system:
* Physical constraint F1 = FT - F2 - F3 >= 0.

* Availability constraint, F1 <= 0.8.

Putting these in the standard form, you obtain:
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-FT + F2 + F3 <= OFT - F2 - F3 <= 0.8

This defines the input constraint coefficient matrix:

E=([-111;1-1-1];

No outputs are specified in the mixed constraints, so set their coefficients to zero:

F = zeros(2,3);

Specify vector g in E*¥u + F*y <= @:

g = [0; 0.8];

Specify that both constraints are hard (ECR = 0):

v = zeros(2,1);

Specify zero coefficients for the measured disturbance:

h = zeros(2,1);

Include the mixed constraints in the controller object:

setconstraint(mpcobj, E, F, g, v, h);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')

return
end

Open and simulate the Simulink® model. The model includes a nonlinear model of the
blending process. The time scale is normalized such that one time unit is the vessel's
nominal mean residence time.

mdl = 'mpc_blendingprocess';

open_system(mdl) ;
sim(mdl);
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The simulation shows:
* At time 0, the plant is operating steadily at the nominal conditions.
* Attime 1, the demand decreases 10% (from 1 to 0.9).

* At time 2, there is a large (unmeasured) increase in the concentration of constituent 1
contained in feed 1. This is a nonlinear effect but the linear MPC compensates well
(target values are 1 for the three controlled outputs).

Validate No Mixed Constraint Violations

Plot the input and output signals to check if the mixed constraint is violated during
simulation:

figure
plot(MVs.time, [MVs.signals(1l).values(:,b2),
(MVs.signals(2).values + MVs.signals(3).values),
(MVs.signals(l).values(:,2)-MVs.signals(2).values-MVs.signals(3).values)])
grid
legend('FT', 'F2+F3','F1")
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The plot shows:

When demand drops, the composition disturbance requires F1 to be decreased. During
the transient, F1 becomes zero. If the mixed constraint had not been included, it
would have gone negative, i.e., the controller's requests for FT, F2, and F3 would have
been impossible to satisfy, causing a performance degradation. With the constraint
included, the controller does its best given the physical limits.

The availability constraint F1 <= 0.8 is maintained at all times.



See Also

bdclose(mdl)

See Also

setconstraint

More About

. “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
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Terminal Weights and Constraints

3-36

Terminal weights are the quadratic weights Wy on y(t+p) and Wu on u(t + p - 1). The
variable p is the prediction horizon. You apply the quadratic weights at time k +p only,
such as the prediction horizon’s final step. Using terminal weights, you can achieve
infinite horizon control that guarantees closed-loop stability. However, before using
terminal weights, you must distinguish between problems with and without constraints.

Terminal constraints are the constraints on y(t + p) and u(t + p - 1), where p is the
prediction horizon. You can use terminal constraints as an alternative way to achieve
closed-loop stability by defining a terminal region.

Note You can use terminal weights and constraints only at the command line. See
setterminal.

For the relatively simple unconstrained case, a terminal weight can make the finite-
horizon model predictive controller behave as if its prediction horizon were infinite. For
example, the MPC controller behavior is identical to a linear-quadratic regulator (LQR).
The standard LQR derives from the cost function:

Jw) =Y xk+i)" Qulk+i)+ulk+i-1" Rutk+i-1)
= (3-1)

where x is the vector of plant states in the standard state-space form:

x(k+1)=Ax+ Bu(k) (32)

The LQR provides nominal stability provided matrices Q and R meet certain conditions.
You can convert the LQR to a finite-horizon form as follows:

p-1
Jw) =Y [ak+i)T Quk+i) +ulk +i-DT Rutk+i - D1+ x(k+ p)T Q x(k + p)
i=1 (3-3)

where Q,, the terminal penalty matrix, is the solution of the Riccati equation:

Q,=ATQ,A-ATQ,B(BTQ,B+R'BTQ,A+Q
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You can obtain this solution using the 1qr command in Control System Toolbox™
software.

In general, Q, is a full (symmetric) matrix. You cannot use the “Standard Cost Function”
on page 2-9 to implement the LQR cost function. The only exception is for the first p - 1
steps if Q and R are diagonal matrices. Also, you cannot use the alternative cost function
on page 2-12 because it employs identical weights at each step in the horizon. Thus, by
definition, the terminal weight differs from those in steps 1 to p - 1. Instead, use the
following steps:

1 Augment the model (“Equation 3-2”) to include the weighted terminal states as
auxiliary outputs:

Yaug(k) = Qcx(k)

where Q, is the Cholesky factorization of Q, such that Q, = Q,'Q..
Define the auxiliary outputs y,,, as unmeasured, and specify zero weight to them.

3 Specify unity weight on y,,, at the last step in the prediction horizon using
setterminal.

To make the model predictive controller entirely equivalent to the LQR, use a control
horizon equal to the prediction horizon. In an unconstrained application, you can use a
short horizon and still achieve nominal stability. Thus, the horizon is no longer a
parameter to be tuned.

When the application includes constraints, the horizon selection becomes important. The
constraints, which are usually softened, represent factors not considered in the LQR cost
function. If a constraint becomes active, the control action deviates from the LQR (state
feedback) behavior. If this behavior is not handled correctly in the controller design, the
controller may destabilize the plant.

For an in-depth discussion of design issues for constrained systems see [1]. Depending on
the situation, you might need to include terminal constraints to force the plant states into
a defined region at the end of the horizon, after which the LQR can drive the plant signals
to their targets. Use setterminal to add such constraints to the controller definition.

The standard (finite-horizon) model predictive controller provides comparable
performance, if the prediction horizon is long. You must tune the other controller
parameters (weights, constraint softening, and control horizon) to achieve this
performance.
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Tip Robustness to inaccurate model predictions is usually a more important factor than
nominal performance in applications.

References
[1] Rawlings, ]J. B., and David Q. Mayne “Model Predictive Control: Theory and Design”
Nob Hill Publishing, 2010.

See Also

setterminal

More About

. “Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”
. “Provide LQR Performance Using Terminal Penalty Weights” on page 3-39
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Provide LQR Performance Using Terminal Penalty
Weights

It is possible to make a finite-horizon model predictive controller equivalent to an infinite-
horizon linear quadratic regulator (LQR) by using terminal penalty weights [1]. The
standard MPC cost function on page 2-9 is similar to the cost function for an LQR
controller with output weighting, as shown in the following equation:

J@) =Y yk+i)T Qylk+i) +uk +i-1T Ruk+i-1)
=1

The LQR and MPC cost functions differ in the following ways:

* The LQR cost function forces y and u toward zero, whereas the MPC cost function
forces y and u toward nonzero setpoints. You can shift the MPC prediction model
origin to eliminate this difference and achieve zero nominal setpoints.

* The LQR cost function uses an infinite prediction horizon in which the manipulated
variable changes at each sampling instant. In the standard MPC cost function, the
horizon length is p, and the manipulated variable changes m times, where m is the
control horizon.

The two cost functions are equivalent if the MPC cost function is:

p-1
Jw) =Y yk+)T Qyk+i)+utk+i-DT Ruk+i-D+xk+p)" Q x(k+p)
=1

where Q) is a terminal penalty weight applied at the final prediction horizon step, and the
prediction and control horizons are equal (p = m). The required Q, is the Ricatti matrix
calculated using the 1qr and 1qry commands.

Design MPC Controller Equivalent to LQR Controller

This example shows how to design an unconstrained MPC controller that provides
performance equivalent to an LQR controller.
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Define Plant Model

The plant is a double integrator, represented as a state-space model in discrete time with
a sample time of 0.1 seconds. In this case the two plant states are measurable at the plant

outputs.
A=1[10;0.11];
B =1[0.1;0.005];
C = eye(2);

D = zeros(2,1);
Ts = 0.1;

Plant = ss(A,B,C,D,Ts);
Plant.InputName = {'u'};
Plant.OutputName = {'x 1','x 2'};

Design LQR Controller

Design an LQR controller with output feedback for the plant.

Q = eye(2);
R 1;
[K,Qp] = lgry(Plant,Q,R);

Q and R are output and input weight matrices, respectively. Qp is the Ricatti matrix.

Design Equivalent MPC Controller

To implement the MPC cost function, compute L the Cholesky decomposition of QI’,

Ty — () — Frilt
such that & & = €y Then define auxiliary unmeasured output variables ' k) = Lx(k Y

Ty _ T
such that ~a" * QF"r.

NewPlant = Plant;

L = chol(Qp);

set (NewPlant,'C',[C;L],'D"',[D;zeros(2,1)1,...
'OutputName',{'x 1','x 2','Cx 1','Cx_2'})

NewPlant.InputGroup.MV = 1;

NewPlant.OQutputGroup.MO [1 2]1;

NewPlant.OQutputGroup.UO [3 4];

Create an MPC controller with equal prediction and control horizons.
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P =3;
M= 3;
MPCobj = mpc(NewPlant,Ts,P,M);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

for output(s) yl and zero weight for output(s) y2 y3 y4

Specify weights for the manipulated variable and output variables for the first # — |
prediction horizon steps. Use the square roots of the diagonal elements of the Q and K
weight matrices from the LQR controller design. The standard Q weight matrix values

apply to ¥, and *a has a zero penalty.

ywt = sqrt(diag(Q))"';

uwt = sqrt(diag(R))"';

MPCobj .Weights.0V = [ywt 0 O];
MPCobj .Weights.MV = uwt;

Specify terminal weights for the final prediction horizon step. On step #, the original ¥

has a zero penalty, and "« has a unit penalty. The input weight remains the same for the
terminal step.

U struct('Weight',uwt);
Y = struct('Weight',[0 0 1 1]);
setterminal (MPCobj,Y,U)

Remove the default state estimator. Since the model states are measured directly, the
default state estimator is unnecessary.

setoutdist(MPCobj, 'model',tf(zeros(4,1)))
setEstimator(MPCobj,[],C)

Compare Controller Performance

Compare the performance of the LQR controller, the MPC controller with terminal
weights, and a standard MPC controller.

Compute the closed-loop response for the LQR controller.

clsys
Tstop

feedback(Plant,K);
6;
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x0 = [0.2;0.2];
[yLQR,tLQR] = initial(clsys,x0,Tstop);

Compute the closed-loop response for the MPC controller with terminal weights.

SimOptions = mpcsimopt (MPCobj);
SimOptions.PlantInitialState = x0;

r = zeros(1,4);

[y,t,u]l = sim(MPCobj,ceil(Tstop/Ts),r,SimOptions);

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
Cost = sum(sum(y(:,1:2)*diag(ywt).*y(:,1:2))) + sum(u*diag(uwt).*u);

Compute the closed-loop response for a standard MPC controller with default prediction

mﬁmMmMmMmﬂP=”{m:3)%mﬁ&ﬂwﬁ%nmﬂﬂm&mmwﬂhdﬁﬂt
state estimator from the standard MPC controller.

MPCobjSTD = mpc(Plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
for output(s) yl and zero weight for output(s) y2

MPCobjSTD.Weights.MV = uwt;

MPCobjSTD.Weights.0V = ywt;

setoutdist (MPCobjSTD, 'model',tf(zeros(2,1)))

setEstimator (MPCobjSTD,[],C)

SimOptions = mpcsimopt (MPCobjSTD);
SimOptions.PlantInitialState = x0;

r = zeros(1,2);

[ySTD,tSTD,uSTD] = sim(MPCobjSTD,ceil(Tstop/Ts),r,SimOptions);

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
CostSTD = sum(sum(ySTD*diag(ywt).*ySTD)) + sum(uSTD*uwt.*uSTD);

Compare the controller responses.

figure

hl line(tSTD,ySTD, 'color','r'");
h2 line(t,y(:,1:2),'color','b");
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h3 = line(tLQR,yLQR, 'color','m', 'marker','o"', " 'linestyle', 'none');
xlabel('Time")

ylabel('Plant Outputs"')
legend([h1(1) h2(1) h3(1)],'Standard MPC', 'MPC with Terminal Weights', 'LQR', 'Location"

03r N
A TS Standard MPC
025 i MPC with Terminal Weights
g e O LAR

=
- =
4, o]

Plant Outputs
=

0.05

Time

The MPC controller with terminal weights has a faster settling time compared to the
standard MPC controller. The LQR controller and the MPC controller with terminal

weights perform identically.

As reported in [1], the computed Cost value of 2.23 for the MPC controller with terminal
weights is identical to the LQR controller cost. The cost for the standard MPC controller,
CostSTD, is 4.82, more than double the value of Cost.
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You can improve the standard MPC controller performance by adjusting the horizons. For

example, if you increase the prediction and control horizons (# = 20 m=3) the
standard MPC controller performs almost identically to the MPC controller with terminal
weights.

This example shows that using terminal penalty weights can eliminate the need to tune
the prediction and control horizons for the unconstrained MPC case. If your application
includes constraints, using a terminal weight is insufficient to guarantee nominal stability.
You must also choose appropriate horizons and possibly add terminal constraints. For
more information, see Rawlings and Mayne [2].

References

[1] Scokaert, P. O. M. and ]. B. Rawlings "Constrained linear quadratic regulation" IEEE
Transactions on Automatic Control (1998), Vol. 43, No. 8, pp. 1163-1169.

[2] Rawlings, ]J. B., and David Q. Mayne "Model Predictive Control: Theory and Design"
Nob Hill Publishing, 2010.

See Also

setterminal

More About
. “Optimization Problem” on page 2-9
. “Terminal Weights and Constraints” on page 3-36
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Designing Model Predictive Controller Equivalent to
Infinite-Horizon LQR

This example shows how to design an infinite-horizon model predictive controller by
setting the weights on the terminal predicted states.

Define Plant Model

The linear open-loop dynamic model is defined below. DC gain is also computed.

Ts = 0.1; % Sampling time

A =1[0.8 Ts;0 0.9];

B = [0;Ts];

C=1[10];

sysd = ss(A,B,C,0,Ts); % Discrete-time plant model
dcg = dcgain(sysd); % DC-gain of prediction model

Design an Infinite-Horizon LQR Controller

Compute the Riccati matrix associated with the LQR problem with output weight Qy and
input weight Qu:

Qy = 10; % Output weight: y'*Qy*y
Qu = 0.1; % Input weight: u'*Qu*y
[K,P] = lqry(sysd,Qy,Qu); % LQR gain and Riccati matrix

Weight the terminal state x' (t+p)*P*x(t+p), where p is the prediction horizon of the
MPC controller. Compute the Cholesky factor chol(P) of the Riccati matrix P, so that the
terminal penalty becomes:

X' (t+p) *P*x(t+p) = [chol(P)*x(t+p)]'*[chol(P)*x(t+p)] = yc'(t
+p)*yc(t+p)

where the new output yc(t+p) = chol(P)*x(t+p) and the state x(t) is assumed to
be fully measurable.

cholP = chol(P);

Change and augment the output vector to include the full state x and yc: Output = state
vector x + output yc such that yc'*yc = x'*P*x

sysd.C
sysd.D

[eye(2);cholP];
zeros(4,1);
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Convert the LQR Controller Into a Finite-Horizon MPC Controller
Label the new additional output signal yc(t) as unmeasured:

sysd = setmpcsignals(sysd, 'U0',[3 4]); % Cholesky factor is not measured

-->Assuming unspecified output signals are measured outputs.
Create the controller object with sampling period, prediction and control horizons:

p = 3; % Prediction horizon (for any p>=1, unconstrained MPC = LQR)
m=p; % Control horizon = prediction horizon
mpcobj = mpc(sysd,Ts,p,m); % MPC object

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
for output(s) yl and zero weight for output(s) y2 y3 y4

Specify actuator saturation limits as MV constraints.
mpcobj .MV = struct('Min', -3, 'Max"',3);

Define input and output weights at each step of the prediction horizon (terminal weights
are set later). Very small weights on input increments are included to make the QP
problem associated with the MPC controller positive definite:

mpcobj .Weights.0V = [sqrt(Qy) 0 0 0];
mpcobj .Weights.MV = sqrt(Qu);
mpcobj .Weights.MVRate = le-5;

OQutput weights (only on original output)
Input weight
Very small weight on command input increr

o® o° o°

Define set-points for the output and input signals:

ry = 1;
mpcobj.MV.Target = ry/dcg;

Output set point
Set-point for manipulated variable

o° of

Impose the terminal penalty x' (t+p) *P*x (t+p) by specifying a unit weight on yc (t+p)
= chol(P)*x(t+p). The terminal weight on u(t+p-1) remains the same, that is
sqrt(Qu):

Y struct('Weight',[0 0 1 11);
U = struct('Weight',sqrt(Qu));
setterminal(mpcobj,Y,U);

Weight on y(t+p)
Weight on u(t+p-1)
Set terminal weight y'*y = x'*P*x

o® o° of

Since the measured output is the entire state, remove any additional output disturbance
integrator inserted by the MPC controller:
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setoutdist(mpcobj, 'model’',ss(zeros(4,1)));
Remove the state estimator by defining the following measurement update equation:
x[n|n] = x[n|n-1] + I * (x[n]-x[n|n-1]) = x[n]

Because setterminal function resets state estimator to default value, we use
setEstimator function to change state estimator after setterminal is called.

setEstimator(mpcobj,[],eye(2)); % State estimate = state measurement

Compare MPC and LQR Controllers

Compute the gain of the MPC controller when constraints are inactive, and compare it to
the LQR gain:

mpcgain = dcgain(ss(mpcobj));

fprintf('\n(unconstrained) MPC: u(k)=[%8.8g,%8.8g]*x(k)"',mpcgain(1l),mpcgain(2));
fprintf('\n LQR: u(k)=[%8.8g,%8.8g]*x(k)\n\n"',-K(1),-K(2));
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

[-2.8363891, -2.1454028] *x (k)
[-2.8363891, -2.1454028] *x (k)

(unconstrained) MPC: u(k)
LQR: u(k)

The state feedback gains are exactly the same.

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Define a set-point for the new extended output vector containing x and chol(P) *x:

rx = (eye(2)-A)\B/dcg;
r = [rx;cholP*rx]; % Set point for extended prediction model

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the block dialog.
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mdl = 'mpc infinite';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

oo ors—s = ECR o)
| __,E::J—-—-—» L —e -|cm » ooy

=0

’ DOutputs/References

=

Copyright 1990-2014 The MathWorks, Inc.

(| = [=] 3

File Tools View Simulation Help E

G- 4P -3 -

»

Ready
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Resady T=5.000

The closed-loop response shows good setpoint tracking performance.

bdclose('mpc_infinite');

See Also

setterminal

More About
. “Optimization Problem” on page 2-9
. “Terminal Weights and Constraints” on page 3-36
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A model predictive controller requires the following to reject unknown disturbances
effectively:

* Application-specific disturbance models
* Measurement feedback to update the controller state estimates

You can modify input and output disturbance models, and the measurement noise model
using the MPC Designer app and at the command line. You can then adjust controller
tuning weights to improve disturbance rejection.

Overview

MPC attempts to predict how known and unknown events affect the plant output
variables (OVs). Known events are changes in the measured plant input variables (MV
and MD inputs). The plant model of the controller predicts the impact of these events, and
such predictions can be quite accurate. For more information, see “MPC Modeling”.

The impacts of unknown events appear as errors in the predictions of known events.
These errors are, by definition, impossible to predict accurately. However, an ability to
anticipate trends can improve disturbance rejection. For example, suppose that the
control system has been operating at a near-steady condition with all measured OVs near
their predicted values. There are no known events, but one or more of these OVs suddenly
deviates from its prediction. The controller disturbance and measurement noise models
allow you to provide guidance on how to handle such errors.

Output Disturbance Model

Suppose that your plant model includes no unmeasured disturbance inputs. The MPC
controller then models unknown events using an output disturbance model. As shown in
“MPC Modeling”, the output disturbance model is independent of the plant, and its output
adds directly to that of the plant model.

Using MPC Designer, you can specify the type of noise that is expected to affect each
plant OV. In the app, on the Tuning tab, in the Design section, click Estimation Models
> OQutput Disturbance Model. In the Output Disturbance Model dialog box, in the
Update the model drop-down list, select specifying a custom model channel by
channel.
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nut Disturbance Model (mp A

The current unmeasured output disturbance model is: Custom

Update the model: |specifying a custom model channel by channel '|
Description
You can specify disturbance type and gpmf:::
magnitude [in engineering units) for each
measured output. +
Cutputs

The settings are converted into a custom
output disturbance model driven by white
noise with unit variance.

Specifications
Specify disturbance type and magnitude:

Channel Disturbance Magnitude
y(1) | White Noise v |1

OK | | Apply | | Cancel| |Help

In the Specifications section, in the Disturbance column, select one of the following
disturbance models for each output:

* White Noise — Prediction errors are due to random zero-mean white noise. This

option implies that the impact of the disturbance is short-lived, and therefore requires
a modest, short-term controller response.
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* Random Step-like — Prediction errors are due to a random step-like disturbance,
which lasts indefinitely, maintaining a roughly constant magnitude. Such a disturbance
requires a more aggressive, sustained controller response.

* Random Ramp-like — Prediction errors are due to a random ramp-like disturbance,
which lasts indefinitely and tends to grow with time. Such a disturbance requires an
even more aggressive controller response.

Model Predictive Control Toolbox software represents each disturbance type as a model
in which white noise, with zero mean and unit variance, enters a SISO dynamic system
consisting of one of the following:

* A static gain — For a white noise disturbance
* An integrator in series with a static gain — For a step-like disturbance
» Two integrators in series with a static gain — For a ramp-like disturbance

You can also specify the white noise input Magnitude for each disturbance model,
overriding the assumption of unit variance. As you increase the noise magnitude, the
controller responds more aggressively to a given prediction error. The specified noise
magnitude corresponds to the static gain in the SISO model for each type of noise.

You can also view or modify the output disturbance model from the command line using
getoutdist and setoutdist respectively.

Measurement Noise Model

MPC also attempts to distinguish disturbances, which require a controller response, from
measurement noise, which the controller should ignore. Using MPC Designer, you can
specify the expected measurement noise magnitude and character. In the app, on the
Tuning tab, in the Design section, click Estimation Models > Measurement Noise
Model. In the Model Noise Model dialog box, in the Update the model drop-down list,
select specifying a custom model channel by channel.

In the Specifications section, in the Disturbance column, select a noise model for each
measured output channel. The noise options are the same as the output disturbance
model options.



Adjust Disturbance and Noise Models

vieasurement Moise Model impcl )

The current measurement noise model is: Default

Update the model: |specifying a custom model channel by channel -
Description
Measurement
You can specify noise type and magnitude (in Hoise
engineering units) for each measured output. +
Measured
The settings are converted into a custom Outputs

measuremeant noise model driven by white
noise with unit variance.

Specifications
Specify disturbance type and magnitude:

Channel Disturbance Magnitude
yil) |:s"|.l"|"h|tv.=_- Mose |

OK | | Apply | | Cancel| |Help

White Noise is the default option and, in nearly all applications, should provide
adequate performance.

When you include a measurement noise model, the controller considers each prediction
error to be a combination of disturbance and noise effects. Qualitatively, as you increase
the specified noise Magnitude, the controller attributes a larger fraction of each
prediction error to noise, and it responds less aggressively. Ultimately, the controller
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stops responding to prediction errors and only changes its MVs when you change the OV
or MV reference signals.

Input Disturbance Model

When your plant model includes unmeasured disturbance (UD) inputs, the controller can
use an input disturbance model in addition to the standard output disturbance model. The
former provides more flexibility and is generated automatically by default. If the chosen
input disturbance model does not appear to allow complete elimination of sustained
disturbances, an output disturbance model is also added by default.

As shown in “MPC Modeling”, the input disturbance model consists of one or more white
noise signals, with unit variance and zero mean, entering a dynamic system. The outputs
of this system are the UD inputs to the plant model. In contrast to the output disturbance
model, input disturbances affect the plant outputs in a more complex way as they pass
through the plant model dynamics.

As with the output disturbance model, you can use MPC Designer to specify the type of
disturbance you expect for each UD input. In the app, on the Tuning tab, in the Design
section, click Estimation Models > Input Disturbance Model. In the Input
Disturbance Model dialog box, in the Update the model drop-down list, select
specifying a custom model channel by channel.
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JopcLy 0~

The current unmeasured input disturbance model is: Default

Update the model: |specifying a custom model channel by channel -

Description
You can specify disturbance type and
magnitude [in engineering units) for

unmeasured input disturbances.

The settings are converted into a custom input

disturbance model driven by white noise with Unmeasured
unit variance. Disturbance
Specifications

Specify disturbance type and magnitude:

Channel Disturbance Magnitude
uid] |:§Rﬂﬂd.ﬂm..5tﬁﬂ-:.|lkﬂ............i v [1

OK | | Apply | | Cancel| |Help

In the Specifications section, in the Disturbance column, select a noise model for each
measured output channel. The input disturbance model options are the same as the
output disturbance model options.

A common approach is to model unknown events as disturbances adding to the plant
MVs. These disturbances, termed load disturbances in many texts, are realistic in that
some unknown events are failures to set the MVs to the values requested by the
controller. You can create a load disturbance model as follows:
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1 Begin with an LTI plant model, Plant, in which all inputs are known (MVs and MDs).

2 Obtain the state-space matrices of Plant. For example:

[A,B,C,D] = ssdata(Plant);

3  Suppose that there are n, MVs. Set B, = columns of B corresponding to the MVs.
Also, set D, = columns of D corresponding to the MVs.

4 Redefine the plant model to include n, additional inputs. For example:

Plant.B
Plant.D

[B Bul;
[D Dul);

5 To indicate that the new inputs are unmeasured disturbances, use setmpcsignals,
or set the Plant. InputGroup property.

This procedure adds load disturbance inputs without increasing the number of states in
the plant model.

By default, given a plant model containing load disturbances, the Model Predictive
Control Toolbox software creates an input disturbance model that generates n,,, step-like
load disturbances. If ny,, > n,, it also creates an output disturbance model with integrated
white noise adding to (n,, - n,) measured outputs. If n,,, < n,, the last (n, - ny,) load
disturbances are zero by default. You can modify these defaults using MPC Designer.

You can also view or modify the input disturbance model from the command line using
getindist and setindist respectively.

Restrictions

As discussed in “Controller State Estimation” on page 2-2, the plant, disturbance, and
noise models combine to form a state observer, which must be detectable using the
measured plant outputs. If not, the software displays a command-window error message
when you attempt to use the controller.

This limitation restricts the form of the disturbance and noise models. If any models are
defined as anything other than white noise with a static gain, their model states must be
detectable. For example, an integrated white noise disturbance adding to an unmeasured
OV would be undetectable. MPC Designer prevents you from choosing such a model.
Similarly, the number of measured disturbances, ny,,, limits the number of step-like UD
inputs from an input disturbance model.
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By default, the Model Predictive Control Toolbox software creates detectable models. If
you modify the default assumptions (or change n,,) and encounter a detectability error,
you can revert to the default case.

Disturbance Rejection Tuning

During the design process, you can tune the disturbance rejection properties of the
controller.

1

Before any controller tuning, define scale factors for each plant input and output
variable (see “Specify Scale Factors” on page 1-18). In the context of disturbance and
noise modeling, this makes the default assumption of unit-variance white noise inputs
more likely to yield good performance.

Initially, keep the disturbance models in their default configuration.

After tuning the cost function weights (see “Tune Weights” on page 1-33), test your
controller response to an unmeasured disturbance input other than a step
disturbance at the plant output. Specifically, if your plant model includes UD inputs,
simulate a disturbance using one or more of these. Otherwise, simulate one or more
load disturbances, that is, a step disturbance added to a designated MV. Both MPC
Designer and the sim command support such simulations.

If the response in the simulations is too sluggish, try one or more of the following to
produce more aggressive disturbance rejection:

* Increase all disturbance model gains by a multiplicative factor. In MPC Designer,
do this by increasing the magnitude of each disturbance. If this helps but is
insufficient, increase the magnitude further.

* Decrease the measurement noise gains by a multiplicative factor. In MPC
Designer, do this by increasing the measurement noise magnitude. If this helps
but is insufficient, increase the magnitude further.

* In MPC Designer, in the Tuning tab, drag the State Estimation slider to the
right. Moving towards Faster state estimation simultaneously increases the gains
for disturbance models and decreases the gains for noise models.
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4\ MpC Designer - scenariol: Output

MPC DESIGNER

TUNING

SCENARIO PLOT VIEW -94’ @ H ﬁ %
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Prediction horizon: |10 . ,
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If this helps but is insufficient, drag the slider further to the right.

* Change one or more disturbances to model that requires a more aggressive
controller response. For example, change the model from white noise disturbance
to a step-like disturbance.

Note Changing the disturbances in this way adds states to disturbance model,
which can cause violations of the state observer detectability restriction.

5 If the response is too aggressive, and in particular, if the controller is not robust
when its prediction of known events is inaccurate, try reversing the previous
adjustments.

See Also

Apps
MPC Designer

Functions
getindist | getoutdist | setindist | setmpcsignals | setoutdist

More About
. “MPC Modeling”
. “Controller State Estimation” on page 2-2

. “Design Controller Using MPC Designer”
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Custom State Estimation

The Model Predictive Control Toolbox software allows the following alternatives to the
default state estimation approach:

* You can override the default Kalman gains, L and M. Obtain the default values using
getEstimator. Then, use setEstimator to override those values. These commands
assume that the columns of L and M are in the engineering units for the measured
plant outputs. Internally, the software converts them to dimensionless form.

* You can use the custom estimation option. This skips all Kalman gain calculations.
When the controller operates, at each control interval you must use an external
procedure to estimate the controller states, xc (k| k), providing this to the controller.

Note You cannot use custom state estimation with MPC Designer.

See Also

getEstimator | setEstimator

More About

. “Controller State Estimation” on page 2-2
. Using Custom State Estimation
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This example shows how to use measurable plant states in MPC control at run time.
Define Plant Model

The linear open-loop plant model is a double integrator.

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons.

Ts = 0.1;
p = 10;
m = 3;

mpcobj = mpc(plant, Ts, p, m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
Specify actuator saturation limits as MV constraints.

mpcobj .MV = struct('Min',-1, '"Max',1);

Specify the controller to use custom state estimation.

setEstimator(mpcobj, 'custom');

Simulate Using MPCMOVE Command

Configure variables to store the closed-loop responses.

Tf = round(5/Ts);
YY = zeros(Tf,1);
UU = zeros(Tf,1);

Prepare the plant used in simulation.

sys = c2d(ss(plant),Ts);
xsys = [0;0];

Use MPCSTATE object to specify the initial controller states before simulation starts.
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xmpc = mpcstate(mpcobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Simulate closed-loop response iteratively.

for t = 0:Tf
% Update plant measurement.
ysys = sys.C*xsys;
% Compute MPC action. Because the plant states are measurable, use
% these values for state estimation instead of the plant output.
xmpc.Plant = xsys;
u = mpcmove(mpcobj,xmpc,[]1,1);
% Store signals.
YY(t+l) = ysys;
Uu(t+l) = u;
% Update plant states.
XSys = sys.A*xsys + sys.B*u;
end
subplot(2,1,1)
plot(0:Ts:5,YY);
title('y');
subplot(2,1,2)
plot(0:Ts:5,UU);
title('u');
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Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink(R) is required to run this example.')
return
end

Simulate closed-loop control of the linear plant model in Simulink. Controller "mpcobj" is
specified in the MPC Controller block dialog.

mdl = 'mpc_customestimation';
open_system(mdl);
sim(mdl);
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The closed-loop responses are identical between simulations in MATLAB and Simulink.

fprintf('\nDifference between simulations in MATLAB and Simulink is %g\n',norm(UU-u));

Difference between simulations in MATLAB and Simulink is 7.66845e-14
bdclose(mdl)

See Also

More About

. “Controller State Estimation” on page 2-2
. “Custom State Estimation” on page 3-59
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Manipulated Variable Blocking

Manipulated variable blocking is an alternative to the simpler control horizon concept
(see “Choose Sample Time and Horizons” on page 1-2). It has many of the same benefits.
It also provides more tuning flexibility and potential to smooth MV adjustments. To use
manipulated variable blocking, you divide the prediction horizon into a series of blocks.
The controller then holds the manipulated variable constant within each block.

A recommended approach to blocking is as follows:

* Divide the prediction horizon into 3-5 blocks.
* Try the following alternatives

* Equal block sizes (one-fifth to one-third of the prediction horizon, p)

* Block sizes increasing. Example, with p = 20, three blocks of duration 3, 7 and 10
intervals.

To use manipulated variable blocking, specify your control horizon as a vector of block
sizes. For example, the following figure represent control moves for a control horizon of p
= [2 3 2]:
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For each block, the manipulated variable, u, is constant, that is:

Test the resulting controller in the same way that you test cost function weights. See
“Tune Weights” on page 1-33.
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See Also

mpc | sim

More About

. “Optimization Problem” on page 2-9

. “Tune Weights” on page 1-33

. “Design MPC Controller for Plant with Delays” on page 1-44
. “Choose Sample Time and Horizons” on page 1-2

. “Design MPC Controller at the Command Line”

. “Design Controller Using MPC Designer”

3-67



3 Controller Refinement

Specifying Alternative Cost Function with Off-Diagonal
Weight Matrices

This example shows how to use non-diagonal weight matrices in a model predictive
controller.

Define Plant Model and MPC Controller

The linear plant model has two inputs and two outputs.

plant = ss(tf({1,1;1,2},{[1 .5 1],[.7 .5 11;[1 .4 2],[1 2]1}));
[A,B,C,D] = ssdata(plant);

Ts = 0.1; % sampling time

plant = c2d(plant,Ts); % convert to discrete time

Create MPC controller.

p=20; % prediction horizon

m=2; % control horizon

mpcobj = mpc(plant,Ts,p,m);

Define constraints on the manipulated variable.

mpcobj .MV = struct('Min',{-3;-2}, 'Max"',{3;2}, 'RateMin', {-100;-100}, 'RateMax', {100;100}
Define non-diagonal output weight. Note that it is specified inside a cell array.
Ow = [1 -1]'*[1 -1];

% Non-diagonal output weight, corresponding to ((yl-rl)-(y2-r2))"2
mpcobj .Weights.OutputVariables = {0W};

% Non-diagonal input weight, corresponding to (ul-u2)”2

mpcobj .Weights.ManipulatedVariables = {0.5*%0W};

Simulate Using SIM Command

Specify simulation options.

Tstop = 30; % simulation time
Tf = round(Tstop/Ts); % number of simulation steps
r = ones(Tf,1)*[1 2]; % reference trajectory

Run the closed-loop simulation and plot results.

[y,t,u] = sim(mpcobj,Tf,r);
subplot(211)
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plot(t,y(:,1)-r(1,1)-y(:,2)+r(1,2));grid
title('(y 1-r 1)-(y 2-r 2)');

subplot(212)
plot(t,u);grid
title('u');
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Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink(R) is required to run this part of the example.')
return

end
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Now simulate closed-loop MPC in Simulink®.
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mdl = 'mpc_weightsdemo';
open_system(mdl) ;
sim(mdl)
u(t) | i=Ac+ Bu vt
v=Cx+ Du
—
- MPC
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bdclose(mdl);

See Also
MPC Controller | mpc

More About

“Optimization Problem” on page 2-9
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+ “Review Model Predictive Controller for Stability and Robustness Issues”
on page 4-2

» “Test Controller Robustness” on page 4-22

* “Compute Steady-State Gain” on page 4-34

+ “Extract Controller” on page 4-36

* “Compare Multiple Controller Responses Using MPC Designer” on page 4-39

* “Adjusting Input and Output Weights Based on Sensitivity Analysis” on page 4-52

* “Understanding Control Behavior by Examining Optimal Control Sequence”
on page 4-57



4 controller Analysis

Review Model Predictive Controller for Stability and
Robustness Issues

4-2

You can review your model predictive controller design for potential stability and
robustness problems. To do so:

* At the command line, use the review function.
* In MPC Designer, on the Tuning tab, in the Analysis section, click Review Design.

In both cases, the software generates a report that shows the results of the following
tests:

* MPC Object Creation — Test whether the controller specifications generate a valid
MPC controller. If the controller is invalid, additional tests are not performed.

* QP Hessian Matrix Validity — Test whether the MPC quadratic programming (QP)
problem for the controller has a unique solution. You must choose cost function
parameters (penalty weights) and horizons such that the QP Hessian matrix is
positive-definite.

* Closed-Loop Internal Stability — Extract the A matrix from the state-space
realization of the unconstrained controller, and then calculate its eigenvalues. If the
absolute value of each eigenvalue is less than or equal to 1 and the plant is stable,
then your feedback system is internally stable.

* Closed-Loop Nominal Stability — Extract the A matrix from the discrete-time state-
space realization of the closed-loop system; that is, the plant and controller connected
in a feedback configuration. Then calculate the eigenvalues of A. If the absolute value
of each eigenvalue is less than or equal to 1, then the nominal (unconstrained) system
is stable.

* Closed-Loop Steady-State Gains — Test whether the controller forces all controlled
output variables to their targets at steady state in the absence of constraints.

« Hard MYV Constraints — Test whether the controller has hard constraints on both a
manipulated variable and its rate of change, and if so, whether these constraints may
conflict at run time.

* Other Hard Constraints — Test whether the controller has hard output constraints
or hard mixed input/output constraints, and if so, whether these constraints may
become impossible to satisfy at run time.

* Soft Constraints — Test whether the controller has the proper balance of hard and
soft constraints by evaluating the constraint ECR parameters.
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* Memory Size for MPC Data — Estimate the memory size required by the controller
at run time.

You can also programmatically assess your controller design using the review function.
In this case, the pass/fail testing results are returned as a structure and the testing report
is suppressed.

The following example shows how to review your controller design at the command line
and address potential design issues.

Plant Model

The example application is a fuel gas blending process. The objective is to blend six gases
to obtain a fuel gas, which is then burned to provide process heating. The fuel gas must
satisfy three quality standards in order for it to burn reliably and with the expected heat
output. The fuel gas header pressure must also be controlled. Thus, there are four
controlled output variables. The manipulated variables are the six feed gas flow rates.

The plant inputs are:

Natural Gas (NG)
Reformed Gas (RG)
Hydrogen (H2)
Nitrogen (N2)

Tail Gas 1 (T1)
Tail Gas 2 (T2)

D U A W N M

The plant outputs are:

High Heating Value (HHV)
Wobbe Index (WI)

Flame Speed Index (FSI)
Header Pressure (P)

A W N R

For more information on the fuel gas blending problem, see [1].
Use the following linear plant model as the prediction model for the controller. This state-

space model, applicable at a typical steady-state operating point, uses the time unit of
hours.
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= diag([-28.6120 -28.6822 -28.5134 -0.0281 -23.2191 -23.4266 ...
-22.9377 -0.0101 -26.4877 -26.7950 -27.2210 -0.0083 ...
-23.0890 -23.0062 -22.9349 -0.0115 -25.8581 -25.6939 ...
-27.0793 -0.0117 -22.8975 -22.8233 -21.1142 -0.0065]);

B = ros(24,6);

B( 1 4,1) = [4 4 8 32]"';

B( 5: 8,2) = [2 2 4 32]';

B( 9:12,3) = [2 2 4 32]';

B(13:16,4) = [4 4 8 32]';

B(17:20,5) = [2 2 4 32]';

B(21:24,6) = [1 2 1 32]"';

C = [diag([ 6.1510 7.6785 -5.9312 34.2689])
diag([-2.2158 -3.1204 2.6220 35.3561])
diag([-2.5223 1.1480 7.8136 35.0376])
diag([-3.3187 -7.6067 -6.2755 34.8720])
diag([-1.6583 -2.0249 2.5584 34.7881])
diag([-1.6807 -1.2217 1.0492 35.0297])]

D = zeros(4,6);

Plant = ss(A,B,C,D);

By default, all the plant inputs are manipulated variables.
Plant.InputName = {'NG','RG',"'H2"','N2"','T1','T2'};

By default, all the plant outputs are measured outputs.
Plant.OutputName = {'HHV','WI','FSI','P'};

To reflect sensor delays, add transport delays to the plant outputs.
Plant.OutputDelay = [0.00556 0.0167 0.00556 0];

Initial Controller Design

Construct an initial model predictive controller based on the design requirements. First,
for clarity, disable MPC command-window messages.

MPC_verbosity = mpcverbosity('off');
Create a controller with a:

* Sample time, Ts, of 20 seconds, specified in hours, which corresponds to the sample
time of the sensors.

* Prediction horizon, p, of 39 control intervals, which is approximately equal to the plant
settling time.
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* Control horizon, m, that uses four blocked moves with lengths of 2, 6, 12, and 19
control intervals.

Ts = 20/3600;

p = 39;

m=[26 12 19];

0bj = mpc(Plant,Ts,p,m);

Specify the output measurement noise and nonzero nominal operating point for the
controller.

Obj.Model.Noise = s
0bj.Model.Nominal.Y
Obj .Model.Nominal.U

s(0.001*eye(4));

= [16.5 25 43.8 2100];

= [1.4170 0 2 0 0 26.5829];
Specify lower and upper bounds for each manipulated variable (MV). Since all the
manipulated variables are flow rates of gas streams, their lower bounds are zero. By
default, all the MV constraints are hard (MinECR = 0 and MaxECR = 0).

MVmin = zeros(1,6);
MVmax = [15 20 5 5 30 30];
for i = 1:6
Obj.MV(i).Min = MVmin(i);
Obj.MV(i).Max = MVmax(i);

end

Specify lower and upper bounds for the manipulated variable increments. The bounds are
set large enough to allow full range of movement in one interval. By default, all the MV
rate constraints are hard (RateMinECR = 0 and RateMaxECR = 0).

for i = 1:6
Obj.MV(i).RateMin = -MVmax(i);
Obj.MV(i).RateMax = MVmax(i);
end

Specify lower and upper bounds for each plant output variable (OV). By default, all the OV
constraints are soft (MinECR = 1 and MaxECR = 1).

[16.5 25 39 2000];
0Vmax [18.0 27 46 2200];
for i 1:4
Obj.0V(i).Min
0bj.0V(i).Max
end

0Vmin

oVmin(i);
OVmax(i);
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Specify tuning weights for the manipulated variables. MV weights are specified based on
the known costs of each feed stream. Doing so tells MPC controller how to move the six
manipulated variables to minimize the cost of the blended fuel gas. The weights are
normalized such that the maximum weight is approximately 1. 0.

Obj.Weights.MV = [54.9 20.5 0 5.73 0 0]/55;

Specify tuning weights for the manipulated variable increments. These weights are small
relative to the maximum MV weight so that the MVs are free to vary.

Obj.Weights.MVrate = 0.1*ones(1,6);

Specify tuning weights for the plant output variables. The OV weights penalize deviations
from specified setpoints and would normally be large relative to the other weights. For
this example, first consider the default values, which equal the maximum MV weight.

Obj.Weights.OV = [1,1,1,1];
Improve the Initial Design

Review the initial controller design. The review function generates and opens a report in
the Web Browser window.

review(0bj)
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Design Review for Model Predictive Controller '""Obj"
Summary of Performed Tests

Test Status

MPC Object Creation Pass

QP Heszsian Matrix Validity

Closed-Loop Internal Stability Pass

Clozed-Loop Nominal Stabality Pass

Hard MV Constraints

Other Hard Constraints Pass
Soft Constraints Fail
Memory Size for MPC Data Pass

The review summary lists three warnings and one error. Review the warnings and error in
order. Click QP Hessian Matrix Validity and scroll down to the warning, which indicates
that the plant signal magnitudes differ significantly. Specifically, the pressure response is
much larger than the other signals.
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Scale Factors

Scaling converts the relationship between output variables and manipulated variables to dimensionless form. Scale

factor spectfications can improve QP numerical accuracy. They also malze it easier to specify tuning weight
magnitudes.

Iin order for the outputs to be controllable. each must respond to at least one manipulated variable within the
prediction horizon. Ifthe plant 1s well scaled, the maxumum absolute value of such responses should be of order unity.

Outputs whose maximum absolute scaled responses are outside the range [0.1.10] appear below. The table shows the
maximum absolute response of each such OV with respect to each MV,

P 236876 244868 242709 241472 240892 242702

RG H2 N2 Tl T2
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The OV spans indicated by the specified OV bounds are quite different, and the pressure
span is two orders of magnitude larger than the others. It is good practice to account for
the expected differences in signal magnitudes by specifying MPC scale factors. Since the
MVs are already weighted based on relative cost, specify scale factors only for the OVs.

Calculate OV spans.

OVspan = QOVmax - 0Vmin;

Use these spans as scale factors.
for i = 1:4

Obj.0V(i).ScaleFactor = QVspan(i);
end

To verify that setting output scale factors fixes the warning, review the updated controller
design.

review(0bj)
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Design Review for Model Predictive Controller '""Obj"

Summary of Performed Tests

Test Status
MPC Object Creation Pass
QP Hessian Matrix Validity Pass
Clozed-Loop Internal Stability Pazs

Closed-Loop Nominal Stability Pass
Clozed-Loop Steadv-State Gains

Hard MV Constraints

Other Hard Constraints Pass
Soft Constraints FEail
Memory Size for MPC Data Pass

The next warning indicates that the controller does not drive the OVs to their targets at
steady state. To see a list of the nonzero gains, click Closed-Loop Steady-State Gains.
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mapping.

Disturbed OV
HHV
WI
F5I
HHV
WI
F5I
HHV
WI
F5I
HHV
WI
Fal

Affected OV
HHV
HHV
HHV

WI
WI
WI
F5I
F3I
F3I
P
P
P

Closed-Loop Steady-State Gains

The gains with magnitudes exceeding le-03

Gain
00860281
-0.0344902
00663737
0036145
0.014495
-0.027972
0.279361
-0.11203
0.216193
00468766
00187086
0.036277

cloffset 1s used to determine whether the controller forces all controlled output vanables to their targets at steady
state, in the absence of constraints.

The command calculates the impact of a sustained disturbance on each measured outpuot variable (OV) in terms of an
mput/output gain. If a gain is zero, the controller eliminates steady-state tracking error for that disturbance-to-output

are as follows:

+ Fero penalty weight on a plant output. Check the Weights OV property.
+ MNon-zero penalty weight on a manipulated variable. Checl: the Weights MV property.

= State estimator that does not include integration of output tracking error. The default estimator includes
integration. If vou have modified or replaced it. review vour estimator design.
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The first entry in the list shows that adding a sustained disturbance of unit magnitude to
the HHV output would cause the HHV output to deviate about 0.0860 units from its steady-
state target, assuming no constraints are active. The second entry shows that a unit
disturbance in WI would cause a steady-state deviation, or offset, of about -0.0345 in HHV,
and so on.

Since there are six MVs and only four OVs, excess degrees of freedom are available.
Therefore, you might expect the controller to have no steady-state offsets. However, the
specified nonzero MV weights, which were selected to drive the plant toward the most
economical operating condition, are causing nonzero steady-state offsets.

Nonzero steady-state offsets are often undesirable but are acceptable in this application
because:

1 The primary objective is to minimize the blend cost. The gas quality (HHV, and so on)
can vary freely within the specified OV limits.
2 The small offset gain magnitudes indicate that the impact of disturbances is small.

3 The OV limits are soft constraints. Small, short-term violations are acceptable.

View the second warning by clicking Hard MV Constraints. This warning indicates a
potential conflict in hard constraints.
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NG
NG
BEG
EG
H2
H2
N2
N2
T1

Tl

Hard MV Constraints

The controller should always satisfy hard bounds on a manipulated variable OR its rate-of-change. If vou specify both
constraint types simultaneonsly, however, they might conflict during real-time use.

For example, if an event pushes an MV outside a specified hard bouvnd and the hard MV rate bounds are too small, the
resulting QF will be infeasible.

Avoid such conflicts by specifiing hard MV bounds OF hard MV rate bounds, but not both. Or if vou want to specify
both, soften the lower-prionty constraint by setting its ECE to a value greater than zero.

MV name Horizonk Conflict Type

1 M & RateMax
1 Mlax & Ratellin
1 Min & RateMax
1 Max & RateMin
1 MMin & RateMax
1 Mlax & Ratellin
1 Miin & RateMax
1 Mlax & Ratellin
1 Min & RateMax
1 MMax & RateMin
1 Min & FateMax
1 MhMax & Ratellin

4-12

If an external event causes NG to go far below its specified minimum, the constraint on its
rate of increase might make it impossible to return the NG within bounds in one control
interval. In other words, if you specify both MV.Min and MV.RateMax, the controller
would not be able to find an optimal solution if the most recent MV value is less than
(MV.Min - MV.RateMax). Similarly, there is a potential conflict when you specify both

MV .Max and MV .RateMin.
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An MV constraint conflict would be unlikely in the gas blending application. However, it is
good practice to eliminate the possibility by softening one of the two constraints. Since
the MV minimum and maximum values are physical limits and the increment bounds are
not, soften the increment bounds.

for i = 1:6
Obj.MV(i).RateMinECR
Obj .MV (i) .RateMaxECR
end

[oNo]

Review the updated controller design.

review(0bj)

Design Review for Model Predictive Controller ""Obj"

Summary of Performed Tests

Test Status
MPC Object Creation Pass
QP Hessian Matrix Validity Pass
Closed-Loop Internal Stability Pass
Closed-Loop Nominal Stability Pass

Clozed-Loop Steadv-State (Gains

Hard MV Constraints Pass
Other Hard Constraints Pass
Soft Constraints Fail
Memory Size for MPC Data Pass

The MV constraint conflict warning is fixed.

To view the error message, click Soft Constraints.
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Impact of delays

Delays can malke it impossible to satisfy output constraints. The presence of unattainable constraints vsually degrades
performance. Let j be the location (within the prediction horizon) of the first finite constraint value (Min or Max) for
OV(1). If all delays for OV(1) exceed j. the constraint 13 unattaimnable.

The following table lists each output constraint that is impossible to satisfy. The first column 15 the location (within
the prediction horizon) of the first finite constraint value. The second column 1s the minimum delay for that output
variable.

Constraint Begins Delay
WIMin 1 3
WIMax 1 3

Error: at least one output variable constraint is impossible to satisfy.

The delay in the WI output makes it impossible to satisfy bounds on that variable within

the first three control intervals. The WI bounds are soft, but it is poor practice to include
unattainable constraints in a design. Therefore, modify the WI bound specifications such
that it is unconstrained until the fourth prediction horizon step.

1;
]

0bj.0V(2).Min
0bj.0V(2) .Max

’

[-Inf(1,3) OVmin(2)
[ Inf(1,3) OVmax(2)

Rerunning the review command verifies that this change eliminates the error message, as

shown in the next step.
Assess Impact of Zero Output Weights

Given that the design requirements allow the OVs to vary freely within their limits,
consider removing their penalty weights.

Obj.Weights.0V = zeros(1,4);
Review the impact of this design change.

review(0bj)
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Design Review for Model Predictive Controller '""Obj"
Summary of Performed Tests

Test Status

MPC Object Creation Pass

QP Hezzian Matrix Validity

Clozed-Loop Internal Stability Pass

Clozed-Loop Nominal Stabilsty Pass
Clozed-Loop Steadv-State Gains

Hard MV Constraints Pazs
Other Hard Constraints Pass
Soft Constraints Pass
Memory Size for MPC Data Pass

There is a new warning regarding the QP Hessian matrix validity. To see the warning
details, click QP Hessian Matrix Validity.
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Penalty Weights On OQutpur Variables

Your output varnable (OV) penalty weights also affect the Hessian. Non-zero values emphasize the importance of OV
target tracking, making a unique QF solotion more likely.

The following table lists the minimum weight for each OV along the prediction horizon.

OV Weights.OV

HHV 0

WI
FslI 0
P 0

The review flags the zero weights on all four output variables. Since the zero weights are
consistent with the design requirements and the other Hessian tests indicate that the
quadratic programming problem has a unique solution, this warning can be ignored. To
see the second new warning, click Closed-Loop Steady-State Gains. The warning
shows another consequence of setting the four OV weights to zero. When an OV is not
penalized by a weight, the controller ignores any output disturbance added to the OV and
passes the disturbance through with no attenuation.

4-16



Review Model Predictive Controller for Stability and Robustness Issues

Closed-Loop Steady-State Gains

cloffset 1s used to determine whether the controller forces all controlled output vanables to their targets at steady
state, in the absence of constraints.

The command calculates the impact of a sustained disturbance on each measured outpuot variable (OV) in terms of an
mput/output gain. If a gain is zero, the controller eliminates steady-state tracking error for that disturbance-to-output
mapping.

The gains with magnitudes exceeding 1e-03 are as follows:

Disturbed OV Affected OV Gain

HHV HHV 1
WI WI 1
F3lI F3l 1

P P 1

Since it is a design requirement, nonzero steady-state offsets are acceptable as lons as
the controller is able to hold all the OVs within their specified bounds. Therefore, it is a

good idea to examine how easily the soft OV constraints can be violated when
disturbances are present.

Review Soft Constraints

To see a list of soft constraints, click Soft Constraints. In this example, the soft
constraints are the upper and lower bound on each OV.
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Soft Constraints

ECR Parameters

This test evaluates the constraint ECE parameters to help you achieve the proper balance of using hard and soft
constramts. If a constraint 15 too soft, an uvnacceptable violation may occur. If it is too hard, the controller might pay it
too much attention. Moreover, making a constraint harder cannot prevent a violation ifthe constraint 15 fundamentally
mnfeasible.

You have defined 8 soft constraints. The table below lists these and shows potential violations based on specified
variable bounds and other factors.

Impact Factor: the increase in the MPC cost function cavsed by this constraint violation relative to the average such
merease. Bows are sorted 1n order of decreasing mmpact.

Sensitivity Batio: the increase in the MPC cost function caused by this constraint violation relative to the typical cost
function magnitude when there are no violations.

We constder a possible constraint violation equal to 10% of the nominal OV range. It then estimates the impact of
such a violation on the MPC objective function relative to the impact of other viclations. A large impact factor
mdicates a high-priority controller objective, and vice versa.

Constraint Assumed Violation ImpactFactor Sensitivity Ratio
Lower limit: P 20 1509 1000
Upper linut: P 20 1309 1000

Lower limit: FSI 0.7 1.349 1.223
Upper limit: FSI 0.7 1.849 1225
Lower limit: W1 02 0.1300 0.1
Upper limit: WI 0.2 0.1300 0.1
Lower linut: HHV 0.13 0.08491 0.03625
Upper linut: HHV 0.13 0.08491 0.03625

A sensitivity ratio greater than 1e+08 may degrade QP solution accuracy.

Finding: Sensitivity ratios are acceptable.
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The Impact Factor column shows that using the default MinECR and MaxECR values give
the pressure (P) a much higher priority than the other OVs. To make the priorities more
comparable, increase the pressure constraint ECR values, and adjust the others as well.
For example:

0bj.0V(1).MinECR = 0.5;
0bj.0V(1).MaxECR = 0.5;
0bj.0V(3).MinECR = 3;
0bj.0V(3).MaxECR = 3;
0Obj.0V(4) .MinECR = 80;
Obj.0V(4).MaxECR = 80;

Review the impact of this design change.

review(0bj)

Constraint Assumed Violation ImpactFactor Sensitivity Ratio
Lower limit: HHV 0.13 1330 0223
Upper linmut: HHV 0.13 1.330 0223

Lower limit: P 20 1.069 0.1363
Upper linut: P 20 1.069 0.1363
Lower limit: FSI 0.7 0.9311 0.1361
Upper limit: FSI 0.7 00311 0.1361
Lower limit: W1 02 0.6841 0.1
Upper linut: WI 02 0.6841 0.1

In the Sensitivity Ratio column, all the sensitivity ratios are now less than unity, which
means that the soft constraints receive less attention than other terms in the MPC
objective function, such as deviations of the MVs from their target values. Therefore, it is
likely that an output constraint violation would occur.

To give the output constraints higher priority than other MPC objectives, increase the
Weights.ECR parameter from the default, 1e5, to a higher value, which hardens all the
soft OV constraints.

0bj.Weights.ECR = 1e8;
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Review the impact of this design change.

review(0bj)

Constraint Assumed Violation ImpactFactor Sensitivity Ratio
Lower limut: HHV 0.13 1339 225
Upper limit: HHV 013 1330 225

Lower limit: P 20 1.069 156.3
Upper limit: P 20 1.069 156.3
Lower limit: FSI 0.7 09311 136.1
Upper limit: FSI 0.7 09311 136.1
Lower limit: W1 02 0.6841 100
Upper limit: WI 02 0.6841 100

The controller is now more sensitive to output constraint violations than to errors in
target tracking by a factor of 100.

Review Data Memory Size

To see the estimated memory size required to store the MPC data matrices used on
hardware, click Memory Size for MPC Data.
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Memorv Size for MPC Data

This test provides an estumation of the memory size required by the MPC controller at the run time. We assume a scalar
valoe takes 4 bytes in single precision and 3 bytes in double precision.

The table below estimates how much physical memory, for example BAM on board, 1s needed to store the matrices
used in online optinization. The value depends on the MPC controller settings such as horizons, plant order, plant
size and the number of constraints. Ifthe physical memory size of vour hardware 1s less than the estimated data
memory requirements ofthe controller. vou can run out of memory when vou deploy the controller. Redesign the
controller to reduce its memory requirements by using shorter horizons, reducing the plant, or reducing the constraints.
Alternatively, you can increase the available physical memory.

The estimation does not include source code memory size (memory required to store the generated code).

Type Single Precision (kB) Double Precision (kB)
MPC 230 300
MPC with Online Tuning iz0 T00

In this example, if the controller is running using single precision, it requires 250 KB of
memory to store its matrices. If the controller memory size exceeds the memory available
on the target system, redesign the controller to reduce its memory requirements.
Alternatively, increase the memory available on the target system.

Restore the MPC verbosity level, and close the web browser.

mpcverbosity (MPC verbosity);
[~,hWebBrowser] = web;
close(hWebBrowser)

References

[1] Muller C. ], I. K. Craig, and N. L. Ricker. "Modeling, validation, and control of an
industrial fuel gas blending system." Journal of Process Control. Vol. 21, Number 6, 2011,
pp. 852-860.

See Also

review
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Test Controller Robustness

4-22

This example shows how to test the sensitivity of your model predictive controller to
prediction errors using simulations.

It is good practice to test the robustness of your controller to prediction errors. Classical
phase and gain margins are one way to quantify robustness for a SISO application.
Robust Control Toolbox™ software provides sophisticated approaches for MIMO systems.
It can also be helpful to run simulations.

Define Plant Model

For this example, use the CSTR model described in “Design Controller Using MPC
Designer”.

A=1[-0.0285 -0.0014; -0.0371 -0.14761;
B =1[-0.0850 0.0238; 0.0802 0.4462];
C=1[01; 10];

D = zeros(2,2);

CSTR = ss(A,B,C,D);

Specify the signal names and signal types for the plant.
CSTR.InputName = {'T c','C A i'};

CSTR.OQutputName = {'T','C A'};

CSTR.StateName = {'C A','T'};

CSTR = setmpcsignals(CSTR, 'MV',1,'UD',2,'MO"',1,'U0",2);
Open MPC Designer, and import the plant model.

mpcDesigner (CSTR)

The app imports the plant model and adds it to the Data Browser. It also creates a
default controller and a default simulation scenario.

Design Controller

Typically, you would design your controller by specifying scaling factors, defining
constraints, and adjusting tuning weights. For this example, modify the controller sample
time, and keep the other controller settings at their default values.

In MPC Designer, on the Tuning tab, in the Horizon section, specify a Sample time of
0.25 seconds.
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The Input Response and Output Response plots update to reflect the new sample time.

Configure Simulation Scenario

To test controller setpoint tracking and unmeasured disturbance rejection, modify the
default simulation scenario.

In the Data Browser, in the Scenarios sections, right-click scenariol, and select Edit.
In the Simulation Scenario dialog box, specify a Simulation duration of 50 seconds.

In the Reference Signals table, keep the default Ref of T setpoint configuration,
which simulates a unit-step change in the reactor temperature.
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To hold the concentration setpoint at its nominal value, in the second row, in the Signal
drop-down list, select Constant.

Simulate a unit-step unmeasured disturbance at a time of 25 seconds. In the
Unmeasured Disturbances table, in the Signal drop-down list, select Step, and specify
a Time of 25.

- Simulation Settings

Plant used in simulation: |Defaurt [controller internal model) '|

Simulation duration {seconds) |50 |

[ Run open-loop simulation 71 Use unconstrained MPC

[ Preview references (look ahead) [T Preview measured disturbances (look ahead)

~ Reference Signals (setpoints for all outputs)

Channel Marme Mominal Signal Size Tirne Pericd
iy Ref of T 0 Step - |1 1
() Refof C_4& |0 Constant -«

~ Unmeasured Disturbances (inputs to UD channels)

Channel Marme Mominal Signal Size Tirne Pericd
u(2) IC_A o Step -1 25

Click OK.
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4\ MPC Designer - scenariol: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT
sample time: [0.25 | - I + e t { N
MPC Contraller: mpcl R Robust Closed-Loop Performance Aggressive | | ¢ Q
Prediction horizon: |10 . , , §
Internal Plant: CSTR . C i Weights  Esti g v "l T 1 Review  Store Export
Control horizon: |2 | Models ~ | Sower State Extimation Faster | necion  Controller  Contraller >
CONTROLLER HORIZON DESIGN PERFORMANCE TUNING ANALYSIS
Data Browser ® | scenariol: Input | I scenariol: Output l
w Plants
CSTR . . . .
Input Response (against internal plant) Output Response (against internal plant)
10 2
5 \ 1.5
o — fm
o DF } - 1
¥ Controllers — | [
mpel (current) -5 ‘\/ 0.5 I‘
|
|
-10 0
1 4 -
;/.
0.8
2
R 0.6
w Scenarios = <
= o o 0
scenariol 0.4 \ /
2 &k——_,
0.2
0 -4
0 10 20 30 40 50 0 10 20 30 40 50

Time (seconds) Time (seconds)

The app runs the simulation scenario, and updates the response plots to reflect the new
simulation settings. For this scenario, the internal model of the controller is used in the

simulation. Therefore, the simulation results represent the controller performance when
there are no prediction errors.

Define Perturbed Plant Models

Suppose that you want to test the sensitivity of your controller to plant changes that
modify the effect of the coolant temperature on the reactor temperature. You can simulate
such changes by perturbing element B(2, 1) of the CSTR input-to-state matrix.

In the MATLAB Command Window, specify the perturbation matrix.

dB = [0 0;0.05 0];
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Create the two perturbed plant models.

perturbUp = CSTR;
perturbUp.B = perturbUp.B + dB;

perturbDown = CSTR;
perturbDown.B = perturbDown.B - dB;

Examine Step Responses of Perturbed Plants

To examine the effects of the plant perturbations, plot the plant step responses.

step(CSTR, perturbUp, perturbDown)
legend('CSTR', 'peturbUp"', 'perturbDown')
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Step Response

From: T From: C’m
3 ] [ —
[ib}
gs
=
a @ ———— YT rrwywv————
E
< 0t CSTR
peturbUp
a =17 1 perturb Down
-
P2 N\
N TP, BYTEEr o —
-

0 50 100 150 200 2500 50 100 150 200 250
Time (seconds)

Perturbing element B(2, 1) of the CSTR plant changes the magnitude of the response of
the reactor temperature, T, to changes in the coolant temperature, Tc.

Import Perturbed Plants

In MPC Designer, on the MPC Designer tab, in the Import section, click Import
Plant.

In the Import Plant Model dialog box, select the perturbUp and perturbDown models.
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| 00 13 WIDCE

Import a plant model from MATLAE Waorkspace:

Select  Mame Type Crder Inputs Outputs
] |CSTR g5 2 2 2
perturbDoyss 2 2 2
perturbUp |ss 2 2 2
@‘ Refresh workspace Import | | Cancel| |Help
Click Import.

The app imports the models and adds them to the Data Browser.
Define Perturbed Plant Simulation Scenarios
Create two simulation scenarios that use the perturbed plant models.

In the Data Browser, in the Scenarios section, double-click scenariol, and rename it
accurate.

Right-click accurate, and click Copy. Rename accurate Copy to errorup.
Right-click errorUp, and select Edit.

In the Simulation Scenario dialog box, in the Plant used in simulation drop-down list,
select perturbUp.



Test Controller Robustness

~ Simulation Settings

Plant used in simulation: |Default [controller internal model} i

Default (controller internal model)
CSTR
perturbDown

P Fon ooy semiin. N
[T Preyigw rafesascastaolahead) [7] Preview measured disturbances (look ahead)

Simulation duration [seconds)

Click OK.

Repeat this process for the second perturbed plant.
Copy the accurate scenario and rename it to errorDown.
Edit errorDown, selecting the perturbDown plant.

Simulation Scenano: errorDown

~ Simulation Settings

Plant used in simulation: |Default [controller internal model} i

simulation duration (seconds) E}::;ult [controller internal model)

[ Run open-loop simulation  |perturbUp K !

[ Preview refacancas donk ahead) [7] Preview measured disturbances (look ahead)

Examine errorUp Simulation Response

On the MPC Designer tab, in the Scenario section, click Plot Scenario > errorUp.

4-29



4 Ccontroller Analysis

4\ mpC Designer - errorlp: Output

MPC DESIGNER TUNING SCENARIO PLOT
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The app creates the errorUp: Input and errorUp: Output tabs, and displays the

simulation response.

To view the accurate and errorUp responses side-by-side, drag the accurate: Output

tab into the left plot panel.
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4\ MPC Designer - errorlp: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT
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The perturbation creates a plant, perturbUp, that responds faster to manipulated
variable changes than the controller predicts. On the errorUp: Output tab, in the
Output Response plot, the T setpoint step response has about 10% overshoot with a
longer settling time. Although this response is worse than the response of the accurate
simulation, it is still acceptable. The faster plant response leads to a smaller peak error
due to the unmeasured disturbance. Overall, the controller is able to control the
perturbUp plant successfully despite the internal model prediction error.

Examine errorDown Simulation Response
On the MPC Designer tab, in the Scenario section, click Plot Scenario > errorDown.

The app creates the errorDown: Input and errorDown: Output tabs, and displays the
simulation response.
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To view the accurate and errorDown responses side-by-side, click the accurate:
Output tab in the left display panel.

4\ mpC Designer - accurate: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT O PPN o= =10 =
o d & & & i ERE
Open Save MPC ra Import  Import Piot Edit Compare Export
Session  Session  Structure  Aftributes  Plant  Controller g o+ Ci ~ Controller ~
FILE ETRUCTURE IMPORT SCEMARIO RESULT
Data Browser @ *"2 accurate: Output 1 errorDown: Input | | errorUp: Output | errorDown: Output |
¥ Plants
C5TR . . . " "
perturbDown Output Response (against internal plant) Output Response (against "perturbDown")
perturbUp : 2
1.5 1.5
[
— |
| ~ |\
- 1 - 1
w Controllers / —
mpcl (current) 0.5 II 0.5
|
|
0 0
4 - 10
1/.
2 N
5
w Scenarios < o
o 0 3
accurate \
errorlp ‘h\_q_;___ 0
errorDown -2 B
-4 -5
o 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds)

The perturbation creates a plant, perturbDown, that responds slower to manipulated
variable changes than the controller predicts. On the errorDown: Output tab, in the
Output Response plot, the setpoint tracking and disturbance rejection are worse than
for the unperturbed plant.
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Depending on the application requirements and the real-world potential for such plant
changes, the degraded response for the perturbDown plant may require modifications to
the controller design.

See Also
MPC Designer | mpc

More About

. “Design Controller Using MPC Designer”
. “Test an Existing Controller” on page 5-9
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Compute Steady-State Gain

4-34

This example shows how to analyze a model predictive controller using cloffset. This
function computes the closed-loop, steady-state gain for each output when a sustained, 1-
unit disturbance is added to each output. It assumes that no constraints are active.

Define a state-space plant model.

A =1[-0.0285 -0.0014; -0.0371 -0.14761;
B=[-0.0850 0.0238; 0.0802 0.4462];
C=1[01; 10];

D = zeros(2,2);

CSTR = ss(A,B,C,D);

CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;

Create an MPC controller for the defined plant.

MPCobj

-->The
-->The
-->The
-->The
-->The

for

= mpc(CSTR,1);

"PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
"ControlHorizon" property of the "mpc" object is empty. Assuming 2.
"Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
"Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
"Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
output(s) yl and zero weight for output(s) y2

Specify tuning weights for the measured output signals.

MPCobj .W.OQutputVariables = [1 0];

Compute the closed-loop, steady-state gain for this controller.

DCgain

= cloffset(MPCobj)

-->Converting model to discrete time.

-->The

"Model.Disturbance" property of "mpc" object is empty:

Assuming unmeasured input disturbance #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white
Assuming no disturbance added to measured output channel #2.

-->The

DCgain

"Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

= 2x2



See Also

0.0000 -0.0000
2.3272 1.0000

DCgain(i,j) represents the gain from the sustained, 1-unit disturbance on output j to
measured output i.

The second column of DCgain shows that the controller does not react to a disturbance
applied to the second output. This disturbance is ignored because the tuning weight for
this channel is 0.

Since the tuning weight for the first output is nonzero, the controller reacts when a
disturbance is applied to this output, removing the effect of the disturbance
(DCgain(1,1) = 0). However, since the tuning weight for the second output is 0, this
controller reaction introduces a gain for output 2 (DCgain(2,1) = 2.3272).

See Also
cloffset | mpc

More About
. “MPC Modeling”
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Extract Controller

4-36

This example shows how to obtain an LTI representation of an unconstrained MPC
controller using ss. You can use this to analyze the frequency response and performance
of the controller.

Define a plant model. For this example, use the CSTR model described in “Design
Controller Using MPC Designer”.

[-0.0285 -0.0014; -0.0371 -0.1476];
[-0.0850 0.0238; 0.0802 0.4462];
[061; 10];

zeros(2,2);

STR = ss(A,B,C,D);

A
B
C
D
C

CSTR.InputGroup.MV
CSTR.InputGroup.UD
CSTR.OQutputGroup.MO
CSTR.OQutputGroup.U0

= ]_;
= 2;
1;
2;

Create an MPC controller for the defined plant using the same sample time, prediction
horizon, and tuning weights described in “Design MPC Controller at the Command Line”.

MPCobj = mpc(CSTR,1,15);

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
for output(s) yl and zero weight for output(s) y2

MPCobj .W.ManipulatedVariablesRate = 0.3;
MPCobj .W.OQutputVariables = [1 0];

Extract the LTI state-space representation of the controller.
MPCss = ss(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea



Extract Controller

Convert the original CSTR model to discrete form using the same sample time as the MPC
controller.

CSTRd = c2d(CSTR,MPCss.Ts);

Create an LTI model of the closed-loop system using feedback. Use the manipulated
variable and measured output for feedback, indicating a positive feedback loop. Using
negative feedback would lead to an unstable closed-loop system, because the MPC
controller is designed to use positive feedback.

CLsys = feedback(CSTRd,MPCss,1,1,1);

You can then analyze the resulting feedback system. For example, verify that all closed-
loop poles are within the unit circle.

poles = eig(CLsys)

poles = 6x1 complex
0.5513 + 0.27001
0.5513 - 0.27001
0.6131 + 0.11101
0.6131 - 0.11101
0.9738 + 0.00001
0.9359 + 0.00001

You can also view the system frequency response.

bode (CLsys)

4-37



4 Controller Analysis

From: In{1)

Bode Diagram

From: In(2)

To CQut(1)
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See Also

10°

1072

Frequency (rad's)

feedback | mpc | ss

More About
. “Design MPC Controller at the Command Line”
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Compare Multiple Controller Responses Using MPC Designer

Compare Multiple Controller Responses Using MPC
Designer

This example shows how to compare multiple controller responses using MPC Designer.
In particular, controllers with different output constraint configurations are compared.

Define Plant Model

Create a state-space model of your plant, and specify the MPC signal types.

A=1[-0.0285 -0.0014; -0.0371 -0.14761;

B =1[-0.0850 0.0238; 0.0802 0.4462];

C=1[01; 10];

D = zeros(2,2);

plant = ss(A,B,C,D);

plant = setmpcsignals(plant,'MvV',1,'UD',2,'MO"',1,'U0",2);

Open MPC Designer, and import the plant model.

mpcDesigner(plant)
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4\ MPC Designer - scenariol: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT o2 E 4B Deeann
= B & & O W B &
Open Save MPC o Import  Import Piot Edit Compare Export
Session Session  Structure Attributes  Plant  Controller (I io v Ci ~ Controller «
FILE STRUCTURE IMPORT SCENARIO RESULT
Data Browser ® | scenariol: Input | I scenariol: Output l
w Plants
plant . . . .
Input Response (against internal plant) Output Response (against internal plant)
6 1.5
.
4 1 —
5 5
= & =
w Controllers 2 0.5
mpel (current)
1
0 0
1 1
0.5
0.5
0
w Scenarios = =
a o 0 .05
scenariol = =
-1 pa
05 —
15 T
-1 -2
0 2 4 6 8 10 0 2 4 6 B8 10
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The app adds the specified plant to the Data Browser along with a default controller,
mpcl, and a default simulation scenario, scenariol.

Define Simulation Scenario

Configure a disturbance rejection simulation scenario.

In MPC Designer, on the MPC Designer tab, click Edit Scenario > scenariol.

In the Simulation Scenario dialog box, specify a Simulation duration of 40 seconds.

In the Reference Signals table, in the Signal drop-down lists, select Constant to hold
the setpoints of both outputs at their nominal values.
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In the Unmeasured Disturbances table, in the Signal drop-down list, select Step. Use
the default Time and Step values.

Simulation Settings

Plant used in simulation: |Defau|t {controller internal model) "|

Simulation duration [seconds) |4C| |

71 Run open-loop simulation 71 Use unconstrained MPC

[T Preview references (look ahead) [T Preview measured disturbances (look ahead)

Reference Signals (setpoints for all outputs)

Channel Marme Morninal Signal Size Tirne Pericd
(1) Ref of MOL |0 Constant
r(2) Refof UDL |D Constant

Unmeasured Disturbances (inputs to UD channels)

Channel Mame Mominal Signal Size Tirne Pericd
u() lup1 o Step - J1 1

This scenario simulates a unit step change in the unmeasured input disturbance at a time
of 1 second.

Click OK.

The app runs the updated simulation scenario and updates the controller response plots.
In the Output Response plots, the default controller returns the measured output, MO1,
to its nominal value, however the control action causes an increase in the unmeasured
output, UO1.
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4-42

Create Controller with Hard Output Constraints

Suppose that the control specifications indicate that such an increase in the unmeasured
disturbance is undesirable. To limit the effect of the unmeasured disturbance, create a
controller with a hard output constraint.

Note In practice, using hard output constraints is not recommended. Such constraints
can create an infeasible optimization problem when the output variable moves outside of
the constraint bounds due to a disturbance.

In the Data Browser, in the Controllers section, right-click mpc1, and select Copy.
The app creates a copy of the default controller and adds it to the Data Browser.

Double-click each controller and rename them as follows.



Compare Multiple Controller Responses Using MPC Designer

P

4\ MPC Designer - scenariol: Cutput

MPC DESIGNER TUNING

Sample time:
MPC Controller: [ mpchone L

Prediction horizon:

Int | Plant:
. ) plant e Control horizon:

CONTROLLER | HORIZON

Data Browser ®

w Plants

plant

w Controllers

mpcMone (current)
rmpcHard

Right-click the mpcHard controller, and select Tune (make current). The app adds the
mpcHard controller response to the Input Response and Output Response plots.
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4-44

On the Tuning tab, in the Controller section, mpcHard is selected as the current MPC
Controller being tuned.

r

4\ MPC Designer - scenariol: Qutput

WMPC DESIGNER TUNING

' 5 I
MPC Controller: |\ mpcHard = AP

— diction

«
Int | Plant:
AR S plant M Control

In the Design section, click Constraints.

In the Constraints dialog box, in the OQutput Constraints section, in the Max column,
specify a maximum output constraint of 3 for the unmeasured output (UO).

By default, all output constraints are soft, that is the controller can allow violations of the
constraint when computing optimal control moves.

To make the unmeasured output constraint hard, click Constraint Softening Settings,
and enter a MaxECR value of 0 for the UO. This setting places a strict limit on the
controller output that cannot be violated.



Compare Multiple Controller Responses Using MPC Designer

int Softening Settings

- Output Constraints
Channel Type Min Max
yil) MO -Inf | T —
yi2) uo Inf C: b
‘H*_-.d"
|- Constraint Softening Seﬂings|
Channel Type MinECR MaxECR
yil) MO 1 l—
yi2) uo 1 C o p)
i

|E| |Appr'_.r_| |C.an|:el_| |Klp|

Click OK.
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4\ MPC Designer - scenariol: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT
| . . )
Sample time: | i ! o ! ! T
MPC Controller: | mpcHard ~ B - Robust Closed-Loop Performance Aggressve | g Q
Prediction horizon: 10 . , , §
Internal Plant: | plant - e Weights  Estimati u ' ) T 1 Review  Store Export
Cantral harizon: 2 | Models = | Sower State Extimation Faster | pogign  Contraller  Controller >
CONTROLLER HORIZON DESIGN PERFORMANCE TUNING ANALYSIS
Data Browser [C] | scenariol: Input | I scenariol: Output l
w Plants
plant . . . .
Input Response (against internal plant) Output Response (against internal plant)
0 2
S mpchone —
15 mpcHard //"

AN

]

’_,_,!’_/ g f/.
w Controllers 13 /—\
mpcMone -6 —— mpchone / ! /

Mv1
IS

=1

mpcHard (current) mpcHard
8 0.6
1 8
0.8 ]
6 o
y 0.6 -
w Scenarios a ) 4
scenariol = 0.4 =
' 7
2
0.2
/
0 0
0 10 20 30 40 0 10 20 30 40
Time (seconds) Time (seconds)

The response plots update to reflect the new mpcHard configuration. In the Output
Response plot, in the UO1 plot, the mpcHard response is limited to a maximum of 3. As a
trade-off, the controller cannot return the MO1 response to its nominal value.

Tip If the plot legends are blocking the response signals, you can drag the legends to
different locations.

Create Controller with Soft Output Constraints
Suppose the deviation of MO1 from its nominal value is too large. You can soften the

output constraint for a compromise between the two control objectives: MO1 output
tracking and UO1 constraint satisfaction.
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On the Tuning tab, in the Analysis section, click Store Controller to save a copy of
mpcHard in the Data Browser.

In the Data Browser, in the Controllers section, rename mpcHard Copy to mpcSoft.

On the Tuning tab, in the Controller section, in the MPC Controller drop-down list,
select mpcSoft as the current controller.

The app adds the mpcSoft controller response to the Input Response and Output
Response plots.

In the Design section, click Constraints.

In the Constraints dialog box, in the Qutput Constraints section, enter a MaxECR value
of 100 for the UO to soften the constraint.

Output Constraints

Channel Type Min Max
yil] MO -Inf Inf
y(2) uo -Inf 3

- Congtraint Softening Settings

Channel Type MinECR MaxECR
yi1) MO 1 I
yi2) uo 1 C o )

e —

OK| | Apply | | Cancel

Click OK.
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MPC DESIGNER
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CONTROLLER
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The response plots update to reflect the new mpcSoft configuration. In the Qutput
Response plot, mpcSoft shows a compromise between the previous controller
responses.

Remove Default Controller Response Plot

To compare the two constrained controllers only, you can remove the default
unconstrained controller from the input and output response plots.

On the MPC Designer tab, in the Result section, click Compare Controllers >
mpcNone.
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-

4\ mpC Designer - scenariol: Output

TUNING

[ MPC DESIGNER SCENARIO PLOT

o H 85 & A =l &
Open Save MPC o Import  Import Plot Edit Compare Export
Session  Session  Structure Attributes  Plant  Controler  Scenaric v Scenaric +  Controllers ~  Controller
FILE | STRUCTURE | IMPOF{T. | SCENAF{lO. : o mpCNOHE%

Data Browser @ | scenariol:Input o |
w Plants o
plant v

Input Response (agamst rnternar prant)

The app removes the mpcNone responses from the Input Response and Output
Response plots.
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4\ MPC Designer - scenariol: Output EI@
MPC DESIGNER TUNING SCENARIO PLOT e
= i & & U oW B e
Open Save MPC o Import  Import Piot Edit Compare Export
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You can toggle the display of any controller in the Data Browser except for controller
currently being tuned. Under Compare Controllers, the controllers with displayed
responses are indicated with check marks.

See Also
MPC Designer

More About
. “Specify Constraints” on page 1-6
. “Design Controller Using MPC Designer”
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See Also

“Design MPC Controller in Simulink”
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Adjusting Input and Output Weights Based on
Sensitivity Analysis

4-52

This example shows how to compute numerical derivatives of a closed-loop cumulated
performance index with respect to weights and use them to improve model predictive
controller performance.

Define Plant Model

plant =

Design

ss(tf({1,1,2;1 -1 -1},{[1 @ O],[1 0 O],[1 1];[1 2 8],[1 3],[1 1 3]}),'min");

MPC Controller

Create an MPC controller with initial design parameters.

Ts = 0.
p = 20;
m= 3;
mpcobj

-->The
-->The
-->The

1; % Sampling time
% Prediction horizon
% Control horizon

= mpc(plant,Ts,p,m);

"Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
"Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
"Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Set constraints on manipulated variables and their rates of change.

for i = 1:3,
mpcobj.MV(i).Min = -2;
mpcobj.MV(i).Max = 2;
mpcobj.MV(i).RateMin = -4;
mpcobj .MV (i) .RateMax = 4;
end

Set weights on output variables.

mpcobj .Weights.OutputVariables = [1 1];

Set weights on the rates of manipulated variables.

mpcobj .Weights.ManipulatedVariablesRate = [.1 .1 .1];

Weights

on manipulated variables remain as the default values [0 0 0].



Adjusting Input and Output Weights Based on Sensitivity Analysis

Performance Evaluation Setup

The default closed-loop performance is expressed through a set of weights that reflect the
desired closed-loop behavior. The weights are contained in a structure with the same
fields as the Weights property of an MPC object.

PerformanceWeights = mpcobj.weights;

In this example we make output weights more important than weights on MV rates in
evaluating closed-loop performance.

PerformanceWeights.OQutputVariables = [100 100];
PerformanceWeights.ManipulatedVariablesRate = [1 1 1];

Note that "PerformanceWeights" is only used in the cumulated performance index
computation. It is not related to the weights specified inside the MPC object.

Setup Simulation Options

In this example, we only inspect the setpoint tracking scenario for the sensitivity analysis.

Tstop = 80; % time steps to simulate

r = ones(Tstop,1)*[1 1];% set point signals

v =1[1; % no measured disturbance

simopt = mpcsimopt;

simopt.PlantInitialState = zeros(8,1);

Compute Sensitivities

[J1, Sensl] = sensitivity(mpcobj, 'ISE', PerformanceWeights, Tstop, r, v, simopt);

-->Converting model to discrete time.

Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

disp('Sensitivity analysis')

Sensitivity analysis
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?;l)igr(\tfz'Output weights: dJ/dWy = [%g, %g]\n',Sensl.OutputVariables);

Output weights: di/dwy = [-27345.7, 27166]

fprintf('Input weights: dJ/dWu = [%g, %g, %g]\n',Sensl.ManipulatedVariables);
Input weights: dJ/dwWwu = [3.33751, -125.827, -35.1067]

fprintf('Input-rate weights: dJ/dWdu = [%g, %9, %g]\n',Sensl.ManipulatedVariablesRate)

Input-rate weights: dJ/dWdu = [-7.30068, 10250.2, -8369.89]

disp('")
Adjust MPC Weights

Since we always want to reduce closed-loop cumulated performance index ], in this
example the derivatives with respect to output weights show that the weight on y1 should
be increased, as the corresponding derivative is negative, while the weight on y2 should
be decreased.

mpcobj new = mpcobj;

Sensitivity less than 0 suggests increasing output weight from 1 to 2.
mpcobj new.Weights.OQutputVariables(1l) = 2;

Sensitivity greater than 0 suggests decreasing output weight from 1 to 0.2.
mpcobj new.Weights.OutputVariables(2) = 0.2;

Note that the sensitivity analysis only tells you which direction to change the parameters,
not how much. Trial and error is expected.

Verify Performance Changes

[yl, t1]
ly2, t2]

sim(mpcobj, Tstop, r, v, simopt);
sim(mpcobj new, Tstop, r, v, simopt);
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-->Converting model to discrete time.

Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

h = figure;

subplot(211)
plot(t2,r(:,1),t1,y1(:,1),t2,y2(:,1));grid
legend('reference', 'original tuning', 'new tuning')
title('Output #1')

subplot(212)
plot(t2,r(:,2),t1,y1(:,2),t2,y2(:,2));grid
legend('reference', 'original tuning', 'new tuning')
title('Output #2')

Output #1
1 T T — — T 0
— | reference
/ original tuning
|r new tuning
|
05H 4
'I:I 1 1 1 1 1 1 i
0 1 2 3 4 5 f 7 B
Output #2
1 1 T =
e reference
L original tuning
) . new tuning
05k -
/
0r i
0 1 2 3 4 5 f 7 B
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Verify Cumulated Performance Index is Reduced

Recompute just the cumulated performance index using the same performance measure.
J2 = sensitivity(mpcobj new, 'ISE', PerformanceWeights, Tstop, r, v, simopt);

-->Converting model to discrete time.

Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

fprintf('Previous Cumulated Performance Index J1 = %g\n',J1);
Previous Cumulated Performance Index J1 = 128645
fprintf('New Cumulated Performance Index J2 = %g\n',J2);

New Cumulated Performance Index J2 = 116234
Note that the absolute value of the cumulated performance index is not important.

Use a User-Defined Performance Function

This is an example of how to write a user-defined performance function used by the
sensitivity method. In this example, custom function
mpc_performance function.m illustrates how ISE performance index is implemented.

J3 = sensitivity(mpcobj, ‘'mpc performance function',Tstop,r,PerformanceWeights);
fprintf('User Defined Cumulated Performance Index J3 = %g (same as J1).\n',]3);

User Defined Cumulated Performance Index J3 = 128645 (same as J1).

See Also

mpc | sensitivity
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Understanding Control Behavior by Examining Optimal
Control Sequence

This example shows how to inspect the optimized sequence of manipulated variables
computed by a model predictive controller at each sample time.

The plant is a double integrator subject to input saturation.

Design

MPC Controller

The basic setup of the MPC controller includes:

* A double integrator as the prediction model

* Prediction horizon of 20

e Control horizon of 10

* Input constraints -1 <= u(t) <=1

DConfigure the MPC controller.

Ts =

0.
p = 20;
m 10;

mpcobj
mpcobj .
nu=1;

-->The
-->The
-->The

1; % Sampling time

% Prediction horizon
% Control horizon

= mpc(tf(1,[1 @ 0]),Ts,p,m); % MPC object

MV = struct('Min',-1, 'Max',1); % Input saturation constraints

% Number of manipulated variables

"Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
"Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
"Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Simulate Model in Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Open the Simulink® model and run the simulation.
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mdl = 'mpc_sequence';
open_system(mdl)
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

» (]
Controller Output
uft y(t)
| mio mv ( } - 1; - 1; |—<
MPC Integrator 1 | Integrator 2
rt)
1 i #| ref my.5eq m— LSS » [:]
First Integrator Clutput
' )

-
*

Second Integrator Output’Refarance

Copyright 1990-2012 The MathWorks, Inc.
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The MPC Controller block has an mv. seq output port, which is enabled by selecting the
Optimal control sequence block parameter. Theis port outputs the optimal control
sequence computed by the controller at each sample time. The output signal is a (p+1)-
by-Nmv array, where p is prediction horizon and Nmv is the number of manipulated
variables.

In a simlar manner, the controller can output the optimal state sequence (x.seq) and the
optimal output sequence (y.seq).

The model exports this control sequence to the MATLAB® workspace at each simluation
step, logging the the data as useq.

Analyze Optimal Control Sequences

Plot the optimal control sequence at specific time instants.

times = [0 0.2 1 2 2.1 2.2 3 3.5 5];
figure('Name', 'Optimal sequence history');
for t = 1:9

ct = times(t)*10+1;
subplot(3,3,t)
h = stairs(0:p,useq.signals.values(ct,:));
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h.LineWidth = 1.5;

hold on
plot((0:p)+.5,useq.signals.values(ct,:), ' *r")
xlabel('prediction step')

ylabel('u')
title(sprintf('Sequence (t=%3.1f)',useq.time(ct)))
grid
axis([0 p -1.1 1.1])
hold off
end
Sequence (t=0.0) Sequence (t=0.2) Sequence (t=1.0)
1 1

prediction step prediction step prediction step
Sequence (t=2.0) Sequence (t=2.1) Sequence (t=2.2)
1 1 1
=0 0 S F L P —
1 - -
O 10 20 0 10 20 0 10 20
prediction step prediction step prediction step
Sequence (t=3.0) Sequence (t=3.5) Sequence (t=5.0)
1 1 1

L] 10 20 0 10 20 0 10 20
prediction step prediction step prediction step

The MPC controller uses the first two seconds to bring the output very close to the new
set point. The controller output is at the high limit (+1) for one second and then switched
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to the low limit (-1) for the next second, which is the best control strategy under the input
constraint limits.

bdclose(md1l)

See Also
MPC Controller
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“Simulate Controller with Nonlinear Plant” on page 5-2
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Simulate Controller with Nonlinear Plant

5-2

You can use sim to simulate a closed-loop system consisting of a linear plant model and
an MPC controller.

If your plant is a nonlinear Simulink model, you must linearize the plant (see
“Linearization Using Linear Analysis Tool in Simulink Control Design”) and design a
controller for the linear model (see “Design MPC Controller in Simulink”). To simulate the
system, specify the controller in the MPC block parameter MPC Controller field and run
the closed-loop Simulink model.

Alternatively, your nonlinear model might be a MEX-file, or you might want to include
features unavailable in the MPC block, such as a custom state estimator. The mpcmove
function is the Model Predictive Control Toolbox computational engine, and you can use it
in such cases. The disadvantage is that you must duplicate the infrastructure that the sim
function and the MPC block provide automatically.

Nonlinear CSTR Application

The CSTR model described in “Linearize Simulink Models” is a strongly nonlinear system.
As shown in “Design MPC Controller in Simulink”, a controller can regulate this plant, but
degrades (and might even become unstable) if the operating point changes significantly.

The objective of this example is to redefine the predictive controller at the beginning of
each control interval so that its predictive model, though linear, represents the latest
plant conditions as accurately as possible. This will be done by linearizing the nonlinear
model repeatedly, allowing the controller to adapt as plant conditions change. For more
details on this approach, see [1] and [2].

Example Code for Successive Linearization

In the following code, the simulation begins at the nominal operating point of the CSTR
model (concentration = 8.57) and moves to a lower point (concentration = 2) where the
reaction rate is much higher. The required code is as follows:

[sys, xp] = CSTR _INOUT([]1,[1,[1, " 'sizes");
up = [10 298.15 298.15];

u = up(
tsave
usave

3);
[1;
[1;
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ysave =

rsave = [];

Ts = 1;

t =0;

while t < 40
yp = Xp;

% Linearize the plant model at the current conditions
[a,b,c,d] = linmod('CSTR INOUT',xp,up);
Plant = ss(a,b,c,d);
Plant.InputGroup.ManipulatedVariables = 3;
Plant.InputGroup.UnmeasuredDisturbances =
Model.Plant = Plant;

[12];

% Set nominal conditions to the latest values

Model.Nominal.U = [0 O u];
Model.Nominal.X = xp;
Model.Nominal.Y = yp;

dt = 0.001;

simOptions.StartTime = num2str(t);
simOptions.StopTime = num2str(t+dt);

simOptions.LoadInitialState = 'on’';
simOptions.InitialState = 'xp’';
simOptions.SaveTime = 'on';
simOptions.SaveState = 'on';
simOptions.LoadExternallnput = 'on';

simOptions.ExternalInput = '[t up; t+dt up]l';
simQut = sim('CSTR INOUT',simOptions);
= simOut.get('tout")

simQut.get('xout');
);

T
X
Y simOut.get('yout'

P =
P =
Model.Nominal.DX = (1/dt)*(XP(end,:)"' - xp(:));
% Define MPC controller for the latest model
MPCobj = mpc(Model, Ts);

MPCobj .W.Qutput = [0 1];

% Ramp the setpoint
r = max([8.57 - 0.25*t, 2]);
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% Compute the control action
if t <=0
= [0; O];
x = mpcstate(MPCobj,xp,xd,[]1,u);
end

u = mpcmove(MPCobj,x,yp,[0 rl,[1);

% Simulate the plant for one control interval
up(3) = u;

simOptions.StartTime = num2str(t);
simOptions.StopTime = num2str(t+Ts);
simOptions.InitialState = 'xp’';
simOptions.Externallnput = '[t up; t+Ts up]l’

simQut = sim('CSTR INOUT',simOptions);

simQut.get('tout');
simQut.get('xout');
)

T =
X
Y simOut.get('yout'

P =
P =

% Save results for plotting

tsave = [tsave; TI;
ysave = [ysave; YP];
usave = [usave; up(ones(length(T),1),:)1;
rsave = [rsave; r(ones(length(T),1),:)1;

xp = XP(end,:)'

t=1t+ Ts;
end

figure(1)

plot(tsave, [ysave(:,2) rsave])
title('Residual Concentration')
figure(2)
plot(tsave,usave(:,3))
title('Coolant Temperature')

CSTR Results and Discussion

The plotted results appear below. Note the following points:
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The setpoint is being ramped from the initial concentration to the desired final value
(see the step-wise changes in the reactor concentration plot below). The reactor
concentration tracks this ramp smoothly with some delay (see the smooth curve), and
settles at the final state with negligible overshoot. The controller works equally well
(and achieves the final concentration more rapidly) for a step-wise setpoint change,
but it makes unrealistically rapid changes in coolant temperature (not shown).

The final steady state requires a coolant temperature of 305.20 K (see the coolant
temperature plot below). An interesting feature of this nonlinear plant is that if one
starts at the initial steady state (coolant temperature = 298.15 K), stepping the
coolant temperature to 305.20 and holding will not achieve the desired final
concentration of 2. In fact, under this simple strategy the reactor concentration
stabilizes at a final value of 7.88, far from the desired value. A successful controller
must increase the reactor temperature until the reaction "takes off," after which it
must reduce the coolant temperature to handle the increased heat load. The
relinearization approach provides such a controller (see following plots).
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Residual Concentration

40
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Coolant Temperature
315 - - - - - - -

310 | .
305 | t — ]
300 | . |

285 ]

ZE'D 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Function linearize relinearizes the plant as its state evolves. This function was
discussed previously in “Linearization Using MATLAB Code”.

The code also resets the linear model's nominal conditions to the latest values. Note,
however, that the first two input signals, which are unmeasured disturbances in the
controller design, always have nominal zero values. As they are unmeasured, the
controller cannot be informed of the true values. A non-zero value would cause an
error.

Function mpc defines a new controller based on the relinearized plant model. The
output weight tuning ignores the temperature measurement, focusing only on the
concentration.

Att =0, the mpcstate function initializes the controller's extended state vector, X,
which is an mpcstate object. Thereafter, the mpcmove function updates it
automatically using the controller's default state estimator. It would also be possible to
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use an Extended Kalman Filter (EKF) as described in [1] and [2], in which case the
EKF would reset the mpcstate input variables at each step.

* The mpcmove function uses the latest controller definition and state, the measured
plant outputs, and the setpoints to calculate the new coolant temperature at each step.

* The Simulink sim function simulates the nonlinear plant from the beginning to the end
of the control interval. Note that the final condition from the previous step is being
used as the initial plant state, and that the plant inputs are being held constant during
each interval.

Remember that a conventional feedback controller or a fixed Model Predictive Control
Toolbox controller tuned to operate at the initial condition would become unstable as the
plant moves to the final condition. Periodic model updating overcomes this problem
automatically and provides excellent control under all conditions.

References

[1] Lee, J. H. and N. L. Ricker, "Extended Kalman Filter Based Nonlinear Model Predictive
Control," Ind. Eng. Chem. Res., Vol. 33, No. 6, pp. 1530-1541 (1994).

[2] Ricker, N. L., and J. H. Lee "Nonlinear Model Predictive Control of the Tennessee
Eastman Challenge Process," Computers & Chemical Engineering, Vol. 19, No. 9,
pp. 961-981 (1995).
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Test an Existing Controller

This topic shows how to test an existing model predictive controller by adding it to a
Simulink model.

1
2
3

Open your Simulink model.

Add an MPC Controller block to the model.

If your controller includes measured disturbances, add the md inport to the MPC
Controller block.

Double-click the MPC Controller block.

In the Block Parameters dialog box, on the General tab, select Measured
disturbance (md).

Block Options

General Online Features | Default Conditions | Others |
Addit

Measured disturbance (md)

variable (ext.mv)

Click OK.
Connect the plant and controller signals in the Simulink model. Connect:

* The plant inputs to the manipulated variable (mv) inport of the MPC Controller
block.

* The plant measured outputs to the measured output (mo) inport of the MPC
Controller block.

* The measured disturbances, if any, to the plant and to the measured disturbance
(md) inport of the MPC Controller block.
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* Any unmeasured disturbances or unmeasured outputs to their corresponding
plant inport and outport.
» The reference signals to the reference (ref) inport of the MPC Controller block.

il

UI'IITEéIS-LIEd

Disturbance
| Disturbance 1

| mo Ohwstpat 1 ] |:|

| ref MPC mv | Input Meas ured Cutput
HEfErE.I'ICE o i Output 2 > ]
Setpoirts p| Disturbance 2

MPC Controller U nmesas ured Cutput
Plant

MEEE-‘IJrEd
Disturbance

5 Specify the controller.
Double-click the MPC Controller block.

In the Block Parameters dialog box, in the MPC Controller field, specify the name of
an mpc controller from the MATLAB workspace.
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L

“L Block Parameters: MPC Controller @
MPC (mask) (link)

The MPC Controller block lets you design and simulate a model predictive
controller defined in the Model Predictive Control Toolbox.

Initial Controller State []

Faramete

MPC Controller mpc]|

Block Options

Design

Others

Click OK.
6 (Optional) Modify the controller.

After specifying a controller in the MPC Controller block, you can modify the
controller:

Using MPC Designer:

In the Block Parameters dialog box, click Design.
In MPC Designer, tune the controller parameters.

In the MPC Designer tab, in the Result section, click Update and Simulate
> Update Block Only.

The app exports the updated controller to the MATLAB workspace.

Using commands to modify the controller object in the MATLAB workspace.

7 Run the Simulink model.

Tip If you do not have a Simulink model of your plant, you can generate one that uses
your MPC controller to control its internal plant model. For more information, see
“Generate Simulink Model from MPC Designer” on page 5-13.
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See Also
MPC Controller | MPC Designer | mpc

More About

. “Design MPC Controller in Simulink”
. “Design MPC Controller at the Command Line”
. “Generate Simulink Model from MPC Designer” on page 5-13
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Generate Simulink Model from MPC Designer

This topic shows how to generate a Simulink model that uses the current model predictive
controller to control its internal plant model.

To create a Simulink model:

1 In the MPC Designer app, interactively design and tune your model predictive
controller.

2  On the Tuning tab, in the Analysis section, click the Export Controller arrow /=

Alternatively, on the MPC Designer tab, in the Result section, click Export
Controller.

’ i

Under Export Controller, click Generate Simulink Model ' =

[

hMeasured Cutputs

> ref MPC mv — mpel_G —

h

] |

References

¥ v

h

v

MFC Flant ]

h 4

0

Unmesswed Outpuls

Measured Disturbance

h 4

]

Unmess ured Disturbance

The app exports the current MPC controller and its internal plant model to the
MATLAB workspace and creates a Simulink model that contains an MPC Controller
block and a Plant block

Also, default step changes in the output setpoints are added to the References block.
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Use the generated model to validate your controller design. The generated model serves
as a template for moving easily from the MATLAB design environment to the Simulink
environment.

You can also use the Simulink model to generate code and deploy it for real-time control
applications. For more information, see “Generate Code and Deploy Controller to Real-
Time Targets” on page 9-2.

See Also
MPC Controller | MPC Designer

More About

. “Generate Code and Deploy Controller to Real-Time Targets” on page 9-2
. “Design MPC Controller in Simulink”

. “Generate MATLAB Code from MPC Designer” on page 1-87
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Signal Previewing

By default, a model predictive controller assumes that the current reference and
measured disturbance signals remain constant during the controller prediction horizon.
By doing so, the controller emulates a conventional feedback controller.

However, as shown in “Optimization Problem” on page 2-9, these signals can vary within
the prediction horizon. If your application allows you to anticipate trends in such signals,
an MPC controller with signal previewing can improve reference tracking, measured
disturbance rejection, or both.

The following Model Predictive Control Toolbox commands provide previewing options:
e sim

* mpcmove

* mpcmoveAdaptive

For Simulink, the following blocks support previewing:

* MPC Controller
* Adaptive MPC Controller
* Multiple MPC Controllers

Previewing for explicit MPC controllers will be supported in a future release.

In MPC Designer, you can specify whether simulation scenarios use previewing. When
editing a scenario in the Simulation Scenario dialog box, select the Preview references
or Preview measured disturbances options.
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~ Simulation Settings

Plant used in simulation: |Defaurt (controller internal model) '|

Simulation duration [minutes) |1n |

Hun open-loop simulation [ Use unconstrained MPC
71 Preview references (look ahead) [T Preview measured disturbances (look ahead) ,

See Also

More About

. “Update Constraints at Run Time” on page 5-30
. “Improving Control Performance with Look-Ahead (Previewing)”
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Improving Control Performance with Look-Ahead
(Previewing)

This example shows how to design a model predictive controller with look-ahead
(previewing) on reference and measured disturbance trajectories.

Define Plant Model

Define the plant model as a linear time invariant system with two inputs (one manipulated
variable and one measured disturbance) and one output.

plant = ss(tf({1,1},{[1 .5 1],[1 1]}), 'min");

Get the state-space matrices of the plant model and specify the initial condition.

[A,B,C,D] ssdata(plant);

Ts = 0.2; % Sample time

[Ad,Bd,Cd,Dd] = ssdata(c2d(plant,Ts));
x0 = [0;0;0];

N

Design Model Predictive Controller

Define type of input signals.

plant = setmpcsignals(plant, 'MV',1,'MD',2);
Create the MPC object.

p = 20; % prediction horizon

m= 10; % control horizon

mpcobj = mpc(plant,Ts,p,m);

% Specify MV constraints.

mpcobj .MV = struct('Min',0, 'Max',2);

% Specify weights

mpcobj .Weights = struct('MV',0, 'MVRate',0.1, 'Output',1);

Simulate Using SIM Command

Let us run closed-loop simulation in MATLAB.
Tstop = 30; % simulation time.

time = (0:Ts:(Tstop+p*Ts))'; % time vector

r = double(time>10); % reference signal
v = -double(time>20); % measured disturbance signal
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Use MPCSIMOPT object to turn on previewing feature in the closed-loop simulation.

params = mpcsimopt(mpcobj);
params.MDLookAhead="'on";
params.RefLookAhead="on";

Simulate in MATLAB with SIM command.
YY1l = sim(mpcobj,Tstop/Ts+1,r,v,params);

Simulate Using MPCMOVE Command

Store the closed-loop MPC trajectories.

YY2 = [1;

% Use MPCSTATE object to specify the initial state of MPC
X = Xx0;

xmpc = mpcstate(mpcobj);

Start simulation loop

for ct=0:round(Tstop/Ts),
% Plant equations: output update
y = Cx + D(:,2)*v(ct+l);
% Store signals
YY2 = [YY2,y]; S#0k<*AGROW>
Compute MPC law. Extracts references r(t+1l),r(t+2),...,r(t+p) and
measured disturbances v(t),v(t+l),...,v(t+p) for previewing.
= mpcmove(mpcobj,xmpc,y, r(ct+2:ct+p+l),v(ct+l:ct+p+l));
Plant equations: state update
= Ad*x+Bd(:,1)*u+Bd(:,2)*v(ct+l);

o° of

o° <

X

end

Plot results.

figure

t = 0:Ts:Tstop;

plot(t,r(1l:length(t)), 'c:',t,YYL,'r-',t,YY2,'bo");
xlabel('Time");

ylabel('Plant Output');

legend({'Reference';'From SIM command';'From MPCMOVE command'}, 'Location’

grid

, 'SouthEast')
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Plant Output
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The responses are identical.

Optimal predicted trajectories are returned by MPCMOVE. Assume to you start from the
current state and have a set-point change to 0.5 in 5 steps, and assume the measured
disturbance has disappeared.

rl [ones(5,1);0.5%ones(p-5,1)1;
vl zeros(p+1,1);
[~,Info] = mpcmove(mpcobj,xmpc,y,rl(1l:p),vl(1l:p+1));

Extract the optimal predicted trajectories and plot them.

topt
yopt

Info.Topt;
Info.Yopt;
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uopt
figure

subplot(211)

title('Optimal sequence of predicted outputs')
stairs(topt,yopt);

grid

axis([0 p*Ts -2 2]);

subplot(212)

Info.Uopt;

title('Optimal sequence of manipulated variables')

stairs(topt,uopt);
axis ([0 p*Ts -2 2]);
grid

ok
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Obtain LTI Representation of MPC Controller with Previewing

When the constraints are not active, the MPC controller behaves like a linear controller.
You can get the state-space form of the MPC controller, with y, [r(t+1);r(t+2);...;r(t+p)],

and [v(t);v(t+1);...;v(t+p)] as inputs to the controller.

Get state-space matrices of linearized controller.

LTI = ss(mpcobj,'rv','on','on");
[AL,BL,CL,DL] = ssdata(LTI);

Store the closed-loop MPC trajectories in arrays YY,RR.

YY3 = [1;

% Setup initial state of the MPC controller
X = x0;

xL = [x0;0;0];

Start main simulation loop

for ct=0:round(Tstop/Ts),
% Plant output update
y = Cd*x + Dd(:,2)*v(ct+l);
% Save output and refs value
YY3 =[YY3,y];
Compute the linear MPC control action

o°

u = CL*xL + DL*[y;r(ct+2:ct+p+1);v(ct+1l:ct+p+1)];

% Note that the optimal move provided by MPC would be:
% Plant update

X = Ad*x + Bd(:,1)*u + Bd(:,2)*v(ct+l);

% Controller update

xL = AL*xL + BL*[y;r(ct+2:ct+p+1l);v(ct+l:ct+p+1)];
end

Plot results.

figure

plot(t,r(1l:length(t)), 'c:',t,YY3,'r-");
xlabel('Time");

ylabel('Plant Output');

mpcmove (MPCobj, xmpc,y, ref(t-

legend({'Reference'; 'Unconstrained MPC'}, 'Location', 'SouthEast');

grid
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Simulate Using Simulink®
To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink(R) is required to run this example.')

return

end
time = (0:Ts:(Tstop+p*Ts))'; % time vector
r = double(time>10); % reference signal

v = -double(time>20); % measured disturbance signal

% Define the reference signal in structure
ref.time = time;
ref.signals.values = r;
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% Define the measured disturbance
md.time = time;

md.signals.values = v;

% Open Simulink model

mdl = 'mpc_preview';
open_system(mdl)

% Start simulation
sim(mdl,Tstop);

u(t) , 0
v Ax o M y - sl
V{t} . v=Ca+ D " F
]
MD — C]
"
r{t} Outputs/Refarences
usL 4
mo el
MY
mv  MPC  ref 58] Eurture
sample
5‘.? mid [ @t extractor
Reference Previewesr
&0 Future
sample
exiractor
Capyright 1990-2014 The MathWarks, Inc. feasures Disturhanes Fravewer

Plot results.
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figure

t = 0:Ts:Tstop;

plot(t,r(1l:length(t)), 'c:',t,YYl, 'r-',t,YY2, 'bo"',t,ySL, 'gx");

xLlabel('Time");

ylabel('Plant Output');

legend({'Reference'; 'From SIM command';'From MPCMOVE command';'From Simulink'}, 'Locatic
grid

1.2 T T T T T

=
sl
T

Plant Output
=
=]

041

Reference
From SIM command

< From MPCMOVE command
# From Simulink

0.2

o 5 10 15 20 25 30
Time

The responses are identical.
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bdclose('mpc preview')

See Also
MPC Controller | mpc

More About

. “Signal Previewing” on page 5-15
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Simulating Model Predictive Controller with Plant Model
Mismatch

5-26

This example shows how to simulate a model predictive controller under a mismatch
between the predictive plant model and the actual plant.

The predictive plant model has 2 manipulated variables, 2 unmeasured input
disturbances, and 2 measured outputs. The actual plant has different dynamics.

Define Plant Model

Define the parameters of the nominal plant which the MPC controller is based on.
Systems from MV to MO and UD to MO are identical.

pl = tf(1,[1 2 1])*[1 1; 0 11;

plant = ss([pl pl], 'min');

plant.InputName = {'mv1l', 'mv2','ud3','ud4'};
Design MPC Controller

Define inputs 1 and 2 as manipulated variables, 3 and 4 as unmeasured disturbances.

plant = setmpcsignals(plant, 'MV',[1 2],'UD',[3 4]);

% Create the controller object with sampling period, prediction and control
% horizons:

mpcobj = mpc(plant,1,40,2);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

For unmeasured input disturbances, the MPC controller will use the following
unmeasured disturbance model.

distModel = eye(2,2)*ss(-.5,1,1,0);
mpcobj .Model.Disturbance = distModel;

Define the Real Plant Model Used in Simulation

Define the parameters of the actual plant in closed loop with the MPC controller.

p2 = tf(1.5,[0.1 1 2 1]1)*[1 1; O 1];
psim = ss([p2 p2], 'min');
psim = setmpcsignals(psim, 'MV',[1 2],'UD',[3 4]);



Simulating Model Predictive Controller with Plant Model Mismatch

Simulate Closed-Loop Response Using the SIM Command

Define reference trajectories and unmeasured disturbances entering the actual plant.

dist = ones(1,2); % unmeasured disturbance signal
refs = [1 2]1; % output reference signal
Tf = 20; % total number of simulation steps

Create an MPC simulation object.

options = mpcsimopt(mpcobj);
options.unmeas = dist; % unmeasured disturbance signal
options.model = psim; % real plant model

Run the closed-loop MPC simulation with model mismatch and unforeseen unmeasured
disturbance inputs.

sim(mpcobj,Tf, refs,options);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
-->Converting model to discrete time.
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Plant Inputs
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Plant Outputs
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The closed loop tracking performance is acceptable with the presence of unmeasured

disturbances.

See Also

mpc

More About
. “MPC Modeling”
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Update Constraints at Run Time

5-30

To compensate for changing operating conditions, you can update constraints on plant
inputs and outputs at run time. You can update the saturation limits for input and output
signals as well as linear mixed input/output constraints.

Run-time constraint updating supports code generation.

Update Bounds on Input and Output Signals at Run Time

You can update the bounds on plant input and output signals at run time. To do so, first
define initial signal bounds when designing your MPC controller. For more information,
see “Specify Constraints” on page 1-6. If you do not specify initial bounds for a given
signal, you cannot constrain that signal at run time.

To update signal bounds during a command-line simulation, at each control interval, set
the corresponding properties of an mpcmoveopt object before calling mpcmove,
mpcmoveAdaptive, or mpcmoveMultiple. To update:

* Manipulated variable lower and upper bounds, set the MVMin and MVMax properties,
respectively.

* Output variable lower and upper bounds, set the OutputMin and OutputMax
properties, respectively.

You can also update input and output bounds at run-time in Simulink for the MPC
Controller, Adaptive MPC Controller, and Multiple MPC Controllers blocks. The following
table lists the bounds, their associated block ports, and the block parameters to select to
enable the ports.

Bounds Port Name Block Parameter
Lower bounds on umin Lower MV Limits
manipulated variables

Upper bounds on umax Upper MV Limits
manipulated variables

Lower bounds on output ymin Lower OV Limits
variables

Upper bounds on output ymax Upper OV Limits
variables




Update Constraints at Run Time

Connect signals to these ports that specify the run-time values of the bounds for each
variable. If there is more than one manipulated variable or output variable, connect a
vector signal to the corresponding ports. For example, if there are three output variables,
connect a three-element vector signal to the ymin and ymax ports. If a variable is
unconstrained in the controller object, then the connected signal value is ignored.

If you define time-varying constraints in your controller object, the new bounds are
applied to the first finite values in the prediction horizon. All subsequent prediction
horizon values adjust to maintain the same profile across the prediction horizon; that is,
they change by the same amount.

For an example, see “Vary Input and Output Bounds at Run Time” on page 5-33.

Update Mixed Input/Output Constraints at Run Time

You can update mixed input/output constraints at run time. For more information on these
constraints, see “Constraints on Linear Combinations of Inputs and Outputs” on page 3-
10. This feature is not supported for gain-scheduled MPC controllers.

You can update the following constraint matrices during your simulation:

* E — Manipulated variable constraint constant
* F — Controlled output constraint constant

* G — Mixed input/output constraint constant

* S — Measured disturbance constraint constant

To do so, first define initial constraints using the setconstraint command. You cannot
add additional constraints at run time.

To update mixed input/output constraints during a command-line simulation, in each
control interval set the CustomConstraint property of an mpcmoveopt object before
calling mpcmove or mpcmoveAdaptive. Specify CustomConstraint as a structure with
E, F, G, and S fields. Specify each field as an array with dimensions that match the initial
constraint arrays specified using setconstraint.

To update mixed input/output constraints during a Simulink simulation, select the
Custom constraints parameter of your MPC Controller or Adaptive MPC Controller
block. Doing so adds E, F, G, and S input ports to the block. The S input port is added only
if your controller has measured disturbances.
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5-32

Connect matrix signals to these ports that specify the run-time values for each array. If
you define E, F, G, or S in your MPC controller, you must connect a signal to the
corresponding input port, and that signal must have the same dimensions as the array
specified in the controller. If an array is not defined in the controller object, use a zero
matrix with the correct size.

For an example that updates mixed input/output constraints for an adaptive MPC
controller, see “Obstacle Avoidance Using Adaptive Model Predictive Control” on page 6-
48.

See Also

mpcmove | mpcmoveAdaptive | mpcmoveExplicit | setconstraint

More About

. “Tune Weights at Run Time” on page 5-40

. “Constraints on Linear Combinations of Inputs and Outputs” on page 3-10
. “Vary Input and Output Bounds at Run Time”



Vary Input and Output Bounds at Run Time

Vary Input and Output Bounds at Run Time

This example shows how to vary input and output saturation limits in real-time control.
For both command-line and Simulink® simulations, you specify updated input and output
constraints at each control interval. The MPC controller then keeps the input and output
signals within their specified bounds.

For more information on updating linear constraints at run time, see “Update Constraints
at Run Time” on page 5-30.

Create Plant Model and MPC Controller

Define a SISO discrete-time plant with sample time Ts.

Ts = 0.1;
plant = c2d(tf(1,[1 .8 3]1),Ts);
[A,B,C,D] = ssdata(plant);

Create an MPC controller with specified prediction horizon, p, control horizon, ¢, and
sample time, Ts. Use plant as the internal prediction model.

p = 10;
m=4;
mpcobj = mpc(plant,Ts,p,m);

Specify controller tuning weights.

mpcobj .Weights.MV = 0;
mpcobj .Weights.MVrate = 0.5;
mpcobj .Weights.0V = 1;

For this example, the upper and lower bounds on the manipulated variable, and the upper
bound on the output variable are varied at run time. To do so, you must first define initial

dummy finite values for these constraints in the MPC controller object. Specify values for

MV.Min, MV.Max, and OV.Max.

At run time, these constraints are changed using an mpcmoveopt object at the command
line or corresponding input signals to the MPC Controller block.

mpcobj .MV.Min = 1;
mpcobj .MV.Max = 1;
mpcobj.0V.Max = 1;

5-33



5 Controller Simulation

Simulate Model Using Simulink

Open Simulink Model.

mdl = 'mpc varbounds';

open_system(mdl)
e
plant .'E-‘I
————————
S o
o
yout

I uout

¥

0

ref
ref [« |
Lmin

e reference
e MPC umin [ -
J Ui
wmiaz [ *
l ymax umax
ymazx [ -
WX

Copyright 19%0-2014 The MathWaorks, Inc.

In this model, the input and output constraint input ports of the MPC Controller block are
enabled. The umin, umax, and ymax ports are connected to signals which change during
the simulation. Since the minimum output bound is unconstrained, the ymin input port is
disconnected.

Configure the output setpoint, ref, and simulation duration, Tsim.

ref = 1;
Tsim = 20;
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Since the ymin port is disconnected, disable input/output not connected warnings.

set param(mdl, 'Unco
set param(mdl, 'Unco

Run the simulation, and view the input and output responses in the I/O scope.

sim(md1l)
open_system([mdl '/

nnectedInputMsg', 'off')
nnectedOutputMsg', 'off'")

1//0'1)

o

File Tools  View

CRAECEONN

Simulation Help ¥

= Q- - &FA-
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Simulate Model at Command Line

Specify the initial state of the plant and controller.

X = zeros(size(B,1),1);
xmpc = mpcstate(mpcobj);

Store the closed-loop output, manipulated variable, and state trajectories of the MPC
controller in arrays YY, UU, and XX, respectively.

YY
uu
XX

—r——

1;
1;
1
Create an mpcmoveopt object for specifying the run-time bound values.
options = mpcmoveopt;
Run the simulation loop.
for t = 0:round(Tsim/Ts)

% Store the plant state.

XX = [XX; x1;
Compute and store the plant output. There is no direct feedthrough
from the input to the output.

C*x;
Y = [YY; y'];

o® o°

<<

Get the reference signal value from the data output by the Simulink
simulation.
ref = yout.Data(t+1,2);

o® o

% Update the input and output bounds. For consistency, use the
% constraint values output by the Simulink simulation.
options.MVMin = uout.Data(t+1,2);

options.MVMax = uout.Data(t+1,3);

options.OQutputMax = yout.Data(t+1,3);

o°

Compute the MPC control action.
= mpcmove(mpcobj,xmpc,y, ref,[],options);

c

o°

Update the plant state and store the input signal value.
= A*X + B*u;

X
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UU = [UU; u'l;
end

Compare Simulation Results

Plot the input and output signals from both the Simulink and command-line simulations
along with the changing input and output bounds.

figure

subplot(1,2,1)

plot(0:Ts:Tsim, [UU uout.Data(:,1) uout.Data(:,2) uout.Data(:,3)])

grid

title('Input')

legend('Command-line input', 'Simulink input', 'Lower bound',...
"Upper bound', 'Location', 'Southeast"')

subplot(1,2,2)

plot(0:Ts:Tsim, [YY yout.Data(:,1) yout.Data(:,3)])

grid

title('Output')

legend('Command-line output','Simulink output', 'Upper bound',...
'Location', 'Southeast')
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The results of the command-line and Simulink simulations are the same. The MPC
controller keeps the input and output signals within the specified bounds as the
constraints change throughout the simulation.

bdclose(mdl)

See Also
MPC Controller
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More About
. “Update Constraints at Run Time” on page 5-30
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Tune Weights at Run Time

5-40

There are two ways to perform tuning experiments using Model Predictive Control
Toolbox software:

* Modify your controller object off line (by changing weights, etc.) and then test the
modified object.

* Change tuning weights as the controller operates, as described in this topic.

In Simulink, the following blocks support online tuning:

 MPC Controller
» Adaptive MPC Controller

* Multiple MPC Controllers. In this case, the tuning signals apply to the active controller
object, which might switch as the control system operates. If the objects in your set
employ different weights, you should tune them off line.

The Explicit MPC Controller and Multiple Explicit MPC Controllers blocks do not support

online tuning because a weight change requires a complete revision of the explicit MPC
control law, which is computationally intensive.

To tune weights during command-line simulations, first create an mpcmoveopt object,

and specify the corresponding tuning weight properties. Then pass this object to either
mpcmove, mpcmoveAdaptive, or mpcmoveMultiple.

This table lists the weights that you can tune at run time and their corresponding
Simulink block ports and mpcmoveopt properties. For more information on tuning
weights, including tuning tips, see “Tune Weights” on page 1-33.

Tune weights for Simulink Block Port mpcmoveopt Property
Output variables y.wt OutputWeights
Manipulated variables u.wt MVWeights
Manipulated variable du.wt MVRateWeights
increment

Slack variable for constraint [ecr.wt ECRWeight

softening




See Also

For the output variable, manipulated variable, and manipulated variable increment
weights, you can specify time-varying weights at run time; that is, tuning weights that
vary over the prediction horizon. To do so, specify the tuning weights as arrays.

See Also
More About

. “Signal Previewing” on page 5-15
. “Tuning Controller Weights”
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Tuning Controller Weights

This example shows how to vary the weights on outputs, inputs, and ECR slack variable
for soft constraints in real-time.

The weights specified in the MPC object are overridden by the weights supplied to the
MPC Controller block. If a weight signal is not connected to the MPC Controller block,
then the corresponding weight is the one specified in the MPC object.

Define Plant Model

Define a multivariable discrete-time linear system with no direct I/O feedthrough, and
assume input #4 is a measured disturbance and output #4 is unmeasured.

Ts = 0.1; % sampling time
plant = tf({1,[1 1],5,2;3,[1 5],1,0;0,0,1,([1 1];2,[1 -1],0,0},...
{[111],[13 4 5],[1 10],[1 51;
[11],[1 21,[1 2 81,[1 1];
[121],[1311],[11],[1 2];
[11],[1 3 10 10]1,[1 10],[1 11});
plant = c2d(ss(plant),Ts);
plant.D = 0;

Design MPC Controller
Specify input and output signal types.

plant = setmpcsignals(plant, 'MD',4,'U0"',4);

% Create the controller object with sampling period, prediction and control
% horizons:

p = 20; % Prediction horizon

m= 3; % Control horizon

mpcobj = mpc(plant,Ts,p,m);

Specify MV constraints.
mpcobj.MV(1).Min = -6;
mpcobj.MV(1) .Max = 6;
mpcobj.MV(2).Min = -6;
mpcobj.MV(2) .Max = 6;
mpcobj.MV(3).Min = -6;
mpcobj.MV(3).Max = 6;
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Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

% Define reference signal.

Tstop = 10;

ref = [10 3 1];

r = struct('time', (0:Ts:Tstop)');

N = numel(r.time);

r.signals.values=ones(N,1)*ref;

Define measured disturbance.
v = 0.5;
OV weights are linearly increasing with time, except for output #2 that is not weighted.

ywt.time = r.time;
ywt.signals.values = (1:N)'*[.1 0 .1 .1];

MVRate weights are decreasing linearly with time.

duwt.time = r.time;
duwt.signals.values = (1-(1:N)/2/N)'*[.1 .1 .11;

ECR weight increases exponentially with time.

ECRwt.time = r.time;
ECRwt.signals.values = 10.7(2+(1:N)'/N);

Start simulation.

mdl = 'mpc_onlinetuning';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation
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Simulate Using MPCMOVE Command

Define real plant and MPC state object.

[A,B,C,D] = ssdata(plant);
X = zeros(size(plant.B,1),1); %
xmpc = mpcstate(mpcobj); %

nitial state of the plant
nitial state of the MPC controller

Store the closed-loop MPC trajectories in arrays YY,UU XX.

YY
uu
XX

—_———

l;
l;
1;
Use MPCMOVEOPT object to provide weights at run-time.

options = mpcmoveopt;

Start simulation.
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for t = 0:N-1,
% Store states

= [XX,x]; %#ok<*AGROW>

Compute plant output (no feedthrough from MV to Y)
= C*x+D(:,4)*v;
Y = [YY;y']s

Obtain reference signal

ref = r.signals.values(t+1,:)"';
% Update MPCMOVEOPT object with run-time weights
options.MVRateWeight = duwt.signals.values(t+1,:);
options.OQutputWeight = ywt.signals.values(t+1,:);
options.ECRWeight = ECRwt.signals.values(t+1,:);
% Compute control action

u = mpcmove(mpcobj,xmpc,y(1:3),ref,v,options);

UU = [UU;u'l;
% Update plant states
= A*x + B(:,1:3)*u + B(:,4)*v;

>

° << o° X

X
end

Plot and Compare Simulation Results

figure(1l);

clf;

subplot(121)
plot(0:Ts:Tstop, [YY ysim])
grid

title('output')
subplot(122)
plot(0:Ts:Tstop, [UU usim])
grid

title('input')
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Simulation results are the same.

fprintf('\n\nDifference between MPC Simulink block and MPCMOVE simulations: %g',norm(Ul

Difference between MPC Simulink block and MPCMOVE simulations: 6.27263e-11

bdclose(mdl);

See Also
MPC Controller



See Also

More About
. “Tune Weights at Run Time” on page 5-40
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Bumpless Transfer Between Manual and Automatic
Operations

This example shows how to bumplessly transfer between manual and automatic
operations of a plant.

During startup of a manufacturing process, operators adjust key actuators manually until
the plant is near the desired operating point before switching to automatic control. If not
done correctly, the transfer can cause a bump, that is, large actuator movement.

In this example, you simulate a Simulink model that contains a single-input single-output
LTI plant and an MPC Controller block.

A model predictive controller monitors all known plant signals, even when it is not in

control of the actuators. This monitoring improves its state estimates and allows a
bumpless transfer to automatic operation.

Open Simulink Model

Open the Simulink model.

open_system('mpc_bumpless')

u(t) N numis)

— &
~ denig) Cutput
Saturation |§| Transfer Fon

Yplots

mo -
ref

ext.mv <—|

awitch

MPC Controller
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To simulate switching between manual and automatic operation, the Switching block
sends either 1 or 0 to control a switch. When it sends 0, the system is in automatic mode,
and the output from the MPC Controller block goes to the plant. Otherwise, the system is
in manual mode, and the signal from the Operator Commands block goes to the plant.

In both cases, the actual plant input feeds back to the controller ext.mv inport, unless
the plant input saturates at -1 or 1. The controller constantly monitors the plant output
and updates its estimate of the plant state, even when in manual operation.

This model also shows the optimization switching option. When the system switches to
manual operation, a nonzero signal enters the switch inport of the controller block. The
signal turns off the optimization calculations, which reduces computational effort.

Define Plant and MPC Controller

Create the plant model.

num = [1 1];
den = [1 3 2 0.5];
sys = tf(num,den);

The plant is a stable single-input single-output system as seen in its step response.
step(sys)

Step Response

\ | \ \ | \ \ | \
0 2 4 8 8 10 12 14 15 15 20
Time (sec)

Create an MPC controller.

Ts = 0.5; % sampling time (seconds)
p = 15; % prediction horizon
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m

= 2; % control horizon

MPC1 = mpc(sys,Ts,p,m);
MPC1.Weights.Output = 0.01;
MPC1.MV = struct('Min',-1, 'Max',1);
Tstop = 250;

To achieve bumpless transfer, the initial states of your plant and controller must be the
same, which is the case for the plant and controller in this example.

Configure MPC Block Settings

Open the Block Parameters dialog box for the MPC Controller block.

In the MPC Controller box, specify MPC1.

(optional) In the Initial Controller State box, specify the initial conditions for the
controller. This step is not necessary if the controller and plant already have the same
initial state, as is the case for this example. To specify initial conditions, first extract
the mpcstate object from your controller and set the initial state of the plant.

stateobj = mpcstate(MPCl);
stateobj.Plant = x0;

where X0 is a vector of the initial plant states. Then, specify stateobj in the Initial
Controller State box.

Verify that the External Manipulated Variable (ext.mv) option in the General tab is
selected. This option adds the ext.mv inport to the block to enable the use of external
manipulated variables.

Verify that the Use external signal to enable or disable optimization (switch)
option in the Others tab is selected. This option adds the switch inport to the
controller block to enable switching off the optimization calculations.



Bumpless Transfer Between Manual and Automatic Operations

"4 Block Parameters: MPC Controller @
MPC (mask) (link)

The MPC Controller block lets you design and simulate a model predictive
controller defined in the Model Predictive Control Toolbox.

Parameters

MPC Controller [{/58] Design
Initial Controller State []

Block Options

General | Online Features | Default Conditions | Others |
Additional Inports

[T] Measured disturbance (md)
External manipulated variable (ext.mv)

Additional Outports

[7] optimal cost (cost)

[T] optimal control sequence (mv.seq)

[T] Optimization status (qp.status)

[7] Estimated plant, disturbance and noise model states (est.state)

State Estimation

[T] Use custom estimated states instead of measured outputs (x{k|k])

[ 0K ][ Cancel H Help ] Apply

Click OK.

Examine Switching Between Manual and Automatic Operation

Click Run in the Simulink model window to simulate the model.
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Bumpless Transfer Between Manual and Automatic Operations

For the first 90 time units, the Switching Signal is 0, which makes the system operate
in automatic mode. During this time, the controller smoothly drives the controlled plant
output from its initial value, 0, to the desired reference value, -0.5.

The controller state estimator has zero initial conditions as a default, which is appropriate
when this simulation begins. Thus, there is no bump at startup. In general, start the
system running in manual mode long enough for the controller to acquire an accurate
state estimate before switching to automatic mode.

At time 90, the Switching Signal changes to 1. This change switches the system to
manual operation and sends the operator commands to the plant. Simultaneously, the
nonzero signal entering the switch inport of the controller turns off the optimization
calculations. While the optimization is turned off, the MPC Controller block passes the
current ext.mv signal to the Controller Output.

Once in manual mode, the operator commands set the manipulated variable to -0.5 for 10
time units, and then to 0. The Plant Output plot shows the open-loop response between
times 90 and 180 when the controller is deactivated.

At time 180, the system switches back to automatic mode. As a result, the plant output

returns to the reference value smoothly, and a similar smooth adjustment occurs in the
controller output.

Turn off Manipulated Variable Feedback

Delete the signals entering the ext.mv and switch inports of the controller block.
Delete the Unit Delay block and the signal line entering its inport.

Open the Function Block Parameters: MPC Controller dialog box.

Deselect the External Manipulated Variable (ext.mv) option in the General tab to
remove the ext.mv inport from the controller block.

Deselect the Use external signal to enable or disable optimization (switch) option in
the Others tab to remove the switch inport from the controller block.

Click OK. The Simulink model now resembles the following figure.
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Click Run to simulate the model.
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The behavior is identical to the original case for the first 90 time units.

When the system switches to manual mode at time 90, the plant behavior is the same as
before. However, the controller tries to hold the plant at the setpoint. So, its output
increases and eventually saturates, as seen in Controller OQutput. Since the controller
assumes that this output is going to the plant, its state estimates become inaccurate.
Therefore, when the system switches back to automatic mode at time 180, there is a large
bump in the Plant Output.

Such a bump creates large actuator movements within the plant. By smoothly

transferring from manual to automatic operation, a model predictive controller eliminates
such undesired movements.

See Also

Blocks
MPC Controller
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This example shows how to obtain bumpless transfer when switching model predictive
controller from manual to automatic operation or vice versa.

In particular, it shows how the EXT.MV input signal to the MPC block can be used to keep
the internal MPC state up to date when the operator or another controller is in control.

Define Plant Model

The linear open-loop dynamic plant model is as follows:

num = [1 17;
den = [1 3 2 0.5];
sys = tf(num,den);

Design MPC Controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.5; % Sampling time

p = 15; % Prediction horizon
m=2; % Control horizon
mpcobj = mpc(sys,Ts,p,m);

Define constraints on the manipulated variable.
mpcobj .MV=struct('Min', -1, 'Max"',1);
Change the output weight.

mpcobj .Weights.Output=0.01;

To achieve bumpless transfer, the initial states of your plant and controller must be the
same, which is the case for the plant and controller in this example. However, if the initial
conditions for your system do not match, you can set the initial states of the controller to
the plant initial states. To do so, extract the mpcstate object from your controller and set
the initial state of the plant.

stateobj = mpcstate(MPC1);
stateobj.Plant = x0;



Switching Controller Online and Offline with Bumpless Transfer

where x0 is a vector of the initial plant states. Then, in the MPC Controller block dialog,
set the Initial Controller State to stateobj.

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Simulate closed-loop control of the linear plant model in Simulink. In this model, in the
MPC Controller block dialog, the MPC Controller property is specified as mpcobj.

mdl = 'mpc_bumpless';

open_system(mdl)
sim(mdl)
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Simulate without Using External MV Signal

Without using the external MV signal, MPC controller is no longer able to provide
bumpless transfer because the internal controller states are not estimated correctly.

delete line(mdl, 'Switch/1','Unit Delay/1');

delete line(mdl, 'Unit Delay/1', '"MPC Controller/3");
delete block([mdl '/Unit Delay']);

delete line(mdl, 'Switching/1"', 'MPC Controller/4");

set param([mdl '/MPC Controller'], 'mv_inport','off');

set param([mdl '/MPC Controller'], 'switch inport','off');
set param([mdl '/Yplots'],'Ymin','-1~-0.1")

set param([mdl '/Yplots'], 'Ymax','3~1.1")
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set param([mdl '/MVplots'],'Ymin','-1.1~-5")
set param([mdl '/MVplots'], 'Ymax','1l.1~10")

sim(md1l)
(4] = =] &3
File Tools View Simulation Help o
@ - ‘-.dé @ I]L‘? [ | E} - {d‘L - D - 5 @ -

Flant Input

Controller Output

Ready T=230.000
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Now the transition from manual to automatic control is much less smooth. Note the large
"bump" between time = 180 and 200.

bdclose(mdl)

See Also
MPC Controller
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Switching Controllers Based on Optimal Costs

This example shows how to use the "optimal cost" outport of the MPC Controller block to
switch between multiple model predictive controllers whose outputs are restricted to
discrete values.

Define Plant Model

The linear plant model is as follows::

plant = ss(tf({1,1},{[1 1.2 11,[1 1]}),'min");
[A,B,C,D] = ssdata(plant);
x0 = [0;0;0];

Plant with 2 inputs and 1 output
Get state-space realization matrices
Initial plant state

o® o o°

Design MPC Controller

Specify input and output signal types.
plant = setmpcsignals(plant, 'MV',1,'MD',2); % First input is manipulated, second i

Design two MPC controllers with the MV constraints of u=-1 and u=1, respectively. Only
u at the current time is quantized. The subsequent calculated control actions may be any
value between -1 and 1. The controller uses a receding horizon approach so these values
don't actually go to the plants.

Ts = 0.2; % Sampling time
p = 20; % Prediction horizon
m= 10; % Control horizon

mpcl = mpc(plant,Ts,p,m);
mpc2 = mpc(plant,Ts,p,m);
% Specify weights
mpcl.Weights = struct('MV',0, 'MVRate',.3, 'Output',1);
mpc2.Weights = struct('MV',0, 'MVRate', .3, 'Output',1); %
% Specify constraints

mpcl.MV = struct('Min',[-1;-17, 'Max"',[-1;1]);
mpc2.MV = struct('Min',[1;-1], 'Max"',[1;1]);

First MPC object
Second MPC object

o° of

Constraints on the manipulated v:
Constraints on the manipulated v:

o® o°

Simulate in Simulink®

To run this example, Simulink® is required.
if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink(R) is required to run this example.')
return
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end

% Specify signals:

Tstop = 40;

ref.time = 0:Ts: (Tstop+p*Ts);

ref.signals.values = double(ref.time>10)"'; % Step change in reference signal :
md.time = ref.time;

md.signals.values = double(md.time>30)"; % Step change in measured disturba

Open and simulate the Simulink® model:

mdl = 'mpc_optimalcost';
open_system(mdl); % Open Simulink(R) Model
sim(mdl,Tstop); % Start Simulation

! P (4] :
IE vit) N v=Cot D ®  ysim C‘—)—b tsim

-
> usim ! » [:]
—p v —
‘Outputs/Referances
rit
= =
MY
mio [
m
ref [
MPC
md [ —
T cost
A Y = ext.my
F o
MPC1 (u=-1)
cost mio
e |
ref [
MPC
T
O T md |4
F o cost
optimal cost ext.mv [
MPC2 ju=1
(=1} Copyright 1920-2014 The MathWorks, Inc.
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Note that:

* From time 0 to time 10, the control action keeps switching between MPC1 (-1) and
MPC2 (+1). This is because the reference signal is 0 and it requires a controller
output at 0 to reach steady state, which cannot be achieved with either MPC
controller.

* From time 10 to 30, MPC2 control output (+1) is chosen because the reference signal
becomes +1 and it requires a controller output at +1 to reach steady state (plant gain
is 1), which can be achieved by MPC2.

* From time 30 to 40, control action starts switching again. This is because with the
presence of measured disturbance (+1), MPC1 leads to a steady state of 0 and MPC2
leads to a steady state of +2, while the reference signal still requires +1.

Simulate Using MPCMOVE Command

Use mpcmove to perform step-by-step simulation and compute current MPC control
action:
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[Ad,Bd,Cd,Dd] = ssdata(c2d(plant,Ts));
Nsteps = round(Tstop/Ts);

Initialize matrices for storing simulation results

YY = zeros(Nsteps+1,1);
RR = zeros(Nsteps+1,1);
UU = zeros(Nsteps+1,1);
COST = zeros(Nsteps+1,1);
X = x0;

xtl = mpcstate(mpcl);

t2 = mpcstate(mpc2);

Start simulation.

for td=0:Nsteps

% Construct signals
md.signals.values(td+1);
ref.signals.values(td+1);
Plant equations: output update
= Cd*x + Dd(:,2)*v;
Compute both MPC moves
options = mpcmoveopt;

5 <

o0 <<

o o°

o° o° o°

Discrete-time dynamics
Number of simulation steps

Initial plant state
Initial state of the MPC control
Initial state of the MPC control

options.OnlyComputeCost = true; % the last input argument tells "mpcmove" to only «

[ul,Infol] = mpcmove(mpcl,xtl,y,r,v,options);
[u2,Info2] = mpcmove(mpc2,xt2,y,r,v,options);

% Compare the resulting optimal costs and choose the input value

% corresponding to the smallest cost
if Infol.Cost<=Info2.Cost

u = ul;

cost = Infol.Cost;

% Update internal MPC state to the correct value

xt2.Plant = xtl.Plant;
xt2.Disturbance = xtl.Disturbance;
xt2.LastMove = xtl.LastMove;

else
u = uz2;
cost = Info2.Cost;

% Update internal MPC state to the correct value

xtl.Plant = xt2.Plant;
xtl.Disturbance = xt2.Disturbance;
xtl.LastMove = xt2.LastMove;

end
% Store plant information
YY(td+l) = y;
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RR(td+1)
uu(td+1)
COST(td+1) cost;

% Plant equations: state update
X = Ad*x + Bd(:,1)*u + Bd(:,2)*v;

r;
u;

end

Plot the results of mpcmove to compare with the simulation results obtained in
Simulink®:

subplot(131)

plot((0:Nsteps)*Ts,[YY,RR]); % Plot output and reference signals
grid

title('0V and Reference')

subplot(132)

plot((0:Nsteps)*Ts,UU); % Plot manipulated variable

grid

title('MV")

subplot(133)

plot((0:Nsteps)*Ts,COST); % Plot optimal MPC value function
grid

title('Optimal cost')
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These plots resemble the plots in the scopes in the Simulink® model.

bdclose(mdl);

See Also
MPC Controller

More About

L]

“Optimization Problem” on page 2-9
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Monitoring Optimization Status to Detect Controller
Failures

This example shows how to use the "qgp.status" outport of the MPC Controller block in
Simulink® to detect controller failures in real time.

Overview of Run-Time Control Monitoring

The "gp.status" output from the MPC Controller block returns a positive integer when the
controller finds an optimal control action by solving a quadratic programming (QP)
problem. The integer value corresponds to the number of iterations used during
optimization. If the QP problem formulated at a given sample interval is infeasible, the
controller will fail to find a solution. In that case, the MV outport of controller block
retains the most recent value and the "gp.status" outport returns -1. In a rare case when
the maximum number of iteration is reached during optimization, the "qp.status" outport
returns 0.

In industrial MPC applications, we can detect whether model predictive controller is in a
"failure" mode (0 or -1) or not by monitoring the "qgp.status" outport. If an MPC failure
occurs, we can use this signal to switch to a backup control plan.

In this example, we show how to setup run-time controller status monitoring in Simulink.

Define Plant Model

The test plant is a single-input, single-output plant with hard limits on both manipulated
variable and controlled output. A load disturbance is added at the plant output. The
disturbance consists of a ramp signal that saturates manipulated variable due to the hard
limit on the MV. After saturation occurs, we lose the control degree of freedom and the
disturbance eventually forces the output outside its upper limit. When that happens, the
QP problem formulated by model predictive controller at run-time becomes infeasible.

Define the plant model as a simple SISO system with unity gain.

Plant = tf(1,[2 11);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and
3 seconds, then ramps down from 2 to 0 between 3 and 5 seconds.

LoadDist = [0 0; 1 0; 3 2; 50; 7 0];
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Design MPC Controller

Create MPC object.

Ts = 0.2;
Obj = mpc(Plant, Ts);

Define hard constraints on plant input (MV) and output (OV). By default, all the MV
constraints are hard and OV constraints are soft.

0bj .MV.Min
0bj .MV.Max
Obj.0V.Min
Obj.0V.Max
0bj.0V.MinEC
0bj.0V.MaxEC

change 0V lower limit from soft to hard
change 0OV upper limit from soft to hard

Override the default estimator. This high-gain estimator improves detection of an
impending constraint violation.

setEstimator(0bj,[],[0;1]1);

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end
% Build the control system in a Simulink model and enable the "qp.status"
% outport from the controller block dialog. Its run-time value is displayed
% in a Simulink Scope block.
mdl = 'mpc_onlinemonitoring';
open_system(mdl);
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Simulate the closed-loop response.

open_system([mdl '/Controller Status']);

open_system([mdl '/Response']);

sim(mdl);

As shown in the response scope, the ramp-up disturbance signal causes the
MV to saturate at its lower bound -1, which is the optimal solution for
these situations. After the plant output exceeds the upper limit, at the
next sampling interval (2.6 seconds), the controller realizes that it can
no longer keep the output within bounds (because its MV is still
saturated), so it signals controller failure due to an infeasible QP problem
(-1 in the controller status scope). After the output comes back within
bounds, the QP problem becomes feasible again (3.4 seconds). We see
normal control behavior once the MV is no longer saturated.

0° 0° 0% 3% o° o° o° o° o°
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bdclose(mdl);

See Also
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You can simulate the closed-loop response of an MPC controller with a custom quadratic
programming (QP) solver in Simulink®.

This example uses an on-line monitoring application, first solving it using the Model
Predictive Control Toolbox™ built-in solver, then using a custom solver that uses the
quadprog solver from the Optimization Toolbox™.

Implementing a custom QP solver in this way does not support code generation. For more
information on generating code for a custom QP solver, see “Simulate and Generate Code
for MPC Controller with Custom QP Solver” on page 9-61. For more information on QP
Solvers, see “QP Solver” on page 2-22.

In the on-line monitoring example, the qp.status output of the MPC Controller block
returns a positive integer whenever the controller obtains a valid solution of the current
run-time QP problem and sets the mv output. The qp.status value corresponds to the
number of iterations used to solve this QP.

If the QP is infeasible for a given control interval, the controller fails to find a solution. In
that case, the mv outport stays at its most recent value and the qp.status outport
returns - 1. Similarly, if the maximum number of iterations is reached during optimization
(rare), the mv outport also freezes and the qp.status outport returns 0.

Real-time MPC applications can detect whether the controller is in a "failure" mode (0 or
-1) by monitoring the gp . status outport. If a failure occurs, a backup control plan
should be activated. This is essential if there is any chance that the QP could become
infeasible, because the default action (freezing MVs) may lead to unacceptable system
behavior, such as instability. Such a backup plan is, necessarily, application-specific.

MPC Application with Online Monitoring

The plant used in this example is a single-input, single-output system with hard limits on
both the manipulated variable (MV) and the controlled output (OV). The control objective
is to hold the OV at a setpoint of 0. An unmeasured load disturbance is added to the OV.
This disturbance is initially a ramp increase. The controller response eventually saturates
the MV at its hard limit. Once saturation occurs, the controller can do nothing more, and
the disturbance eventually drives the OV above its specified hard upper limit. When the
controller predicts that it is impossible to force the OV below this upper limit, the run-
time QP becomes infeasible.

Define the plant as a first-order SISO system with unity gain.
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Plant = tf(1,[2 11);

Define the unmeasured load disturbance. The signal ramps up from 0 to 2 between 1 and
3 seconds, then ramps back down from 2 to 0 between 3 and 5 seconds.

LoadDist = [0 0; 1 0; 3 2; 50; 7 0];
Design MPC Controller

Create an MPC object using the model of the test plant. The chosen control interval is
about one tenth of the dominant plant time constant.

Ts = 0.2;
0bj = mpc(Plant, Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Define hard constraints on the plant input (MV) and output (OV). By default, all the MV
constraints are hard and OV constraints are soft.

0bj .MV.Min
0bj .MV.Max
0bj.0V.Min
0bj .0V.Max
0bj .0V.MinECR
0bj .0V.MaxECR

hange OV lower limit from soft to hard
hange OV upper limit from soft to hard

O 0

Generally, hard OV constraints are discouraged and are used here only to illustrate how
to detect an infeasible QP. Hard OV constraints make infeasibility likely, in which case a
backup control plan is essential. This example does not include a backup plan. However,
as shown in the simulation, the default action of freezing the single MV is the best
response in this simple case.

Simulate Using Simulink with Built-in QP Solver
To run this example, Simulink and the Optimization Toolbox are required.
if ~mpcchecktoolboxinstalled('simulink")

disp('Simulink is required to run this example.')

return
end
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if ~mpcchecktoolboxinstalled( 'optim')
disp('The Optimization Toolbox is required to run this example.')
return

end

Build the control system in a Simulink model and enable the qp.status outport by
selecting the Optimization status parameter of the MPC Controller block. Display the
run-time qp.status value in the Controller Status scope.

mdl = 'mpc_onlinemonitoring"';
open_system(mdl)

LoadDist »

Unmeasured Load Disturbance

| Y -
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Response
Plant
v rrics el
MPC
C] o Fgp.status ref ]
Controller Status Refarence

Copyright 19%0-2014 The MathWorks, Inc.

Simulate the closed-loop response using the default Model Predictive Control Toolbox QP
solver.

open_system([mdl '/Controller Status'])
open_system([mdl '/Response'])
sim(mdl)
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->Converting the "Model.Plant" property of "mpc" object to state-space.

->Converting model to discrete time.

->Assuming output disturbance added to measured output channel #1 is integrated white
->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
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Explanation of the Closed-Loop Response

As shown in the response scope, at 1.4 seconds, the increasing disturbance causes the
MV to saturate at its lower bound of -0.5, which is the QP solution under these conditions
(because the controller is trying to hold the OV at its setpoint of 0).
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The OV continues to increase due to the ramp disturbance and, at 2.2 seconds, exceeds
the specified hard upper bound of 1.0. Since the QP is formulated in terms of predicted
outputs, the controller still predicts that it can bring OV back below 1.0 in the next move
and therefore the QP problem is still feasible.

Finally, at t = 3.2 seconds, the controller predicts that it can no longer move the OV below
1.0 within the next control interval, and the QP problem becomes infeasible and
gp.status changes to -1 at this time.

After three seconds, the disturbance is decreasing. At 3.8 seconds, the QP becomes
feasible again. The OV is still well above its setpoint, however, and the MV remains
saturated until 5.4 seconds, when the QP solution is to increase the MV as shown. From
then on, the MV is not saturated, and the controller is able to drive the OV back to its
setpoint.

When the QP is feasible, the built-in solver finds the solution in three iterations or less.
Simulate with a Custom QP Solver

To examine how the custom solver behaves under the same conditions, activate the
custom solver option by setting the Optimizer.CustomSolver property of the MPC
controller.

Obj.Optimizer.CustomSolver = true;
You must also provide a MATLAB® function that satisfies all the following requirements:

* Function name must be mpcCustomSolver.

* Function input and output arguments must match those defined in the
mpcCustomSolver. txt template file.

* Function must be on the MATLAB path.

For this example, use the custom solver defined in mpcCustomSolver. txt, which uses
the quadprog command from the Optimization Toolbox as the custom QP solver. To
implement your own custom QP solver, modify this file.

Save the function in your working folder as a .m file.

src = which('mpcCustomSolver.txt');
dest = fullfile(pwd, 'mpcCustomSolver.m');
copyfile(src,dest,'f');

Review the saved mpcCustomSolver.m file.
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function [x, status] = mpcCustomSolver(H, f, A, b, x0)

mpcCustomSolver allows user to specify a custom quadratic programming
(QP) solver to solve the QP problem formulated by MPC controller. When
the "mpcobj.Optimizer.CustomSolver" property is set true, instead of
using the built-in QP solver, MPC controller will now use the customer QP
solver defined in this function for simulations in MATLAB and Simulink.

The MPC QP problem is defined as follows:
Find an optimal solution, x, that minimizes the quadratic objective
function, J = 0.5*%x"*H*x + f'*x, subject to linear inequality
constraints, A*x >= b.

Inputs (provided by MPC controller at run-time):

H: a n-by-n Hessian matrix, which is symmetric and positive definite.
f: a n-by-1 column vector.

A: a m-by-n matrix of inequality constraint coefficients.

b: a m-by-1 vector of the right-hand side of inequality constraints.
x0: a n-by-1 vector of the initial guess of the optimal solution.

Outputs (fed back to MPC controller at run-time):
x: must be a n-by-1 vector of optimal solution.
status: must be an finite integer of:
positive value: number of iterations used in computation

0: maximum number of iterations reached
-1: QP is infeasible
-2: Failed to find a solution due to other reasons

Note that even if solver failed to find an optimal solution, "x" must be

returned as a n-by-1 vector (i.e. set it to the initial guess x0)

0° 0% 0% 3% 0% 0° ° O° A° A° A° A% A% O° O° O° A° A° O° A° A% A% O° O° O° I° O° o° o°

DO NOT CHANGE LINES ABOVE

The following code is an example of how to implement the custom QP solver
in this function. It requires Optimization Toolbox to run.

o o°

Define QUADPROG options and turn off display of optimization results in
Command window.

options = optimoptions('quadprog');

options.Display = 'none';

o o°

% By definition, constraints required by "quadprog" solver is defined as

% A*X <= b. However, in our MPC QP problem, the constraints are defined as
% A*x >= b. Therefore, we need to implement some conversion here:

A custom = -A;

b custom = -b;
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Compute the QP's optimal solution. Note that the default algorithm used
by "quadprog" ('interior-point-convex') ignores x0. "x0" is used here as
an input argument for illustration only.
= (H+H')/2; % ensure Hessian is symmetric
x, ~, Flag, Output] = quadprog(H, f, A custom, b custom, [1, [1, [1, [], x0, options)
Converts the "flag" output to "status" required by the MPC controller.
switch Flag
case 1
status
case 0
status
case -2
status
otherwise
status

d° — I o o° o°

Output.iterations;

Il Il
' [}
= -

1}
1
N

end
% Always return a non-empty x of the correct size. When the solver fails,
% one convenient solution is to set x to the initial guess.
if status <=0
X = X0;
end

Repeat the simulation.

set param([mdl '/Controller Status'],'ymax','10');
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
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The plant input and output signals are identical to those obtained using the built-in Model
Predictive Control Toolbox solver, but the qp.status shows that quadprog does not take
the same number of iterations to find a solution. However, it does detect the same
infeasibility time period.
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bdclose(mdl);

See Also

More About

. “QP Solver” on page 2-22

. “Simulate and Generate Code for MPC Controller with Custom QP Solver” on page
9-61
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Use Suboptimal Solution in Fast MPC Applications

This example shows how to guarantee the worst-case execution time of an MPC controller
in real-time applications by using the suboptimal solution returned by the optimization
solver.

What is a Suboptimal Solution?

Model predictive control (MPC) solves a quadratic programming (QP) problem at each
control interval. The built-in QP solver uses an iterative active-set algorithm that is
efficient for MPC applications. However, when constraints are present, there is no way to
predict how many solver iterations are required to find an optimal solution. Also, in real-
time applications, the number of iterations can change dramatically from one control
interval to the next. In such cases, the worst-case execution time can exceed the limit that
is allowed on the hardware platform and determined by the controller sample time.

You can guarantee the worst-case execution time for your MPC controller by applying a
suboptimal solution after the number of optimization iterations exceeds a specified
maximum value. To set the worst-case execution time, first determine the time needed for
a single optimization iteration by experimenting with your controller under nominal
conditions. Then, set a small upper bound on the number of iterations per control
interval.

By default, when the maximum number of iterations is reached, an MPC controller does
not use the suboptimal solution. Instead, the controller sets an error flag (status = 0)
and freezes its output. Often, the solution available in earlier iterations is good enough,
but requires refinement to find an optimal solution, which leads to many additional
iterations.

This example shows how to configure your MPC controller to use the suboptimal solution.
The suboptimal solution is a feasible solution available at the final iteration (modified, if
necessary, to satisfy any hard constraints on the manipulated variables). To determine
whether the suboptimal solution provides acceptable control performance for your
application, run simulations across your operating range.

Define Plant Model

The plant model is a stable randomly generated state-space system. It has 10 states, 3
manipulated variables (MV), and 3 outputs (OV).

rng(1234);
nX = 10;
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nov
nMV
Plan
Plan
Ts = 0.1;

~ 1l

nX,n0V,nMV) ;

Design MPC Controller with Constraints on MVs and OVs

Create an MPC controller with default values for all controller parameters except the
constraints. Specify constraints on both the manipulated and output variables.

verbosity = mpcverbosity('off'); % Temporarily disable command line messages.
mpcobj = mpc(Plant, Ts);
for i = 1:nMV

mpcobj .MV (i) .Min = -1.0;
mpcobj.MV(i).Max = 1.0;
end
for i = 1:n0V
mpcobj.0V(i).Min = -1.0;
mpcobj.0V(i).Max = 1.0;

end

Simultaneous constraints on both manipulated and output variables require a relatively
large number of QP iterations to determine the optimal control sequence.

Simulate in MATLAB with Random Output Disturbances

First, simulate the MPC controller using the optimal solution in each control interval. To
focus on only output disturbance rejection performance, set the output reference values

to zero.
T =5;
N=T/Ts + 1;

r zeros(1,n0V);
SimOptions = mpcsimopt();
SimOptions.QutputNoise = 3*randn(N,nQV);
[y,t,u,~,~,~,status] = sim(mpcobj,N,r,[],SimOptions);

Plot the number of iterations used in each control interval.
figure
stairs(status)

hold on
title('Number of Iterations')

5-90



Use Suboptimal Solution in Fast MPC Applications

Number of lterations
25 . . . : .

201 7

151 ] ]

107 T

The largest number of iterations is 21, and the average is 5.8 iterations.

Create an MPC controller with the same settings, but configure it to use the suboptimal
solution.

mpcobjSub = mpcobj;
mpcobjSub.0Optimizer.UseSuboptimalSolution = true;

Reduce the maximum number of iterations to a small number.
mpcobjSub.Optimizer.MaxIter = 3;
Simulate the second controller with the same output disturbance sequence.

[ySub, tSub,uSub,~,~,~,statusSub] = sim(mpcobjSub,N,r,[],SimOptions);
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Plot the number of iterations used in each control interval on the same plot. For any
control interval in which the maximum number of iterations is reached, statusSub is
zero. Before plotting the result, set the number of iterations for these intervals to 3.

statusSub(statusSub == 0) = 3;

stairs(statusSub)
legend('optimal', 'suboptimal')

Number of Iterations

25 T T T T T
optimal
suboptimal
201 7
15 M 7
10 7
5 - -
[ ~ 1
W
D 1 1 1 1 1
1] 10 20 30 40 50 60

The largest number of iterations is now 3, and the average is 2.8 iterations.
Compare the performance of the two controllers. When the suboptimal solution is used,

there is no significant deterioration in control performance compared to the optimal
solution.
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figure
for ct=1:3
subplot(3,1,ct)
plot(t,y(:,ct),t,ySub(:,ct))
end
subplot(3,1,1)
title('Outputs')
legend('optimal', 'suboptimal')

Clutputs
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[}] P /\ \_\w suboptimal ™
A \ / -
_2 i i i i i
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For a real-time application, as long as each solver iteration takes less than 30
milliseconds on the hardware, the worst-case execution time does not exceed the
controller sample time (0. 1 seconds). In general, it is safe to assume that the execution
time used by each iteration is more or less a constant.
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Simulate in Simulink with Random Output Disturbances

Simulate the controllers in Simulink®.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end

Model = 'mpc_ SuboptimalSolution';
open_system(Model)
sim(Model)

i

il

zeros(1.nOV)

;
N .

W red
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As in the command-line simulation, the average number of QP iterations per control
interval decreased without significantly affecting control performance.
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mpcverbosity(verbosity); % Enable command line messages.
bdclose(Model)

See Also

Functions
mpcmoveopt

Blocks
Adaptive MPC Controller | MPC Controller

More About
. “QP Solver” on page 2-22
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Design and Cosimulate Control of High-Fidelity
Distillation Tower with Aspen Plus Dynamics

5-98

This example shows how to design a model predictive controller in MATLAB for a high-
fidelity distillation tower model built in Aspen Plus Dynamics®. The controller
performance is then verified through cosimulation between Simulink and Aspen Plus
Dynamics.

Distillation Tower

The distillation tower uses 29 ideal stages to separate a mixture of benzene, toluene, and
xylenes (represented by p-xylene). The distillation process is continuous. The equipment
includes a reboiler and a total condenser as shown below:



Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

S

I Coolant
3 Condenser
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cl—»

Bottoms

The distillation tower operates at a nominal steady-state condition:

* The feed stream contains 30% of benzene, 40% of toluene and 30% of xylenes.
* The feed flow rate is 500 kmol/hour.

To satisfy the distillate purity requirement, the distillate contains 95% of benzene.
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» To satisfy the requirement of recovering 95% of benzene in the feed, the benzene
impurity in the bottoms is 1.7%.

The control objectives are listed below, sorted by their importance:

Hold the tower pressure constant.

2  Maintain 5% of toluene in the distillate (it is equivalent to maintain 95% of benzene
in the distillate because the distillate only contains benzene and toluene).

3 Maintain 1.7% of the benzene in the bottoms.
4  Keep liquid levels in the sump and the reflux drum within specified limits.

Build High-Fidelity Plant Model in Aspen Plus Dynamics

Use an Aspen Plus RADFRAC block to define the tower's steady-state characteristics. In
addition to the usual information needed for a steady-state simulation, you must specify
tray hydraulics, tower sump geometry, and the reflux drum size. The trays are a sieve
design spaced 18 inches apart. All trays have a 1.95 m in diameter with a 5 cm weir
height. Nominal liquid depths are 0.67 m and 1.4875 m in the horizontal reflux drum and
sump respectively.

The steady-state model is ported to Aspen Plus Dynamics (APD) for a flow-driven
simulation. This neglects actuator dynamics and assumes accurate regulation of

manipulated flow rates. By default, APD adds PI controllers to regulate the tower
pressure and the two liquid levels. In this example, the default PI controllers are

intentionally removed.

The APD model of the high-fidelity distillation tower is shown below:
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Linearize Plant Using Aspen Plus Control Design Interface

Model Predictive Controller requires an LTT model of the plant. In this example, the plant
inputs are:

Condenser duty (W)

Reboiler duty (W)

Reflux mass flow rate (kg/h)

Distillate mass flow rate (kg/h stream #?2)

Bottoms mass flow rate (kg/h stream #3)

o A W N R

Feed molar flow rate (kmol/h stream #1)
The plant outputs are:

Tower pressure (in the condenser: stage 1, bar)
Reflux drum liquid level (m)

Sump liquid level (m)

Mass fraction toluene in the distillate

g A W N R

Mass fraction benzene in the bottoms

Aspen Plus Dynamics provides a Control Design Interface (CDI) tool that linearizes a
dynamic model at a specified condition.

The following steps are taken to obtain the linear plant model in Aspen Plus Dynamics.

Step 1: Add a "script" to the APD model under the "Flowsheet" folder. In this example,
the script name is CDI_Calcs (as shown above) and it contains the following APD
commands:

Set Doc = ActiveDocument
set CDI = Doc.CDI

CDI.Reset

CDI.AddInputVariable "blocks(""B1"").condenser(1l).QR"
CDI.AddInputVariable "blocks(""B1"").QrebR"
CDI.AddInputVariable "blocks(""B1"").Reflux.FmR"
CDI.AddInputVariable "streams(""2"").FmR"
CDI.AddInputVariable "streams(""3"").FmR"
CDI.AddInputVariable "streams(""1"").FR"
CDI.AddOQutputVariable "blocks(""B1"").Stage(1l).P"
CDI.AddOutputVariable "blocks(""B1"").Stage(1l).Level"

5-102



Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

CDI.AddOutputVariable "blocks(""B1"").SumpLevel"
CDI.AddOutputVariable "streams(""2"").Zmn(""TOLUENE"")"
CDI.AddOutputVariable "streams(""3"").Zmn(""BENZENE"")"
CDI.Calculate

Step 2:Initialize the APD model to the nominal steady-state condition.

Step 3: Invoke the script, which generates the following text files:

+ cdi A.dat, cdi B.dat, cdi C.dat define the A, B, and C matrices of a standard
continuous-time LTI state-space model. D matrix is zero. The A, B, C matrices are
sparse matrices.

* cdi list.lis lists the model variables and their nominal values.
* cdi G.dat defines the input/output static gain matrix at the nominal condition. The
gain matrix is also a sparse matrix.

In this example, cdi list.lis includes the following information:

A matrix computed, number of non-zero elements = 1408
B matrix computed, number of non-zero elements = 26

C matrix computed, number of non-zero elements = 20

G matrix computed, number of non-zero elements = 30
Number of state variables: 120

Number of input variables: 6

Number of output variables: 5

Input variables:

1 -3690034.247458334 BLOCKS("B1").Condenser(1).QR
2 3819023.193875 BLOCKS("B1").QRebR

3 22135.96620144 BLOCKS("B1").Reflux.FmR

4 11717.39655353 STREAMS("2").FmR

5 34352.86345834 STREAMS("3").FmR

6 500 STREAMS("1").FR

Output variables:
1.100022977953499 BLOCKS("B1"
0.6700005140605662 BLOCKS("B1"
1.4875 BLOCKS("B1"
0.05002582161855798 STREAMS("2"
0.01705308738356429 STREAMS("3"

) .Stage(1).P

) .Stage(1).Level
) .SumpLevel
).Zmn("TOLUENE")
) .Zmn ("BENZENE")

U WN R

The nominal values of the state variables listed in the file are ignored because they are
not needed in the MPC design.
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Create Scaled and Reduced LTI State-Space Model
Step 1: Convert the CDI-generated sparse-matrices to a state-space model.

Load state-space matrices from the CDI data files to MATLAB workspace and convert the
sparse matrices to full matrices.

load mpcdistillation cdi A.dat
load mpcdistillation cdi B.dat
load mpcdistillation cdi C.dat

A = full(spconvert(mpcdistillation cdi A));
B = full(spconvert(mpcdistillation cdi B));
C = full(spconvert(mpcdistillation cdi C));
D = zeros(5,6);

It is possible that an entire sparse matrix row or column is zero, in which case the above
commands are insufficient. Use the following additional checks to make sure A, B, and C
have the correct dimensions:

[nxAr,nxAc] = size(A);
[nxB,nu] = size(B);
[ny,nxC] = size(C);
nx = max([nxAr, nxAc, nxB, nxCl);
if nx > nxC

C = [C, zeros(ny,nx-nxC)];
end
if nx > nxAc

A [A zeros(nxAr,nx-nxAc)];
end
if nx > nxAr

nxAc = size(A,2);

A = [A; zeros(nx-nxAr, nxAc)];
end
if nxB < nx

B = [B; zeros(nx-nxB,nu)];

end

Step 2: Scale the plant signals.

It is good practice, if not essential, to convert plant signals from engineering units to a
uniform dimensionless scale (e.g., 0-1 or 0-100%). One alternative is to define scale

factors as part of a Model Predictive Controller design. This can simplify controller tuning
significantly. See, e.g., the demo "mpcscalefactor”.
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In the present example, however, we will use a model reduction procedure prior to
controller design, and we therefore scale the plant model, using the scaled model in both
model reduction and controller design. We define a span for each input and output, i.e.,
the difference between expected maximum and minimum values in engineering units.
Also record the nominal and zero values in engineering units to facilitate subsequent
conversions.

U span = [2*%(-3690034), 2*3819023, 2*22136, 2*11717, 2*34353, 2*500];
U nom = 0.5*U span;

U zero = zeros(1,6);

Y nom = [1.1, 0.67, 1.4875, 0.050026, 0.017053];

Y _span [0.4, 2*Y nom(2:5)];

Y zero [0.9, 0, 0, 0, 0O];

Scale the B and C matrices such that all input/output variables are expressed as
percentages.

B
C

(ones(nx,1)*U span);

B.*
C./(ones(nx,1)*Y span)';

Step 3: Define the state-space plant model.

ss(A,B,C,D);

imeUnit = 'hours';
{IOCI,IQrI’IRI’IDI’IBI’IFI};
{

G =
G.T
G.u
G.y 'P','RLev','Slev','xD', 'xB'};

Step 4: Reduce model order.

Model reduction speeds up the calculations with negligible effect on prediction accuracy.
Use the "hsvd" command to determine which states can be safely discarded. Use the
"balred" function to remove these states and reduce model order.

[hsv, baldata] = hsvd(G);

order = find(hsv>0.01,1, 'last"');

Options = balredOptions('StateElimMethod', 'Truncate');
G = balred(G,order,baldata,Options);

The original model has 120 states and the reduced model has only 16 states. Note that

the "Truncate" option is used in the "balred" function to preserve a zero D matrix. The
model has two poles at zero, which correspond to the two liquid levels.
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5-106

Test Accuracy of the Linear Plant Model

Before continuing with the MPC design, it is good practice to verify that the scaled LTI
model is accurate for small changes in the plant inputs. To do so, you need to compare the
response of the nonlinear plant in APD and the response of linear model G.

Step 1: To obtain the response of the nonlinear plant, create a Simulink model and add
the Aspen Modeler interface block to it.

The block is provided by Aspen Plus Dynamics in their AMSimulink library shown below:

W=

File Edit Mjew Display Diagram Analvsis Help
-8 = e = @~

amsimulink |

& | P Argimulink:

W AMSimulation [»

Aspen hdodeler Bladk

E B 8

P

b 1Y

PID Vel

» B

Feady [100%: 4

Step 2: Double-click the block and provide the location of the APD model.

The APD model information is then imported into Simulink. For large APD models, the
importing process may take some time.

Step 3: Specify input and output signals in the "AMSimulation" block dialog.
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Use the same variable names and sequence as in the CDI script.

[l configure AMSimulation Block

input fie:  [C\TemplBTH2 dynt | Browse... | oK

v Azpen Modeler vizible

L ix

Connext | Cancel

r Open Azpen Modeler model on Simulink

model open Help |

Inputs |Outputs|

Port  |%ariakle Unit=

1 |BLOCKS("B1"™) . Condenser(1].0R Wy

2 |BLOCKS"B1") GRebR Wy

3 |BLOCKS"B1") Reflux FmR ke

4 | STREAMSM2™) FmR kohr

5 |STREAMS"3")1FmR ke

6 |STREAMS™"IFR kemalr

Ao | Delete | V¥ Show Inputs/Outputs only
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[l Configure AMSimulation Block x|

- Open Azpen Modeler model on Simulink

model open Hel |

Impst files: IC:ITempETKE dynf Brovese. . | Ok

v A=pen Modeler visible Connect | Cancel

........................

Inputs ; Outputs
Patt | “ariahle itz
1 |BLOCKS("B1").Stagei1) P bar
2 |BLOCKS("B1"™ Stagerd) Level m
3 |BLOCKSMB1").Sumplevel m
4 |STREAMSC'Z"1Zmn"TOLUEME") koo
5 | STREAMS("I").Zmn("BEMZEME™ ki

Add Delete ¥ Show Inputsioutputs only

The block now shows inports and outports for each signal that you defined.

Step 4: Expand the Simulink model with an input signal coming from the variable Umat
and an output signal saved to variable Ypct NL. Both variables are created in Step 5.

Since Umat is in the percentage units, the "Pct2Engr" block is implemented to convert
from percentage units to engineering units.
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Pt Engr

3 ain

Zaro

Zara

Since Ypct NL is in the percentage units, the "Engr2Pct" block is implemented to convert
from engineering units to percentage units.

Engr . Pt
zain

Zera

Zera

With everything connected and configured, the model appears as follows:
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Step 5: Verify linear model with cosimulation.

In this example, 1 percent increase in the scaled reflux rate (input #3) is used as the

excitation signal to the plant.

U nom pct = (U nom - U zero)*100./U span; % Convert nominal condition from engineeril

Y nom pct = (Y _nom - Y zero)*100./Y span;

Tend = 1; Simulation duration (1 hour)

o® o°

t = (0:1/60:Tend) '; Sample period is 1 minute

nT = length(t);

Upct = ones(nT,1)*U nom pct;

DUpct = zeros(nT,6);

DUpct(:,3) = ones(nT,1); % Input signal where step occurs in channe’

The response of the linear plant model is computed using the 1sim command and stored
in variable Ypct L.
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Ypct L
Ypct L

1sim(G,DUpct,t);
Ypct L + ones(nT,1)*Y nom pct;

The response of the nonlinear plant is obtained through cosimulation between Simulink
and Aspen Plus Dynamics. The excitation signal Umat is constructed as below. The result
is stored in variable Ypct NL.

Umat = [t, Upct+DUpct];
Compare the linear and nonlinear model responses.

Responses to Stepin Input "R"
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The LTI model predictions track the nonlinear responses well. The amount of prediction
error is acceptable. In any case, a Model Predictive Controller must be tuned to
accommodate prediction errors, which are inevitable in applications.
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You can repeat the above steps to verify similar agreement for the other five inputs.

Design Model Predictive Controller

Given an LTT prediction model, you are ready to design a Model Predictive Controller. In
this example, the manipulated variables are the first five plant inputs. The sixth plant
input (feed flow rate) is a measured disturbance for feed-forward compensation. All the
plant outputs are measured.

Step 1: Augment the plant to model unmeasured load disturbances.

Lacking any more specific details regarding load disturbances, it is common practice to
assume an unmeasured load disturbance occurring at each of the five inputs. This allows
the MPC state estimator to eliminate offset in each controlled output when a load
disturbance occurs.

In this example, 5 unmeasured load disturbances are added to the plant model G. In total,
there are now 11 inputs to the prediction model Gmpc: 5 manipulated variables, 1
measured disturbance, and 5 unmeasured disturbances.

Gmpc = ss(G.A,G.B(:,[1:6,1:5]),G.C,zeros(5,11), 'TimeUnit', "hours"');
InputName = cell(1,11);

for i = 1:5
InputName{i} = G.InputName{i};
InputName{i+6} = [G.InputName{i}, '-UD'];
end

InputName{6} = G.InputName{6};
Gmpc.InputName = InputName;
Gmpc.InputGroup = struct('mMv',1:5,'MD',6,'UD',7:11);

Gmpc.OQutputName = G.OutputName;

Step 2: Create an initial model predictive controller and specify sample time and
horizons.

In this example, the controller sample period is 30 seconds. The prediction horizon is 60
intervals (30 minutes), which is large enough to make the controller performance
insensitive to further increases of the prediction horizon. The control horizon is 4
intervals (2 minutes), which is relatively small to reduce computational effort.

Ts = 30/3600; % sample time
PH = 60; % prediction horizon
CH = 4; % control horizon

MPCobj = mpc(Gmpc,Ts,PH,CH); % MPC object
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-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Step 3: Specify weights for manipulated variables and controlled outputs.

Weights are key tuning adjustments in MPC design and they should be chosen based on
your control objectives.

There is no reason to hold a particular MV at a setpoint, so set the
Weights.ManipulatedVariables property to zero:

MPCobj .Weights.ManipulatedVariables = [0, 0, O, 0, 0];

The distillate product (MV #4) goes to storage. The only MV affecting downstream unit
operations is the bottoms rate (MV #5). To discourage rapid changes in bottoms rate,
retain the default weight of 0.1 for its rate of change. Reduce the other rate of change
weights by a factor of 10:

MPCobj .Weights.ManipulatedVariablesRate = [0.01, 0.01], 0.01], 0.01, 0.1];
The control objectives provide guidelines to choose weights on controlled outputs:

1 The tower pressure must be regulated tightly for safety reasons and for minimizing
upsets in tray temperatures and hydraulics. (objective #1)

The distillate composition must also be regulated tightly. (objective #2)
3 The bottoms composition can be regulated less tightly. (objective #3)
The liquid levels are even less important. (objective #4)

With these priorities in mind, weights on controlled outputs are chosen as follows::

MPCobj .Weights.OutputVariables = [10, 0.1, 0.1, 1, 0.5];

Scaling the model simplifies the choice of the optimization weights. Otherwise, in addition
to the relative priority of each variable, you would also have to consider the relative
magnitudes of the variables and choose weights accordingly.

Step 4: Specify nominal plant input/output values.

In this example, the nominal values are scaled as percentages. MPC controller demands
that the nominal values for unmeasured disturbances must be zero.
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MPCobj .Model.Nominal.U
MPCobj .Model.Nominal.Y

[U nom pct'; zeros(5,1)];
Y nom pct';

Step 5: Adjust state estimator gain.

Adjusting the state estimator gain affects the disturbance rejection performance.
Increasing the state estimator gain (e.g. by increasing the gain of the input/output
disturbance model) makes the controller respond more aggressively towards output
changes (because the controller assumes the main source of the output changes is a
disturbance, instead of measurement noise). On the other hand, decreasing the state
estimator gain makes the closed-loop system more robust.

First, check whether using the default state estimator provides a decent disturbance
rejection performance.

Simulate the closed-loop response to a 1% unit step in reflux (MV #3) in MATLAB. The
simulation uses G as the plant, which implies no model mismatch.

T = 30; % Simulation time
r =Y nom pct; % Nominal setpoints
v = U nom pct(6); % No measured disturbance

SimOptions = mpcsimopt (MPCobj);
SimOptions.InputNoise = [0 0 1 0 O]; % 1% unit step in reflux
[y L,t L,u L] = sim(MPCobj, T, r, v, SimOptions); % Closed-loop simulation

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #7 is integrated white noise.
Assuming unmeasured input disturbance #8 is integrated white noise.
Assuming unmeasured input disturbance #9 is integrated white noise.
Assuming unmeasured input disturbance #10 is integrated white noise.
Assuming unmeasured input disturbance #11 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
Assuming no disturbance added to measured output channel #4.
Assuming no disturbance added to measured output channel #5.
Assuming no disturbance added to measured output channel #2.
Assuming no disturbance added to measured output channel #3.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

% plot responses

fl = figure();

subplot(2,1,1);

plot(t L,y L,[0 t L(end)],[50 50], 'k--")
title('Controlled Outputs, %')

5-114



Design and Cosimulate Control of High-Fidelity Distillation Tower with Aspen Plus Dynamics

o

w

legend (Gmpc.OutputName, 'Location', 'NorthEastOutside')
subplot(2,1,2);

plot(t L,u L(:,1:5),[0 t L(end)],[50 5071, 'k--")
title('Manipulated Variables, %')

legend (Gmpc.InputName(1:5), 'Location', 'NorthEastOutside")
xlabel('Time, h")
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The default estimator provides sluggish load rejection. In particular, the critical xD output
drops to 49% and has just begun to return to the setpoint after 0.25 hours.

Secondly, increase the estimator gain by multiplying the default input disturbance model
gain by a factor of 25.
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EstGain = 25; factor of 25

Gd = getindist(MPCobj); get default input disturbance model
Gd _new = EstGain*Gd; create new input disturbance model
setindist(MPCobj, 'Model',Gd new); % set input disturbance model

[y L,t L,u L] = sim(MPCobj,T,r,v,SimOptions); % Closed-loop simulation

o® o o°

-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
Assuming no disturbance added to measured output channel #4.
Assuming no disturbance added to measured output channel #5.
Assuming no disturbance added to measured output channel #2.
Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

% plot responses

f2 = figure();

subplot(2,1,1);

plot(t L,y L,[0 t L(end)],[50 5071, 'k--")
title('Controlled OQutputs, %')

legend (Gmpc.OutputName, 'Location', 'NorthEastOutside')
subplot(2,1,2)

plot(t L,u L(:,1:5),[0 t L(end)],[50 50], 'k--")
title('Manipulated Variables, %')

legend (Gmpc.InputName(1:5), 'Location', 'NorthEastOutside")
xlabel('Time, h')
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Now, the peak deviation in xD is 50% less than the default case and xD returns to its
setpoint much faster. Other variables also respond more rapidly.

Thirdly, look at the reflux response (#3 in the "Manipulated Variables" plot). Because the
disturbance is a 1% unit step, the response begins at 51% and its final value is 50% at
steady state. The reflux response overshoots by 20% (reaching 49.8%) before settling.
This amount of overshoot is acceptable.

If the estimator gain were increased further (e.g. by a factor of 50), the controller
overshoot would increase too. However, such aggressive behavior is unlikely to be robust
when applied to the nonlinear plant model.
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You can introduce other load disturbances to verify that disturbance rejection is now
rapid in all cases.

Scaling the model also simplifies disturbance model tuning. Otherwise, you would need to
adjust the gain of each channel in the disturbance model to achieve good disturbance
rejection for all loads.

Generally, you next check the response to setpoint changes. If the response is too
aggressive, you can use setpoint filter to smooth it. Setpoint filter has no effect on load
disturbance rejection and thus can be tuned independently.

Cosimulate MPC Controller and Nonlinear Plant

Use cosimulation to determine whether the MPC design is robust enough to control the
nonlinear plant model.

Step 1: Add constraints to the MPC controller

Because the nonlinear plant model has input and output constraints during operation, MV
and OV constraints are defined in the MPC controller as follows:

MV = MPCobj.MV;
0V = MPCobj.0V;
% Physical bounds on MVs at 0 and 100
for i = 1:5
MV(i).Min = 0;
MV(i).Max = 100;
end

MPCobj .MV = MV;
% Keep liquid levels greater than 25% and less than 75% of capacity.

for i = 2:3
0V(i).Min = 25;
0V(i).Max = 75;

end
MPCobj.0V = 0V;

Step 2: Build Simulink model for cosimulation.
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The model can simulate 1% unit step in reflux (MV #3). It can also simulate a change in
feed composition, which is a common disturbance and differs from the load disturbances
considered explicitly in the design.

Step 3: Simulate 1% unit step in reflux (MV #3). Compare the closed-loop responses
between using the linear plant model and using the nonlinear plant model.

Plot distillate product composition (xD) and the reflux rate (R):

Distillate Compaoasition, %

a0

Linear
Rigorous

499

49.8

4897

495 - - - -
0 005 01 015 02 0.25

Reflux Rate, %
51 . T

Linear
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a0.5

Bl —— Sy ——————— ———— ===

0 0.05 0.1 0145 0.2 0.25
Tirme, h

49,5

In cosimulation, the model predictive controller rejects the small load disturbance in a
manner almost identical to the linear simulation.
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Step 4: Simulate a large decrease of benzene fraction (from 0.3 to 0.22) in the feed
stream. Compare the closed-loop responses between using the linear and nonlinear plant
models.

Contralled Outputs, %
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The drop in benzene fraction requires a sustained decrease in the distillate rate and a
corresponding increase in the bottoms rate. There are also sustained drops in the heat
duties and a minor increase in the reflux. All MV adjustments are smooth and all
controlled outputs are nearly back to their setpoints within 0.5 hours.

See Also

mpc

5-121






Adaptive MPC Design

* “Adaptive MPC” on page 6-2
* “Model Updating Strategy” on page 6-6

* “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization” on page 6-8

* “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model
Estimation” on page 6-21

» “Adaptive MPC Control of Nonlinear Chemical Reactor Using Linear Parameter
Varying System” on page 6-34

* “Obstacle Avoidance Using Adaptive Model Predictive Control” on page 6-48
* “Time-Varying MPC” on page 6-61

* “Time-Varying MPC Control of a Time-Varying Plant” on page 6-65

* “Time-Varying MPC Control of an Inverted Pendulum on a Cart” on page 6-72



6 Adaptive MPC Design

Adaptive MPC

6-2

When to Use Adaptive MPC

MPC control predicts future behavior using a linear-time-invariant (LTT) dynamic model.
In practice, such predictions are never exact, and a key tuning objective is to make MPC
insensitive to prediction errors. In many applications, this approach is sufficient for
robust controller performance.

If the plant is strongly nonlinear or its characteristics vary dramatically with time, LTI
prediction accuracy might degrade so much that MPC performance becomes
unacceptable. Adaptive MPC can address this degradation by adapting the prediction
model for changing operating conditions. As implemented in the Model Predictive Control
Toolbox software, adaptive MPC uses a fixed model structure, but allows the models
parameters to evolve with time. Ideally, whenever the controller requires a prediction (at
the beginning of each control interval) it uses a model appropriate for the current
conditions.

After you design an MPC controller for the average or most likely operating conditions of
your control system, you can implement an adaptive MPC controller based on that design.
For information about designing that initial controller, see “Controller Creation”.

At each control interval, the adaptive MPC controller updates the plant model and
nominal conditions. Once updated, the model and conditions remain constant over the
prediction horizon. If you can predict how the plant and nominal conditions vary in the
future, you can use “Time-Varying MPC” on page 6-61 to specify a model that changes
over the prediction horizon.

An alternative option for controlling a nonlinear or time-varying plant is to use gain-
scheduled MPC control. See “Gain-Scheduled MPC” on page 8-2.)

Plant Model

The plant model used as the basis for adaptive MPC must be an LTI discrete-time, state-
space model. See “Basic Models” (Control System Toolbox) or “Linearization Basics”
(Simulink Control Design) for information about creating and modifying such systems.
The plant model structure is as follows:
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x(k+1)=Ax(k)+Byu(k)+ B,v(k)+ Byd(k)
y(k)=Cx(k)+D,v(k)+Dyd(k).

Here, the matrices A, B,, B,, By, C, D, and D, are the parameters that can vary with time.
The other variables in the expression are:

* k — Time index (current control interval).

* x — n, plant model states.

* u — n, manipulated inputs (MVs). These are the one or more inputs that are adjusted
by the MPC controller.

* v — n, measured disturbance inputs.
* d — n,z unmeasured disturbance inputs.

* y— n, plant outputs, including n,,, measured and n,, unmeasured outputs. The total
number of outputs, n, = ny, + ny,. Also, n,,, = 1 (there is at least one measured
output).

Additional requirements for the plant model in adaptive MPC control are:

* Sample time (Ts) is a constant and identical to the MPC control interval.

* Time delay (if any) is absorbed as discrete states (see, e.g., the Control System
Toolbox absorbDelay command).

* Ny Ny, Ny, ng, Ny, and ny, are all constants.

* Adaptive MPC prohibits direct feed-through from any manipulated variable to any
plant output. Thus, D, = 0 in the above model.

* The input and output signal configuration remains constant.

For more details about creation of plant models for MPC control, see “Plant
Specification”.

Nominal Operating Point

A traditional MPC controller includes a nominal operating point at which the plant model
applies, such as the condition at which you linearize a nonlinear model to obtain the LTI
approximation. The Model.Nominal property of the controller contains this information.

In adaptive MPC, as time evolves you should update the nominal operating point to be
consistent with the updated plant model.
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You can write the plant model in terms of deviations from the nominal conditions:

x(k+1)=3_c+A(x(k)—3_c)+B(ut(k)—
y(k)=y+C(x(k)—9_c)+D(ut(k)—L7

)+ Ax
Here, the matrices A, B, C, and D are the parameter matrices to be updated. u; is the

combined plant input variable, comprising the u, v, and d variables defined above. The
nominal conditions to be updated are:

£

o~

x — n, nominal states

Ax — n, nominal state increments

L]
#, — n, nominal inputs

y — n,nominal outputs

State Estimation

By default, MPC uses a static Kalman filter (KF) to update its controller states, which
include the n,, plant model states, ny (= 0) disturbance model states, and n, (= 0)
measurement noise model states. This KF requires two gain matrices, L and M. By
default, the MPC controller calculates them during initialization. They depend upon the
plant, disturbance, and noise model parameters, and assumptions regarding the
stochastic noise signals driving the disturbance and noise models. For more details about
state estimation in traditional MPC, see “Controller State Estimation” on page 2-2.

Adaptive MPC uses a Kalman filter and adjusts the gains, L and M, at each control
interval to maintain consistency with the updated plant model. The result is a linear-time-
varying Kalman filter (LTVKF):

Ly, = (Ak Py1Cre + N )(Cm,kPk|k—1CnTz,k +R )_1

-1
T T
My, = Byp1Cry (C Eep-1Cmp + R)

m

Py = ApPy1 AF - (Akpk|k—1cn7;,k +N )LZ +Q.

Here, Q, R, and N are constant covariance matrices defined as in MPC state estimation.
Ay and C,, are state-space parameter matrices for the entire controller state, defined as
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for traditional MPC but with the portions affected by the plant model updated to time k.
The value Py, is the state estimate error covariance matrix at time k based on
information available at time k-1. Finally, L, and M, are the updated KF gain matrices.
For details on the KF formulation used in traditional MPC, see “Controller State
Estimation” on page 2-2. By default, the initial condition, Py, is the static KF solution
prior to any model updates.

The KF gain and the state error covariance matrix depend upon the model parameters
and the assumptions leading to the constant Q, R, and N matrices. If the plant model is
constant, the expressions for L, and M, converge to the equivalent static KF solution used
in traditional MPC.

The equations for the controller state evolution at time k are identical to the KF
formulation of traditional MPC described in “Controller State Estimation” on page 2-2,
but with the estimator gains and state space matrices updated to time k.

You have the option to update the controller state using a procedure external to the MPC
controller, and then supply the updated state to MPC at each control instant, k. In this
case, the MPC controller skips all KF and LTVKF calculations.

See Also

More About

. “Model Updating Strategy” on page 6-6
. “Controller State Estimation” on page 2-2

. “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization” on page 6-8

. “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model
Estimation” on page 6-21
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Model Updating Strategy

6-6

Overview

Typically, to implement “Adaptive MPC” on page 6-2 control, you can use one of the
following model-updating strategies:

Successive linearization — Given a mechanistic plant model, for example a set of
nonlinear ordinary differential and algebraic equations, derive its LTI approximation at
the current operating condition. For example, Simulink Control Design™ software
provides linearization tools for this purpose.

Using a Linear Parameter Varying (LPV) model — Control System Toolbox
software provides a LPV System Simulink block that allows you to specify an array of
LTI models with scheduling parameters. You can perform batch linearization offline to
obtain an array of plant models at the desired operating points and then use them in
the LPV System block to provide model updating to the Adaptive MPC Controller
Simulink block.

Online parameter estimation — Given an empirical model structure and initial
estimates of its parameters, use the available real-time plant measurements to
estimate the current model parameters. For example, the System Identification
Toolbox software provides real-time parameter estimation tools.

To implement “Time-Varying MPC” on page 6-61 control, you need to obtain LTI plants
for the future prediction horizon steps. In this case, you can use the successive
linearization and LPV model approaches as long as each model is a function of time

Other Considerations

There are several factors to keep in mind when designing and implementing an adaptive
MPC controller.

Before attempting adaptive MPC, define and tune an MPC controller for the most
typical (nominal) operating condition. Make sure the system can tolerate some
prediction error. Test this tolerance via simulations in which the MPC prediction model
differs from the plant. See “MPC Design”.

An adaptive MPC controller requires more real-time computations than traditional
MPC. In addition to the state estimation calculation, you must also implement and test
a model-updating strategy, which might be computationally intensive.
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* You must determine MPC tuning constants that provide robust performance over the
expected range of model parameters. See “Tune Weights” on page 1-33.

* Model updating via online parameter estimation is most effective when parameter
variations occur gradually.

*  When implementing adaptive MPC control, adapt only parameters defining the
Model.Plant property of the controller. The disturbance and noise models, if any,
remain constant.

See Also
Adaptive MPC Controller

More About
. “Adaptive MPC” on page 6-2

. “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization” on page 6-8

. “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model
Estimation” on page 6-21
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Adaptive MPC Control of Nonlinear Chemical Reactor
Using Successive Linearization

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A first principle nonlinear plant model is available and being linearized at each control

interval. The adaptive MPC controller then updates its internal predictive model with the
linearized plant model and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

u,(t): inlet feed stream temperature

u,(t): concentration of A in inlet feed stream

y,(t): reactor temperature y,(t): concentration of A in reactor

u.(t): jacket coolant temperature
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This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

u; = CA; Concentration of A in inlet feed stream|kgmol/ r.lfﬂ]
uz = T; Inlet feed stream temperature K|
g =T, Jacket coolant temperature| K|

and the outputs (y(t)), which are also the states of the model (x(t)), are:

g1 =23 = CA  Concentration of A in reactor tank[kgmol /m?)
=29 ="T Reactor temperature[ K]

The control objective is to maintain the concentration of reagent A, €' A at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to
high conversion rate. The coolant temperature 7= is the manipulated variable used by the
MPC controller to track the reference as well as reject the measured disturbance arising

from the inlet feed stream temperature 7. The inlet feed stream concentration, €', is
assumed to be constant. The Simulink model mpc_cstr plant implements the nonlinear
CSTR plant.

We also assume that direct measurements of concentrations are unavailable or
infrequent, which is the usual case in practice. Instead, we use a "soft sensor" to estimate
CA based on temperature measurements and the plant model.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:
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» Ifalinear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy. See “Gain-Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System” for more details. Use this approach when all the
plant models have the same order and time delay.

* If alinear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization as shown in this example. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an LPV
system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end
if ~mpcchecktoolboxinstalled('slcontrol")
disp('Simulink Control Design(R) is required to run this example.')
return
end
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To implement an adaptive MPC controller, first you need to design a MPC controller at the
initial operating point where CAi is 10 kgmol/m~ 3, Ti and Tc are 298.15 K.

Create operating point specification.

plant mdl = 'mpc cstr plant';
op = operspec(plant mdl);

Feed concentration is known at the initial condition.

op.Inputs(l).u = 10;
op.Inputs(1l).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.
[op_point, op report] = findop(plant_mdl,op);

Operating point search report:

Operating point search report for the Model mpc cstr plant.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr plant/CSTR/Integrator

X: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr plant/CSTR/Integratorl

X: 8.57 dx: -6.87e-12 (0)
Inputs

(1.) mpc_cstr plant/CAi
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u: 10
(2.) mpc_cstr _plant/Ti
u: 298
(3.) mpc_cstr_plant/Tc
u: 298
Qutputs:
(1.) mpc_cstr _plant/T
y: 311 [-Inf Inf]
(2.) mpc_cstr _plant/CA
y: 8.57 [-Inf Inf]

Obtain nominal values of x, y and u.

x0 = [op _report.States(l).x;op report.States(2).x];
y0 = [op _report.Outputs(l).y;op report.Outputs(2).yl;
ud = [op report.Inputs(l).u;op report.Inputs(2).u;op report.Inputs(3).ul;

Obtain linear plant model at the initial condition.

sys = linearize(plant mdl, op point);

Drop the first plant input CAi because it is not used by MPC.
sys = sys(:,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time
plant model.

Ts = 0.5;
plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive mode,
the plant model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances
plant.InputGroup.ManipulatedVariables
plant.OutputGroup.Measured = 1;
plant.OutputGroup.Unmeasured = 2;
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plant.InputName = {'Ti','Tc'};
plant.OQutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);

Set nominal values in the controller

mpcobj .Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', y0, 'DX', [0 O]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [30 50];
Yscale = [50 10];
mpcobj.DV(1).ScaleFactor = Uscale(l);
mpcobj.MV(1).ScaleFactor = Uscale(2);
mpcobj.0V(1l).ScaleFactor = Yscale(l);
mpcobj.0V(2).ScaleFactor = Yscale(2);

Let reactor temperature T float (i.e. with no setpoint tracking error penalty), because the
objective is to control reactor concentration CA and only one manipulated variable
(coolant temperature Tc) is available.

mpcobj.Weights.0V = [0 1];

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by degrees
per minute.

-2
2;

mpcobj .MV.RateMin
mpcobj.MV.RateMax

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

Open the Simulink model.

mdl = 'ampc_cstr_linearization';
open_system(mdl);
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The model includes three parts:

CA Reference

Capyright 1980-2014 The MathWarks, Inc.

The "CSTR" block implements the nonlinear plant model.
The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.

3 The "Successive Linearizer" block in a MATLAB Function block that linearizes a first
principle nonlinear CSTR plant and provides the linear plant model to the "Adaptive
MPC Controller" block at each control interval. Double click the block to see the
MATLAB code. You can use the block as a template to develop appropriate linearizer

for your own applications.

Note that the new linear plant model must be a discrete time state space system with the
same order and sample time as the original plant model has. If the plant has time delay, it
must also be same as the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance

rejection.

» Tracking: reactor concentration CA setpoint transitions from original 8.57 (low
conversion rate) to 2 (high conversion rate) kgmol/m~ 3. During the transition, the
plant first becomes unstable then stable again (see the poles plot).
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* Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to the MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'])
open_system([mdl '/Pole'])
sim(mdl);

."'. -

File Tools View Simulation Help

G- QP ® - A C-|FH-

Resady
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bdclose(mdl);

The tracking and regulating performance is very satisfactory. In an application to a real
reactor, however, model inaccuracies and unmeasured disturbances could cause poorer
tracking than shown here. Additional simulations could be used to study these effects.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than a non-adaptive MPC. To
illustrate this point, the control performance of the same MPC controller running in the
non-adaptive mode is shown below. The controller is implemented with a MPC Controller
block.

mdll = 'ampc cstr no linearization';
open_system(mdll);

open_system([mdll '/Concentration'])
open_system([mdll '/Temperature'])
sim(mdl1);
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As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl1)

See Also
Adaptive MPC Controller

More About

“Adaptive MPC” on page 6-2

“Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model
Estimation” on page 6-21
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Adaptive MPC Control of Nonlinear Chemical Reactor
Using Online Model Estimation

This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A discrete time ARX model is being identified online by the Recursive Polynomial Model

Estimator block at each control interval. The adaptive MPC controller uses it to update
internal plant model and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

u,(t): inlet feed stream temperature

u,(t): concentration of A in inlet feed stream

y,(t): reactor temperature y,(t): concentration of A in reactor

u.(t): jacket coolant temperature
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This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

u; = CA; Concentration of A in inlet feed stream|kgmol/ mﬂ]
z = T; Inlet feed stream temperature K|
ug =T, Jacket coolant temperature| K|

and the outputs (y(t)), which are also the states of the model (x(t)), are:

y = x; = CA  Concentration of A in reactor tank[kgmol /m?)
to = xo =T Reactor temperature| K|

The control objective is to maintain the reactor temperature T at its desired setpoint,
which changes over time when reactor transitions from low conversion rate to high

conversion rate. The coolant temperature T is the manipulated variable used by the MPC
controller to track the reference as well as reject the measured disturbance arising from
the inlet feed stream temperature 7:. The inlet feed stream concentration, C'4;, is
assumed to be constant. The Simulink model mpc_cstr plant implements the nonlinear
CSTR plant.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

» Ifalinear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:
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(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy. See “Gain-Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System” for more details. Use this approach when all the
plant models have the same order and time delay.

* If alinear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed, as shown in this
example. Use this approach when linear plant model cannot be obtained from either an
LPV system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition
To linearize the plant, Simulink® and Simulink Control Design™ are required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end
if ~mpcchecktoolboxinstalled('slcontrol")
disp('Simulink Control Design(TM) is required to run this example.')
return
end

To implement an adaptive MPC controller, first you need to design a MPC controller at the
initial operating point where CAi is 10 kgmol/m~ 3, Ti and Tc are 298.15 K.

Create operating point specification.
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plant mdl = 'mpc cstr plant’;
op = operspec(plant mdl);

Feed concentration is known at the initial condition.

op.Inputs(l).u = 10;
op.Inputs(1l).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.
[op_point, op report] = findop(plant _mdl,op);

Operating point search report:

Operating point search report for the Model mpc cstr plant.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr plant/CSTR/Integrator

X: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr plant/CSTR/Integratorl

X: 8.57 dx: -6.87e-12 (0)
Inputs
(1.) mpc_cstr plant/CAi

u: 10
(2.) mpc_cstr _plant/Ti

u: 298
(3.) mpc_cstr_plant/Tc

u: 298
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Qutputs:
(1.) mpc_cstr _plant/T

y: 311 [-Inf Inf]
(2.) mpc_cstr _plant/CA

y: 8.57 [-Inf Inf]

Obtain nominal values of x, y and u.

X0 = [op_report.States(1l).x;op _report.States(2).x];
y0 = [op_report.Outputs(l).y;op report.Outputs(2).yl;
ud = [op_report.Inputs(l).u;op_report.Inputs(2).u;op report.Inputs(3).ul;

Obtain linear plant model at the initial condition.

sys = linearize(plant mdl, op_point);

Drop the first plant input CAi and second output CA because they are not used by MPC.
sys = sys(1,2:3);

Discretize the plant model because Adaptive MPC controller only accepts a discrete-time
plant model.

Ts = 0.5;
plant = c2d(sys,Ts);

Design MPC Controller

You design an MPC at the initial operating condition. When running in the adaptive mode,
the plant model is updated at run time.

Specify signal types used in MPC.

plant.InputGroup.MeasuredDisturbances
plant.InputGroup.ManipulatedVariables
plant.QutputGroup.Measured = 1;
plant.InputName = {'Ti','Tc'};
plant.OQutputName = {'T'};

=

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant);
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Set nominal values in the controller
mpcobj .Model.Nominal = struct('X', x0, 'U', u0(2:3), 'Y', yO(1l), 'DX', [0 O]);

Set scale factors because plant input and output signals have different orders of
magnitude

Uscale = [30 50];

Yscale = 50;
mpcobj.DV.ScaleFactor = Uscale(l);
mpcobj .MV.ScaleFactor = Uscale(2);
mpcobj.0V.ScaleFactor = Yscale;

Due to the physical constraint of coolant jacket, Tc rate of change is bounded by 2
degrees per minute.

-2
2;

mpcobj .MV.RateMin
mpcobj.MV.RateMax

Reactor concentration is not directly controlled in this example. If reactor temperature
can be successfully controlled, the concentration will achieve desired performance
requirement due to the strongly coupling between the two variables.

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)

To run this example with online estimation, System Identification Toolbox™ software is
required.

if ~mpcchecktoolboxinstalled('ident"')
disp('System Identification Toolbox(TM) is required to run this example.')
return

end

Open the Simulink model.

mdl = 'ampc cstr _estimation';
open_system(mdl);
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The model includes three parts:

The "CSTR" block implements the nonlinear plant model.

The "Adaptive MPC Controller" block runs the designed MPC controller in the
adaptive mode.

3 The "Recursive Polynomial Model Estimator" block estimates a two-input (Ti and Tc)
and one-output (T) discrete time ARX model based on the measured temperatures.
The estimated model is then converted into state space form by the "Model Type
Converter" block and fed to the "Adaptive MPC Controller" block at each control
interval.

In this example, the initial plant model is used to initialize the online estimator with
parameter covariance matrix set to 1. The online estimation method is "Kalman Filter"
with noise covariance matrix set to 0.01. The online estimation result is sensitive to these
parameters and you can further adjust them to achieve better estimation result.

Both "Recursive Polynomial Model Estimator" and "Model Type Converter" are provided
by System Identification Toolbox. You can use the two blocks as a template to develop
appropriate online model estimation for your own applications.

The initial value of A(q) and B(q) variables are populated with the numerator and
denominator of the initial plant model.

[num, den] = tfdata(plant);

Aq = den{l};
Bg = num;
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Note that the new linear plant model must be a discrete time state space system with the
same order and sample time as the original plant model has. If the plant has time delay, it
must also be same as the original time delay and absorbed into the state space model.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.

» Tracking: reactor temperature T setpoint transitions from original 311 K (low
conversion rate) to 377 K (high conversion rate) kgmol/m” 3.

* Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'l])
sim(mdl);
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The tracking and regulating performance is very satisfactory.

Compare with Non-Adaptive MPC Control

Adaptive MPC provides superior control performance than non-adaptive MPC. To
illustrate this point, the control performance of the same MPC controller running in the
non-adaptive mode is shown below. The controller is implemented with a MPC Controller
block.

mdll = 'ampc cstr no estimation';
open_system(mdll);

open_system([mdll '/Concentration'])
open_system([mdll '/Temperature'])
sim(mdl1);
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As expected, the tracking and regulating performance is unacceptable.

bdclose(mdl)
bdclose(mdl1)

See Also
Adaptive MPC Controller

More About

“Adaptive MPC” on page 6-2

“Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization” on page 6-8
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This example shows how to use an Adaptive MPC controller to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

A linear parameter varying (LPV) system consisting of three linear plant models is
constructed offline to describe the local plant dynamics across the operating range. The
adaptive MPC controller then uses the LPV system to update the internal predictive
model at each control interval and achieves nonlinear control successfully.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process
industry. A schematic of the CSTR system is:

u,(t): inlet feed stream temperature

u,(t): concentration of A in inlet feed stream

y,(t): reactor temperature y,(t): concentration of A in reactor

u.(t): jacket coolant temperature
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This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

u; = CA; Concentration of A in inlet feed stream|kgmol/ n.'?’]
e = T; Inlet feed stream temperature K|
ug =T, Jacket coolant temperature| K|

and the outputs (y(t)), which are also the states of the model (x(t)), are:

y = x; = CA  Concentration of A in reactor tank[kgmol /m?)
to = xo =T Reactor temperature| K|

The control objective is to maintain the concentration of reagent A, €' A at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to
high conversion rate. The coolant temperature 7= is the manipulated variable used by the
MPC controller to track the reference as well as reject the measured disturbance arising
from the inlet feed stream temperature 7. The inlet feed stream concentration, €', is
assumed to be constant. The Simulink model mpc_cstr plant implements the nonlinear
CSTR plant.

About Adaptive Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

» Ifalinear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:
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(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
on a desired scheduling strategy. See “Gain-Scheduled MPC Control of Nonlinear
Chemical Reactor” for more details. Use this approach when the plant models have
different orders or time delays.

(2) Design one MPC controller offline at the initial operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy) as shown in this example. Use this approach when all the
plant models have the same order and time delay.

* If alinear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an LPV
system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To linearize the plant, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end
if ~mpcchecktoolboxinstalled('slcontrol")
disp('Simulink Control Design(R) is required to run this example.')
return
end

First, a linear plant model is obtained at the initial operating condition, CAi is 10 kgmol/
m~”3, Ti and Tc are 298.15 K. Functions from Simulink Control Design such as "operspec",
"findop", "linearize", are used to generate the linear state space system from the Simulink
model.
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Specify sample time used by plant models and MPC controller

Ts = 0.5;

% Create operating point specification.
plant mdl = 'mpc cstr plant';

op = operspec(plant mdl);

Feed concentration is known at the initial condition.

op.Inputs(l).u = 10;
op.Inputs(l).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op_point,op report] = findop(plant mdl,o0p);

% Obtain nominal values of x, y and u.

x0 initial [op_report.States(l).x; op_report.States(2).x];

y0 initial [op_report.Outputs(l).y; op report.Outputs(2).y];

ud_initial [op_report.Inputs(l).u; op_report.Inputs(2).u; op_report.Inputs(3).u];

Operating point search report:

Operating point search report for the Model mpc cstr plant.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr plant/CSTR/Integrator

X: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr plant/CSTR/Integratorl
X: 8.57 dx: -6.87e-12 (0)
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(1.) mpc_cstr plant/CAi
u: 10
(2.) mpc_cstr _plant/Ti
u: 298
(3.) mpc_cstr_plant/Tc
u: 298

Outputs:

(1.) mpc_cstr _plant/T

y: 311 [-Inf Inf]
(2.) mpc_cstr _plant/CA

y: 8.57 [-Inf Inf]

Obtain linear model at the initial condition.

plant initial = linearize(plant _mdl,op point);
% Discretize the plant model

plant initial = c2d(plant initial,Ts);

Specify signal types and names used in MPC.

plant _initial.InputGroup.UnmeasuredDisturbances [12];

plant _initial.InputGroup.ManipulatedVariables = 3;
plant _initial.OutputGroup.Measured = [1 2];

plant _initial.InputName = {'CAi','Ti','Tc'};

plant _initial.OutputName = {'T','CA'};

Obtain Linear Plant Model at Intermediate Operating Condition
Create operating point specification.

op = operspec(plant mdl);

Feed concentration is known.

op.Inputs(l).u = 10;
op.Inputs(l).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;
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Reactor concentration is known

op.Outputs(2).y = 5.5;

op.Outputs(2).Known

= true;

Find steady state operating condition.

[op_point,op report]
% Obtain nominal values of x,
x0 intermediate
y0 intermediate
ud intermediate

Operating point search report:

= findop(plant_mdl,op);
y and u.

[op_report.States(1l).x;
[op_report.Outputs(l).y; op report.Outputs(2).yl;
[op_report.Inputs(l).u;

op_report.States(2).x];

op_report.Inputs(2).u; op _report.Inputs(3).u.

Operating point search report for the Model mpc cstr plant.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:

(1.) mpc_cstr plant/CSTR/Integrator

X: 339 dx:
(2.) mpc_cstr plant/CSTR/Integratorl
X: 5.5 dx:
Inputs
(1.) mpc_cstr plant/CAi
u: 10
(2.) mpc_cstr _plant/Ti
u: 298
(3.) mpc_cstr_plant/Tc
u: 298 [-Inf Inf]
Outputs:
(1.) mpc_cstr plant/T
y: 339 [-Inf Inf]
(2.) mpc_cstr _plant/CA
y: 5.5 (5.5)

3.42e-08 (0)

-2.87e-09 (0)
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Obtain linear model at the initial condition.

plant _intermediate = linearize(plant _mdl,op point);
% Discretize the plant model
plant _intermediate = c2d(plant_intermediate,Ts);

Specify signal types and names used in MPC.

plant intermediate.InputGroup.UnmeasuredDisturbances [12];

plant intermediate.InputGroup.ManipulatedVariables = 3;
plant intermediate.OutputGroup.Measured = [1 2];

plant intermediate.InputName = {'CAi','Ti','Tc'};

plant intermediate.OutputName = {'T','CA'};

Obtain Linear Plant Model at Final Operating Condition

Create operating point specification.
op = operspec(plant mdl);
Feed concentration is known.

op.Inputs(l).u = 10;
op.Inputs(l).Known = true;

Feed temperature is known.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Reactor concentration is known

op.Outputs(2).y = 2;
op.Outputs(2).Known = true;

Find steady state operating condition.

[op_point,op report] = findop(plant mdl,op);
% Obtain nominal values of x, y and u.

x0 final = [op_report.States(1l).x; op report.States(2).x];
y0 final = [op_report.Outputs(l).y; op report.Outputs(2).y];
ud final = [op _report.Inputs(l).u; op report.Inputs(2).u; op_report.Inputs(3).ul;

Operating point search report:
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Operating point search report for the Model mpc cstr plant.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr plant/CSTR/Integrator

X: 373 dx: 5.57e-11 (0)
(2.) mpc_cstr plant/CSTR/Integratorl
X: dx: -4.6e-12 (0)
Inputs
(1.) mpc_cstr plant/CAi
u: 10
(2.) mpc_cstr _plant/Ti
u: 298
(3.) mpc_cstr _plant/Tc
u: 305 [-Inf Inf]
Outputs:
(1.) mpc_cstr _plant/T
y: 373 [-Inf Inf]
(2.) mpc_cstr _plant/CA
y: 2 (2)

Obtain linear model at the initial condition.

plant final = linearize(plant mdl,op point);
% Discretize the plant model
plant final = c2d(plant final,Ts);

Specify signal types and names used in MPC.

plant _final.InputGroup.UnmeasuredDisturbances = [1 2];
plant final.InputGroup.ManipulatedVariables = 3;

plant final.OutputGroup.Measured = [1 2];

plant final.InputName = {'CAi','Ti','Tc'};

plant final.OutputName = {'T','CA"'};
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Construct Linear Parameter Varying System

You can use an LTI array to store the three linear plant models obtained in previous

sections.

lpv(:,:,1) = plant initial;
lpv(:,:,2) = plant intermediate;
lpv(:,:,3) = plant final;

Specify reactor temperature T as the scheduling parameter.
lpv.SamplingGrid = struct('T',[y0 initial(l); y0 intermediate(1l); yO final(1l)]);

Specify nominal values of plant inputs, outputs and states at each steady state operating

point.

lpv _u@(:,:,1) = ud initial;

lpv _u0(:,:,2) = ul intermediate;
lpv_u@(:,:,3) = u0 final;
lpv_yO(:,:,1) = y0 initial;

lpv _yO(:,:,2) = y0 intermediate;
lpv_y0O(:,:,3) = y0 final;

lpv _x0(:,:,1) = x0 _initial;

lpv _x0(:,:,2) = x0 intermediate;
lpv_x0(:,:,3) = x0 final;

You don't need to provide input signal "u" to the LPV System block because plant output
signal "y" is not used in this example.

Design MPC Controller at Initial Operating Condition

You design a MPC controller at the initial operating condition but the controller settings
such as horizons and tuning weights should be chosen such that they apply to the whole
operating range.

Create MPC controller with default prediction and control horizons
mpcobj = mpc(plant _initial,Ts);

Set nominal values in the controller. Note that nominal values for unmeasured
disturbance must be zero.

mpcobj .Model.Nominal = struct('X',x0 initial,'U',[0;0;u0 initial(3)],'Y',y0 initial, 'D
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Set scale factors because plant input and output signals have different orders of
magnitude

Uscale [10;30;501;
Yscale [50;101];
mpcobj .DV(1).ScaleFactor = Uscale(l
mpcobj .DV(2).ScaleFactor = Uscale(2
mpcobj .MV.ScaleFactor = Uscale(3);
(1
(2

);
);

);
);

mpcobj .0V (1) .ScaleFactor Yscale
mpcobj.0V(2).ScaleFactor Yscale

The goal will be to track a specified transition in the reactor concentration. The reactor
temperature will be measured and used in state estimation but the controller will not
attempt to regulate it directly. It will vary as needed to regulate the concentration. Thus,
set its MPC weight to zero.

mpcobj.Weights.0V = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes
integrated white noise with unit magnitude at these inputs when configuring the state
estimator. Increase the state estimator signal-to-noise by a factor of 10 to improve
disturbance rejection performance.

Dist = ss(getindist(mpcobj));

Dist.B = eye(2)*10;

setindist(mpcobj, 'model',Dist);

All other MPC parameters are at their default values.

Implement Adaptive MPC Control of CSTR Plant in Simulink (R)
Open the Simulink model.

mdl = 'ampc cstr lpv';
open_system(mdl);
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The model includes three parts:

The "CSTR" block implements the nonlinear plant model.
The "Adaptive MPC Controller" block runs the designed MPC controller in the

adaptive mode.

The "LPV System" block provides local state space plant model and its nominal values
via interpolation at each control interval. The plant model is then fed to the "Adaptive
MPC Controller" block and updates the predictive model used by MPC controller. In
this example, the initial plant model is used to initialize the LPV System block.

The "LPV System" is provided by Control System Toolbox. You can use the Simulink model
as a template to develop your own LPV based adaptive MPC applications.

Validate Adaptive MPC Control Performance

Controller performance is validated against both setpoint tracking and disturbance
rejection.
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» Tracking: reactor temperature T setpoint transitions from original 311 K (low
conversion rate) to 377 K (high conversion rate) kgmol/m~ 3. During the transition, the
plant first becomes unstable then stable again (see the poles plot).

* Regulating: feed temperature Ti has slow fluctuation represented by a sine wave with
amplitude of 5 degrees, which is a measured disturbance fed to MPC controller.

Simulate the closed-loop performance.

open_system([mdl '/Concentration'])
open_system([mdl '/Temperature'l])

sim(mdl);
i = =] &3
File Tools View Simulation Help u

G- QP ® - A C-|FH-

Feady T=200.000
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i

File Tools View Simulation

Ready

Help u
G- QP ® | =-AQA-E-FE-

Temperatures, K

T=200.000

The tracking and regulating performance is very satisfactory.
bdclose(mdl)

See Also
Adaptive MPC Controller

More About

“Adaptive MPC” on page 6-2

“Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation” on page 6-21




See Also

“Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive
Linearization” on page 6-8
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Obstacle Avoidance Using Adaptive Model Predictive
Control

6-48

This example shows how to make a vehicle (ego car) follow a reference velocity and avoid
obstacles in the lane using adaptive MPC. To do so, you update the plant model and linear
mixed input/output constraints at run time.

Obstacle Avoidance

A vehicle with obstacle avoidance (or passing assistance) has a sensor, such as lidar, that
measures the distance to an obstacle in front of the vehicle and in the same lane. The
obstacle can be static, such as a large pot hole, or moving, such as a slow-moving vehicle.
The most common maneuver from the driver is to temporarily move to another lane, drive
past the obstacle, and move back to the original lane afterward.

As part of the autonomous driving experience, an obstacle avoidance system can perform
the maneuver without human intervention. In this example, you design an obstacle
avoidance system that moves the ego car around a static obstacle in the lane using
throttle and steering angle. This system uses an adaptive model predictive controller that
updates both the predictive model and the mixed input/output constraints at each control
interval.

Vehicle Model

The ego car has a rectangular shape with a length of 5 meters and width of 2 meters. The
model has four states:

* - Global X position of the car center

* U -Global Y position of the car center

* ¢ - Heading angle of the car (0 when facing east, counterclockwise positive)
* - Speed of the car (positive)

There are two manipulated variables:

« T - Throttle (positive when accelerating, negative when decelerating)

* 4 - Steering angle (0 when aligned with car, counterclockwise positive)

Use a simple nonlinear model to describe the dynamics of the ego car:
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where C'L is the car length.

Also, assume all the states are measurable. At the nominal operating point, the ego car
drives east at a constant speed of 20 meters per second.

V = 20;
x0 = [0; 0; 0; VI;
ud = [0; 01;

Obtain a linear plant model at the nominal operating point and convert it into a discrete-
time model to be used by the model predictive controller.

Ts = 0.02;

[Ad,Bd,Cd,Dd,U,Y,X,DX] = obstacleVehicleModelDT(Ts,x0,u0);
dsys = ss(Ad,Bd,Cd,Dd, 'Ts',Ts);

dsys.InputName = {'Throttle', 'Delta'};

dsys.StateName {'X",'Y",'Theta','V'};

dsys.OutputName = dsys.StateName;

Road and Obstacle Information
In this example, assume that:

* The road is straight and has 3 lanes.

* Each lane is 4 meters wide.

* The ego car drives in the middle of the center lane when not passing.

» Without losing generality, the ego car passes an obstacle only from the left (fast) lane.

lanes = 3;
laneWidth = 4;

The obstacle in this example is a nonmoving object in the middle of the center lane with
the same size as the ego car.

obstacle = struct;
obstacle.Length = 5;
obstacle.Width = 2;
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Place the obstacle 50 meters down the road.

obstacle.X
obstacle.Y

50;
0;

Create a virtual safe zone around the obstacle so that the ego car does not get too close
to the obstacle when passing it. The safe zone is centered on the obstacle and has a:

* Length equal to two car lengths.

* Width equal to two lane widths.

obstacle.safeDistanceX obstacle.Length;

obstacle.safeDistanceY = laneWidth;
obstacle = obstacleGenerateObstacleGeometryInfo(obstacle);

In this example, assume that the lidar device can detect an obstacle 30 meters in front of
the vehicle.

obstacle.DetectionDistance = 30;
Plot the following at the nominal condition:

* Ego car - Green dot with black boundary
* Horizontal lanes - Dashed blue lines

* Obstacle - Red x with black boundary

» Safe zone - Dashed red boundary.

f = obstaclePlotInitialCondition(x0,obstacle, laneWidth, lanes);
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Obstacle Avoidance Maneuver
'5 T T T T T T T T T

—"5 i i i i i i i
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X

MPC Design at the Nominal Operating Point

Design a model predictive controller that can make the ego car maintain a desired
velocity and stay in the middle of the center lane.

status
mpcobj

mpcverbosity('off');
mpc(dsys) ;

The prediction horizon is 25 steps, which is equivalent to 0.5 seconds.

mpcobj.PredictionHorizon = 25;
mpcobj.ControlHorizon = 5;

To prevent the ego car from accelerating or decelerating too quickly, add a hard
constraint of 0.2 (m”2/sec) on the throttle rate of change.
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mpcobj.ManipulatedVariables(1l).RateMin
mpcobj.ManipulatedVariables (1) .RateMax

-0.2;
0.2;

Similarly, add a hard constraint of 6 degrees per sec on the steering angle rate of change.

mpcobj.ManipulatedVariables(2).RateMin
mpcobj.ManipulatedVariables(2).RateMax

-pi/30;
pi/30;

Scale the throttle and steering angle by their respective operating ranges.

mpcobj .ManipulatedVariables(1l).ScaleFactor
mpcobj .ManipulatedVariables(2).ScaleFactor

2;
0.2;

Since there are only two manipulated variables, to achieve zero steady-state offset, you
can choose only two outputs for perfect tracking. In this example, choose the Y position
and velocity by setting the weights of the other two outputs (X and theta) to zero. Doing
so lets the values of these other outputs float.

mpcobj .Weights.OutputVariables = [0 1 0 1];

Update the controller with the nominal operating condition. For a discrete-time plant:

e U uo

+ X = x0

* Y = Cd*x0 + Dd*u0

* DX = Ad*X0 + Bd*u® - x0

mpcobj .Model.Nominal = struct('U',U,'Y",Y, X", X, 'DX",DX);
Specify Mixed 1/0 Constraints for Obstacle Avoidance Maneuver

There are different strategies to make the ego car avoid an obstacle on the road. For
example, a real-time path planner can compute a new path after an obstacle is detected
and the controller follows this path.

In this example, use a different approach that takes advantage of the ability of MPC to
handle constraints explicitly. When an obstacle is detected, it defines an area on the road
(in terms of constraints) that the ego car must not enter during the prediction horizon. At
the next control interval, the area is redefined based on the new positions of the ego car
and obstacle until passing is completed.

To define the area to avoid, use the following mixed input/output constraints:
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E*u + F*y <= G

where u is the manipulated variable vector and y is the output variable vector. You can
update the constraint matrices E, F, and G when the controller is running.

The first constraint is an upper bound on ¥ (¥ = U on this three-lane road).

El = [0 0O];

F1 =[0 10 0];

Gl = laneWidth*lanes/2;

The second constraint is a lower bound on ¥ (¥ = —% on this three-lane road).
E2 = [0 O];

F2 = [0 -1 0 0];

G2 = laneWidth*lanes/2;

The third constraint is for obstacle avoidance. Even though no obstacle is detected at the
nominal operating condition, you must add a "fake" constraint here because you cannot
change the dimensions of the constraint matrices at run time. For the fake constraint, use
a constraint with the same form as the second constraint.

E3 = [0 0O];
F3 =[0 -1 0 0];
G3 = laneWidth*lanes/2;

Specify the mixed input/output constraints in the controller using the setconstraint
function.

setconstraint(mpcobj,[E1;E2;E3],[F1;F2;F3],[G1l;G2;G3]);
Simulate Controller

In this example, you use an adaptive MPC controller because it handles the nonlinear
vehicle dynamics more effectively than a traditional MPC controller. A traditional MPC
controller uses a constant plant model. However, adaptive MPC allows you to provide a
new plant model at each control interval. Because the new model describes the plant
dynamics more accurately at the new operating condition, an adaptive MPC controller
performs better than a traditional MPC controller.

Also, to enable the controller to avoid the safe zone surrounding the obstacle, you update
the third mixed constraint at each control interval. Basically, the ego car must be above
the line formed from the ego car to the upper left corner of the safe zone. For more
details, open obstacleComputeCustomConstraint.
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Use a constant reference signal.
refSignal = [0 0 0 V];

Initialize plant and controller states.
X = X0;

u = uo;

egoStates = mpcstate(mpcobj);
The simulation time is 4 seconds.

T =0:Ts:4;

Log simulation data for plotting.
saveSlope = zeros(length(T),1);
savelntercept = zeros(length(T),1);

ympc zeros(length(T),size(Cd,1));
umpc zeros(length(T),size(Bd,2));

Run the simulation.

for k = 1:1length(T)
% Obtain new plant model and output measurements for interval |k].
[Ad,Bd,Cd,Dd,U,Y,X,DX] = obstacleVehicleModelDT(Ts,x,u);
measurements = Cd * x + Dd * u;
ympc(k,:) = measurements';

Determine whether the vehicle sees the obstacle, and update the mixed
I/0 constraints when obstacle is detected.

etection = obstacleDetect(x,obstacle, laneWidth);
[E,F,G,saveSlope(k),savelntercept(k)] = ...

Q o o°

obstacleComputeCustomConstraint(x,detection,obstacle,laneWidth, lanes);

% Prepare new plant model and nominal conditions for adaptive MPC.
newPlant = ss(Ad,Bd,Cd,Dd, 'Ts',Ts);
newNominal = struct('U',U,'Y"',Y, " 'X"',X, 'DX',DX);

% Prepare new mixed I/0 constraints.
options = mpcmoveopt;
options.CustomConstraint = struct('E',E,'F',F,'G"',G);

Compute optimal moves using the updated plant, nominal conditions,
and constraints.

%
%
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[u,Info] = mpcmoveAdaptive(mpcobj,egoStates,newPlant,newNominal, ...
measurements, refSignal, [],options);
umpc(k,:) = u';

% Update the plant state for the next iteration |k+1].
X =Ad * x + Bd * u;

end

mpcverbosity(status);

Analyze Results

Plot the trajectory of the ego car (black line) and the third mixed I/O constraints (dashed
green lines) during the obstacle avoidance maneuver.

figure(f)
for k = 1:length(saveSlope)
X = [0;50;100];
Y = saveSlope(k)*X + savelntercept(k);

line(X,Y, 'LineStyle','--",'Color','qg" )
end
plot(ympc(:,1),ympc(:,2)," -k');
axis([0 ympc(end,1l) -laneWidth*lanes/2 laneWidth*lanes/2]) % reset axis
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Obstacle Avoidance Maneuver

T
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The MPC controller successfully completes the task without human intervention.

Simulate Controller in Simulink

Open the Simulink model. The obstacle avoidance system contains multiple components:

Plant Model Generator - Produce new plant model and nominal values
Obstacle Detector - Detect obstacle (lidar sensor not included)
Constraint Generator - Produce new mixed I/O constraints

Adaptive MPC - Control obstacle avoidance maneuver
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mdl = 'mpc_ObstacleAvoidance';
open system(mdl)
sim(mdl)

st 1
fen

I'—‘

Ego Car

Reference

Steering Angle

Copyright 1980-2017 The MathWarks, Inc.
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The simulation result is identical to the command-line result. To support a rapid

prototyping workflow, you can generate C/C++ code for the blocks in the obstacle
avoidance system.

bdclose(md1l)

See Also

Blocks
Adaptive MPC Controller

Functions

mpcmoveAdaptive | mpcmoveopt

More About

. “Adaptive MPC” on page 6-2

. “Update Constraints at Run Time” on page 5-30

. “Automated Driving Using Model Predictive Control” on page 11-2
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Time-Varying MPC

When to Use Time-Varying MPC

To adapt to changing operating conditions, adaptive MPC supports updating the
prediction model and its associated nominal conditions at each control interval. However,
the updated model and conditions remain constant over the prediction horizon. If you can
predict how the plant and nominal conditions vary in the future, you can use time-varying
MPC to specify a model that changes over the prediction horizon. Such a linear time-
varying (LTV) model is useful when controlling periodic systems or nonlinear systems that
are linearized around a time-varying nominal trajectory.

To use time-varying MPC, specify arrays for the Plant and Nominal input arguments of
mpcmoveAdaptive. For an example of time-varying MPC, see “Time-Varying MPC Control
of a Time-Varying Plant” on page 6-65.

Time-Varying Prediction Models

Consider the LTV prediction model

x(k+1) = A(R)x(k)+ By (k)u(k)+ By ()v(k)
y(k)=C(k)x(k)+D, (k)v(k)

where A, By, B,, C, and D are discrete-time state-space matrices that can vary with time.
The other model parameters are:

* k — Current control interval time index

* x — Plant model states

* u — Manipulated variables

* v — Measured disturbance inputs

* y — Measured and unmeasured plant outputs

Since time-varying MPC extends adaptive MPC, the plant model requirements are the
same; that is, for each model in the Plant array:

* Sample time (Ts) is constant and identical to the MPC controller sample time.

* Any time delays are absorbed as discrete states.
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* The input and output signal configuration remains constant.
* There is no direct feed-through from the manipulated variables to the plant outputs.

For more information, see “Plant Model” on page 6-2.

The prediction of future trajectories for p steps into the future, where p is the prediction
horizon, is the same as for the adaptive MPC case:

y(1) Au(0) v(0)
: Syx(0)+Squ(-1)+ S, : +H,|
y(p) Au(p-1) v(p)

However, for an LTV prediction model, the matrices S,, S,;, S,, and H, are:

(12, 40)B0)] - - cr)B(p-1
(




Time-Varying MPC

where H S A ky)A(ky—1)...A(ky) if kg > ky, or I otherwise.
For more information on the prediction matrices for implicit MPC and adaptive MPC, see

“QP Matrices” on page 2-14.

Time-Varying Nominal Conditions

Linear models are often obtained by linearizing nonlinear dynamics around time-varying
nominal trajectories. For example, consider the following LTI model, obtained by
linearizing a nonlinear system at the time-varying nominal offsets X,z Uyg Vo, and yg

x(k+1)—xop (k+1) = A(E)(x(k) - xopr (k) + By (k)((k) - ugg ()
+B, (k) (v() v (k)) + Aoy ()
x (

¥(k) = yofr (k) = C(k)(x (k) = xopr (k) + Dy (k)(v (k) = vogr (k)

If we define

xOff E x(O), uoff = u(O)
Voir £0(0), Yo = 5(0)

as standard nominal values that remain constant over the prediction horizon, we can
transform the LTT model into the following LTV model:

x(k+1) = xop = A()(x(k) - 2op )+ By (k) (w(E) — sy ) + B, (k) (v(k) —vosr ) + Bo (k)

¥(k) = Yo = C () (x(k) = %o )+ Dy () (0 (k) =iy ) + Do (k)

By (k) & Axyp (k) + 205 (R) — xﬁ+A(k)(xof—xoﬁf(k))+Bu (k)(uoﬁ"_uoff (k))
+B, (k)(vor — Vosy (R))
Dy (k) 2 yopr (k)= Yopp +C (k) (Xopr = Zogy (k) + Dy (k) (ogy ~ gy (k)

(
)
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If the original linearized model is already LTV, the same transformation applies.

State Estimation

As with adaptive MPC, time-varying MPC uses a time-varying Kalman filter based on A(0),
B(0), C(0), and D(0) from the initial prediction step; that is, the current time at which the
state is estimated. For more information, see “State Estimation” on page 6-4.

See Also

mpcmoveAdaptive

More About

. “Adaptive MPC” on page 6-2

. “Optimization Problem” on page 2-9

. “Time-Varying MPC Control of a Time-Varying Plant” on page 6-65
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Time-Varying MPC Control of a Time-Varying Plant

This example shows how the Model Predictive Control Toolbox™ can use time-varying
prediction models to achieve better performance when controlling a time-varying plant.

The following MPC controllers are compared:

Linear MPC controller based on a time-invariant average model

2 Linear MPC controller based on a time-invariant model, which is updated at each
time step.

3 Linear MPC controller based on a time-varying prediction model.
Time-Varying Linear Plant

In this example, the plant is a single-input-single-output 3rd order time-varying linear
system with poles, zeros and gain that vary periodically with time.

b+ 2cos(2.58)
5 4+ 357 4+ 25 4+ 6 + sin (5¢)

0s 4

(&

The plant poles move between being stable and unstable at run time, which leads to a
challenging control problem.

Generate an array of plant modelsatt =0, 0.1, 0.2, ..., 10 seconds.

Models = tf;

ct = 1;

for t = 0:0.1:10
Models(:,:,ct) = tf([5 5+2*cos(2.5*t)],[1 3 2 6+sin(5*t)]);
ct = ct + 1;

end

Convert the models to state-space format and discretize them with a sample time of 0.1
second.

Ts = 0.1;
Models = ss(c2d(Models,Ts));

MPC Controller Design

The control objective is to track a step change in the reference signal. First, design an
MPC controller for the average plant model. The controller sample time is 0.1 second.
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sys = ss(c2d(tf([5 5],[1 3 2 6]),Ts)); % prediction model
p=3; % prediction horizon
m = 3; % control horizon
mpcobj = mpc(sys,Ts,p,m);

Set hard constraints on the manipulated variable and specify tuning weights.

mpcobj .MV = struct('Min',-2, 'Max',2);
mpcobj.Weights = struct('MV',0, 'MVRate',0.01, 'Output',1);

Set the initial plant states to zero.
X0 = zeros(size(sys.B));

Closed-Loop Simulation with Implicit MPC

Run a closed-loop simulation to examine whether the designed implicit MPC controller
can achieve the control objective without updating the plant model used in prediction.

Set the simulation duration to 5 seconds.
Tstop = 5;
Use the mpcmove command in a loop to simulate the closed-loop response.

yyMPC
uuMPC
X = Xx0;
xmpc = mpcstate(mpcobj);
fprintf('Simulating MPC controller based on average LTI model.\n');
for ct = 1:(Tstop/Ts+1)

% Get the real plant.

real plant = Models(:,:,ct);

% Update and store the plant output.

y = real plant.C*x;

yyMPC = [yyMPC,y];

% Compute and store the MPC optimal move.

u = mpcmove(mpcobj,xmpc,y,1);

UuMPC = [uuMPC,ul;

% Update the plant state.

x = real plant.A*x + real plant.B*u;

[1;
[1;

end

Simulating MPC controller based on average LTI model.
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Closed-Loop Simulation with Adaptive MPC

Run a second simulation to examine whether an adaptive MPC controller can achieve the
control objective.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response.
Update the plant model for each control interval, and use the updated model to compute
the optimal control moves. The mpcmoveAdaptive command uses the same prediction
model across the prediction horizon.

yyAMPC
UuAMPC
X = Xx0;
xmpc = mpcstate(mpcobj);
nominal = mpcobj.Model.Nominal;
fprintf('Simulating MPC controller based on LTI model, updated at each time step t.\n'
for ct = 1:(Tstop/Ts+1)

% Get the real plant.

real plant = Models(:,:,ct);

% Update and store the plant output.

y = real plant.C*x;

yyAMPC = [yyAMPC, y];

% Compute and store the MPC optimal move.

u = mpcmoveAdaptive(mpcobj,xmpc,real plant,nominal,y,1l);

UUAMPC = [uuAMPC,u];

% Update the plant state.

x = real plant.A*x + real plant.B*u;
end

[1;
[1;

Simulating MPC controller based on LTI model, updated at each time step t.

Closed-Loop Simulation with Time-Varying MPC

Run a third simulation to examine whether a time-varying MPC controller can achieve the
control objective.

The controller updates the prediction model at each control interval and also uses time-
varying models across the prediction horizon, which gives MPC controller the best
knowledge of plant behavior in the future.

Use the mpcmoveAdaptive command in a loop to simulate the closed-loop response.

Specify an array of plant models rather than a single model. The controller uses each
model in the array at a different prediction horizon step.
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yyLTVMPC ;
uuLTVMPC [1;
X = x0;
xmpc = mpcstate(mpcobj);
Nominals = repmat(nominal,3,1); % Nominal conditions are constant over the prediction |
fprintf('Simulating MPC controller based on time-varying model, updated at each time s
for ct = 1:(Tstop/Ts+1)
% Get the real plant.
real plant = Models(:,:,ct);
% Update and store the plant output.
y = real plant.C*x;
yyLTVMPC = [yyLTVMPC, yI;
% Compute and store the MPC optimal move.
u = mpcmoveAdaptive(mpcobj,xmpc,Models(:,:,ct:ct+p),Nominals,y,1);
UULTVMPC = [uuLTVMPC,ul;
% Update the plant state.
x = real plant.A*x + real plant.B*u;

end
Simulating MPC controller based on time-varying model, updated at each time step t.

Performance Comparison of MPC Controllers

Compare the closed-loop responses.

t = 0:Ts:Tstop;

figure

subplot(2,1,1);
plot(t,yyMPC,"'-."',t,yyAMPC,"'--"',t,yyLTVMPC);
grid

legend('Implicit MPC', 'Adaptive MPC', 'Time-Varying MPC', 'Location', 'SouthEast"')
title('Plant Output');

subplot(2,1,2)

plot(t,uuMPC,"'-."',t,uuAMPC, "'--"',t,uuLTVMPC)
grid

title('Control Moves');
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Only the time-varying MPC controller is able to bring the plant output close enough to the
desired setpoint.

Closed-Loop Simulation of Time-Varying MPC in Simulink

To simulate time-varying MPC control in Simulink, pass the time-varying plant models to
model inport of the Adaptive MPC Controller block.

xmpc = mpcstate(mpcobj);

mdl = 'mpc_timevarying';
open_system(mdl);

6-69



6 Adaptive MPC Design

6-70

7]
+

model

A J

fen

Adaptive

h

1

u

mo MPC mv

¥ ¥ Yy ¥y Yy Yy v¥Y

)4

raf

Time Varying Predictive Modsl
= ——s{ |

Reference

Time-Varying Plant

Run the simulation.

sim(mdl,Tstop);

B ysim

fprintf('Simulating MPC controller based on LTV model in Simulink.\n');

Simulating MPC controller based on LTV model in Simulink.

Plot the MATLAB and Simulink time-varying simulation results.

figure

subplot(2,1,1)
plot(t,yyLTVMPC,t,ysim, '0");
grid

legend('mpcmoveAdaptive', 'Simulink', 'Location', 'SouthEast')

title('Plant Output');
subplot(2,1,2)
plot(t,uuLTVMPC,t,usim, '0")
grid

title('Control Moves');
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The closed-loop responses in MATLAB and Simulink are identical.
bdclose(mdl);

See Also
Adaptive MPC Controller | mpcmoveAdaptive

More About

“Time-Varying MPC” on page 6-61

See Also
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Time-Varying MPC Control of an Inverted Pendulum on a

Cart

6-72

This example shows how to control an inverted pendulum on a cart using a linear time-
varying model predictive controller (LTV MPC).

Product Requirement

This example requires Simulink® software to simulate the nonlinear pendulum model.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink (R) is required to run this example.')
return

end

Pendulum/Cart Assembly

The plant for this example is the following pendulum/cart assembly, where z is the cart
position and theta is the pendulum angle.



Time-Varying MPC Control of an Inverted Pendulum on a Cart

Disturbance dF

ke,

Mass .,
Length L

nd

g =9.81 m/s?

Mass m_
Damping K,

Input F

The manipulated variable for this system is a variable force F acting on the cart. The
range of the force is between -100 and 100. The controller needs to keep the pendulum
upright while moving the cart to a new position or when the pendulum is nudged forward
by an impulse disturbance dF applied at the upper end of the inverted pendulum.

Control Objectives
Assume the following initial conditions for the pendulum/cart assembly:
* The cart is stationary at z = 0.

* The inverted pendulum is stationary at the upright position theta = 0.
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The control objectives are:
* Cart can be moved to a new position between -20 and 20 with a step setpoint change.

*  When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 10 percent (for robustness).

* When an impulse disturbance of magnitude of 4 is applied to the pendulum, the cart
and pendulum should return to its original position with small displacement.

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

The Choice of Time-Varying MPC

In “Control of an Inverted Pendulum on a Cart”, a single MPC controller is able to move
the cart to a new position between -10 and 10. However, if you increase the step setpoint
change to 20, the pendulum fails to recover its upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle, such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the
prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.

To avoid the pendulum falling, a simple workaround is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.0V(2).Min -pi/2;
mpcobj.0V(2) .Max pi/2;
mpcobj .Weights.ECR = 100;

However, with these new controller settings it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To move the cart to a new position between -20 and 20 while maintaining the same rise
time, the controller needs to have more accurate models at different angles so that the
controller can use them for better prediction. Adaptive MPC allows you to solve a
nonlinear control problem by updating linear time-varying plant models at run time.
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Control Structure
For this example, use a single LTV MPC controller with:

* One manipulated variable: Variable force F.
* Two measured outputs: Cart position z and pendulum angle theta.

mdWMPC = 'mpc_pendcartLTVMPC';
open_system(mdlMPC) ;
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Because all the plant states are measurable, they are directly used as custom estimated
states in the Adaptive MPC block.

While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Time-Varying Plant Models

At each control interval, LTV MPC requires a linear plant model for each prediction step,
from current time Kk to time k+p, where p is the prediction horizon.
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In this example, the cart and pendulum dynamic system is described by a first principle
model. This model consists of a set of differential and algebraic equations (DAEs), defined
in the pendulumCT function. For more details, see pendulumCT . m.

The Successive Linearizer block in the Simulink model generates the LTV models at run
time. At each prediction step, the block obtains state-space matrices A, B, C, and D using a
Jacobian in continuous-time, and then converts them into discrete-time values. The initial
plant states x(k) are directly measured from the plant. The plant input sequence contains
the optimal moves generated by the MPC controller in the previous control interval.

Adaptive MPC Design

The MPC controller is designed at its nominal equilibrium operating point.

X0
uo

zeros(4,1);
zeros(1,1);

Analytically obtain a linear plant model using the ODEs.

[~,~,A,B,C,D] = pendulumCT(x0, u0@);
plant = ss(A,B,C([1 31,:),D([1 3],:)); % position and angle

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;

PredictionHorizon = 60;
ControlHorizon = 3;

Create the MPC controller.

mpcobj = mpc(c2d(plant,Ts),Ts,PredictionHorizon,ControlHorizon);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

for output(s) yl and zero weight for output(s) y2

There is a limitation on how much force can be applied to the cart, which is specified
using hard constraints on the manipulated variable F.
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mpcobj.MV.Min
mpcobj .MV.Max

-100;
100;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj.MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.

mpcobj .Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position z, and the second weight is associated with angle
theta.

mpcobj .Weights.0V = [0.6 1.2];

Use a gain as the output disturbance model for the pendulum angle. This represents rapid
short-term variability.

setoutdist(mpcobj, 'model',[0;tf(1)]);

Use custom state estimation since all the plant states are measurable.
setEstimator(mpcobj, 'custom');

Closed-Loop Simulation

Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope']);
sim(md1lMPC)

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
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In the nonlinear simulation, all the control objectives are successfully achieved.

bdclose(mdlMPC) ;

See Also
Adaptive MPC Controller

More About
. “Time-Varying MPC” on page 6-61
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Explicit MPC

7-2

A traditional model predictive controller solves a quadratic program (QP) at each control
interval to determine the optimal manipulated variable (MV) adjustments. These
adjustments are the solution of the implicit nonlinear function u=f(x).

The vector x contains the current controller state and other independent variables
affecting the QP solution, such as the current output reference values. The Model
Predictive Control Toolbox software imposes restrictions that force a unique QP solution.

Finding the optimal MV adjustments can be time consuming, and the required time can
vary significantly from one control interval to the next. In applications that require a
solution within a certain consistent time, which could be on the order of microseconds,
the implicit MPC approach can be unsuitable.

As shown in “Optimization Problem” on page 2-9, if no QP inequality constraints are
active for a given x vector, then the optimal MV adjustments become a linear function of
X:

u=Fx+0G.

where, F and G are constants. Similarly, if x remains in a region where a fixed subset of
inequality constraints is active, the QP solution is also a linear function of x, but with
different F and G constants.

Explicit MPC uses offline computations to determine all polyhedral regions where the
optimal MV adjustments are a linear function of x, and the corresponding control-law
constants. When the controller operates in real time, the explicit MPC controller performs
the following steps at each control instant, k:

Estimate the controller state using available measurements, as in traditional MPC.

2 Form x(k) using the estimated state and the current values of the other independent
variables.

3 Identify the region in which x(k) resides.
Looks up the predetermined F and G constants for this region.
Evaluate the linear function u(k) = Fx(k) + G.

You can establish a tight upper bound for the time required in each step. If the number of
regions is not too large, the total computational time can be small. However, as the
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number of regions increases, the time required in step 3 dominates. Also, the memory
required to store all the linear control laws and polyhedral regions becomes excessive.
The number of regions characterizing u = f(x) depends primarily on the QP inequality

constraints that could be active at the solution. If an explicit MPC controller has many
constraints, and thus requires significant computational effort or memory, a traditional
implicit implementation may be preferable.

See Also

More About

. “Design Workflow for Explicit MPC” on page 7-4

. “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
. “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20

. “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on
page 7-30

7-3



7 Explicit MPC Design

Design Workflow for Explicit MPC

To create an explicit MPC controller, you must first design a traditional (implicit) MPC
controller. You then generate an explicit MPC controller based on the traditional
controller design.

Traditional (Implicit) MPC Design

First design a traditional (implicit) MPC for your application and test it in simulations.
Key considerations are as follows:

The Model Predictive Control Toolbox software currently supports the following as
independent variables for explicit MPC:

* n,, controller state variables (plant, disturbance, and measurement noise model
states).

¢ ny, (= 1) output reference values, where n, is the number of plant output variables.
* n, (= 0) measured plant disturbance signals.

Thus, you must fix most MPC design parameters before creating an explicit MPC
controller. Fixed parameters include prediction models (plant, disturbance and
measurement noise), scale factors, horizons, penalty weights, manipulated variable
targets, and constraint bounds.

For information about designing a traditional MPC controller, see “Controller
Creation”.

For information about tuning traditional MPC controllers, see “Refinement”.

Reference and measured disturbance previewing are not supported. At each control
interval, the current n, reference and n, measured disturbance signals apply for the
entire prediction horizon.

To limit the number of regions needed by explicit MPC, include only essential
constraints.

*  When including a constraint on a manipulated variable (MV), use a short control
horizon or MV blocking. See “Choose Sample Time and Horizons” on page 1-2.

* Avoid constraints on plant outputs. If such a constraint is essential, consider
imposing it for selected prediction horizon steps rather than the entire prediction
horizon.
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* Establish upper and lower bounds for each of the n, = n,, + n, + n, independent
variables. You might know some of these bounds a priori. However, you must run
simulations that record at least the n,, controller states as the system operates over
the range of expected conditions. It is important that you do not underestimate this
range, because the explicit MPC control function is not defined for independent
variables outside the range.

For information about specifying bounds, see generateExplicitRange.

For information about simulating a traditional MPC controller, see “Simulation”.

Explicit MPC Generation

Given the constant MPC design parameters and the n, upper and lower bounds on the
independent variables of the control law, that is,

x; < x(k) < x,,

the generateExplicitMPC command determines n, regions. Each of these regions is
defined by an inequality constraint and the corresponding control law constants:

Hix(k)SKi, t=1n,
u(k)=Fx(k)+G;, i=1n,.

The Explicit MPC Controller object contains the constants H;, K;, F;, and G; for each
region. The Explicit MPC Controller object also holds the original (implicit) design and
independent variable bounds. As long as x(k) stays within the specified bounds and you
retain all n, regions, the explicit MPC object provides the same optimal MV adjustments,
u(k), as the equivalent implicit MPC object.

For details about explicit MPC, see [1]. For details about how the explicit MPC controller
is generated, see [2].

Explicit MPC Simplification
Even a relatively simple explicit MPC controller might require many regions (n, >> 100)

to characterize the QP solution completely. If the number of regions is large, consider the
following:
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* Visualize the solution using the plotSection command.

* Use the simplify command to reduce the number of regions. Sometimes, this
reduction can be done with no (or negligible) impact on control law optimality. For
example, pairs of adjacent regions might employ essentially the same F; and K;
constants. If so, and if the union of the two regions forms a convex set, they can be
merged into a single region.

Alternatively, you can eliminate relatively small regions or retain selected regions only.
During operation, if the current x(k) is not contained in any of the retained regions,
the explicit MPC returns a suboptimal u(k), as follows:

u(k)=Fix(k)+Gj.

Here, j is the index of the region whose bounding constraint, Hjx(k) < Kj, is least
violated.

Implementation

During operation, for a given x(k), the explicit MPC controller performs the following
steps:

1  \Verifies that x(k) satisfies the specified bounds, x; = x(k) < x,,. If not, the controller
returns an error status and sets u(k) = u(k-1).

2 Beginning with region i = 1, tests the regions one by one to determine whether x(k)
belongs. If Hx(k) < K;, then x(k) belongs to region i. If x(k) belongs to region i, then
the controller:

* Obtains F; and G; from memory, and computes u(k) = Fix(k) + G;.
* Signals successful completion, by returning a status code and the index i.
* Returns without testing the remaining regions.

If x(k) does not belong to region i, the controller:

* Computes the violation term v;, which is the largest (positive) component of the
vector (Hx(k) - K;).

* Ifv; is the minimum violation for this x(k), the controller sets j = i, and sets v, =
V;.

* The controller then increments i and tests the next region.
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3 If all regions have been tested and x(k) does not belong to any region (for example,
due to a numerical precision issue), the controller:

¢ Obtains F; and G; from memory, and computes u(k) = Fix(k) + G;.

* Sets status to indicate a suboptimal solution and returns.

Thus, the maximum computational time per control interval is the time required to test
each region, computing the violation term in each case and then calculating the
suboptimal control adjustment.

Simulation

You can perform command-line simulations using the sim or mpcmoveExplicit
commands.

You can use the Explicit MPC Controller block to connect an explicit MPC to a plant
modeled in Simulink.
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[2] A. Bemporad, "A multi-parametric quadratic programming algorithm with polyhedral
computations based on nonnegative least squares," 2014, Submitted for
publication.

See Also
Explicit MPC Controller | generateExplicitMPC | mpcmoveExplicit

More About

. “Explicit MPC” on page 7-2

. “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
. “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20

. “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on
page 7-30
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Explicit MPC Control of a Single-Input-Single-Output

Plant

This example shows how to control a double integrator plant under input saturation in
Simulink® using explicit MPC.

See also MPCDOUBLEINT.

Define Plant Model

The linear open-loop dynamic model is a double integrator:
plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.1;

p = 10;

m= 3;

mpcobj = mpc(plant, Ts, p, m);

Specify actuator saturation limits as MV constraints.
mpcobj .MV = struct('Min',-1, 'Max',1);
Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional MPC,
you must specify range for each controller state, reference signal, manipulated variable
and measured disturbance so that the multi-parametric quadratic programming problem
is solved in the parameter space defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify range for each parameter afterwards.

range = generateExplicitRange(mpcobj);

Specify ranges for controller states
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MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:)
range.State.Max(:)

[-10;-10];
[10;10];

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least as
large as the practical range.

range.Reference.Min
range.Reference.Max

-2
2;

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit);

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 19

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
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Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Use simplify command with the "exact" method to join pairs of regions whose
corresponding gains are the same and whose union is a convex set. This practice can
reduce memory footprint of the Explicit MPC controller without sacrifice any
performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');
display(mpcobjExplicitSimplified);

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 15

Number of parameters: 4

Is solution simplified: Yes

State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.

Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.

Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parar
Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each s
The number of piecewise affine region has been reduced.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.

params = generatePlotParameters(mpcobjExplicitSimplified);
Specify parameters for a 2-D plot

In this example, you plot the 1th state variable vs. the 2nd state variable. All the other
parameters must be fixed at a value within its range.
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params.State.Index
params.State.Value

[1;
[1;
Fix other reference signals

params.Reference.Index
params.Reference.Value

Fix manipulated variables

params.ManipulatedVariable.Index
params.ManipulatedVariable.Value

=
~-

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicitSimplified, params);
axis([-4 4 -4 4]);

grid

xlabel('State #1');

ylabel('State #2');

7-11



7 Explicit MPC Design

2-D Plot of Explicit MPC Polyhedral Partition

State #2

State #1

Simulate Using MPCMOVE Command

Compare closed-loop simulation between tradition MPC (as referred as Implicit MPC) and
Explicit MPC using mpcmove and mpcmoveExplicit commands respectively.

Prepare to store the closed-loop MPC responses.

Tf round(5/Ts);
YY = zeros(Tf,1);
YYExplicit = zeros(Tf,1);
UU = zeros(Tf,1);
UUExplicit = zeros(Tf,1);

Prepare the real plant used in simulation
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sys = c2d(ss(plant),Ts);
xsys = [0;0];
xsysExplicit = xsys;

Use MPCSTATE object to specify the initial states for both controllers

xmpc = mpcstate(mpcobj);
xmpcExplicit = mpcstate(mpcobjExplicitSimplified);

Simulate closed-loop response in each iteration.

for t = 0:Tf
% update plant measurement
ysys = sys.(C*xsys;
ysysExplicit = sys.C*xsysExplicit;
% compute traditional MPC action
u = mpcmove(mpcobj,xmpc,ysys,1);
% compute Explicit MPC action
uExplicit = mpcmoveExplicit(mpcobjExplicit,xmpcExplicit,ysysExplicit,1);
% store signals
YY(t+1l)=ysys;
YYExplicit(t+1l)=ysysExplicit;
UU(t+1)=u;
UUExplicit(t+1)=uExplicit;
% update plant state
XSys = sys.A*xsys + sys.B*u;
xsysExplicit = sys.A*xsysExplicit + sys.B*uExplicit;
end
fprintf('\nDifference between traditional and Explicit MPC responses using MPCMOVE comr

Difference between traditional and Explicit MPC responses using MPCMOVE command is 1.7¢

Simulate Using SIM Command

Compare closed-loop simulation between tradition MPC and Explicit MPC using sim
commands respectively.

Tf = 5/Ts; % simulation iterations
[yl,t1,ul] sim(mpcobj,Tf,1); % simulation with tradition MPC
[y2,t2,u2] sim(mpcobjExplicitSimplified,Tf,1); % simulation with Explicit MPC

The simulation results are identical.

fprintf('\nDifference between traditional and Explicit MPC responses using SIM command

7-13



7 Explicit MPC Design

Difference between traditional and Explicit MPC responses using SIM command is 1.78084¢
Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Simulate with traditional MPC controller in Simulink. Controller "mpcobj" is specified in
the block dialog.

mdl = 'mpc doubleint';
open_system(mdl);

sim(mdl);
ut) 1 vt
» 1 » 1 >y
5 5
. Integrator 1 Integrator 2

r(t) MPC » ()

E} b raf Input
4 u

— )

Cutputs/Refarances

Copyright 1980-2014 The MathWorks, Inc.
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Simulate with Explicit MPC controller in Simulink. Controller "mpcobjExplicitSimplified"

is specified in the block dialog.

mdlExplicit = 'empc doubleint';
open_system(mdlExplicit);

sim(mdlExplicit);
y(t)
mv e 1 p 1 »| vExplicit
| mo 8 8
ut Integrator 1 Integrator 2

r(t) E:ﬁ;:én status —m )
E} - Status

regien I (]

Inpaut

region | > ) w| uExplicit
Region
)

Copyright 1930-2014 The MathWorks, Inc.
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See Also

The closed-loop responses are identical.

fprintf('\nDifference between traditional and Explicit MPC responses in Simulink is %g'

Difference between traditional and Explicit MPC responses in Simulink is 1.69399e-13

bdclose(mdl)
bdclose(mdlExplicit)

See Also

More About
. “Explicit MPC” on page 7-2
. “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20

. “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on
page 7-30
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Explicit MPC Control of an Aircraft with Unstable Poles
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This example shows how to control an unstable aircraft with saturating actuators using
explicit model predictive control.

For an example that controls the same plant using a traditional MPC controller, see
“Aircraft with Unstable Poles”.

Define Aircraft Model

The linear open-loop dynamic model of the aircraft has the following state-space matrices:

A = [-0.0151 -60.5651 0 -32.174;
-0.0001 -1.3411 0.9929 0;
0.00018 43.2541 -0.86939 0;
0 0 1 01;
B =[-2.516 -13.136;
-0.1689 -0.2514;
-17.251 -1.5766;
0 01;
C=[0100;
000 11;
D=1[00;
0 0];

Create the plant, and specify the initial states as zero.

plant = ss(A,B,C,D);
X0 = zeros(4,1);

The manipulated variables are the elevator and flaperon angles. The attack and pitch
angles are measured outputs to be regulated.

The open-loop response of the system is unstable.

pole(plant)

ans =

-7.6636 + 0.00001
5.4530 + 0.00001
-0.0075 + 0.05561
-0.0075 - 0.05561
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Design MPC Controller

To obtain an Explicit MPC controller, you must first design a traditional (implicit) model
predictive controller that is able to achieve your control objectives.

MV Constraints

Both manipulated variables are constrained between +/- 25 degrees. Since the plant
inputs and outputs are of different orders of magnitude, you also use scale factors to
facilitate MPC tuning. Typical choices of scale factor are the upper/lower limit or the
operating range.

MV = struct('Min', {-25,-25}, 'Max"', {25,25}, 'ScaleFactor',{50,50});
OV Constraints

Both plant outputs have constraints to limit undershoots at the first prediction horizon.
You also specify scale factors for outputs.

0V = struct('Min',{[-0.5;-Inf],[-100;-Inf]}, 'Max"',{[0.5;Inf],[100;Inf]}, 'ScaleFactor',:
Weights

The control task is to get zero offset for piecewise-constant references, while avoiding

instability due to input saturation. Because both MV and OV variables are already scaled
in MPC controller, MPC weights are dimensionless and applied to the scaled MV and OV
values. In this example, you penalize the two outputs equally with the same OV weights.

Weights = struct('MV',[0 O], 'MVRate',[0.1 0.1],'0V',[10 10]);
Construct Traditional MPC Controller

Create an MPC controller with the specified plant model, sample time, and horizons.

Ts = 0.05; % Sample time
p = 10; % Prediction horizon
m=2; % Control horizon

mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);
Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC controller. To generate an explicit MPC controller
from a traditional MPC controller, you must specify the range for each controller state,
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reference signal, manipulated variable and measured disturbance. Doing so ensures that
the multi-parametric quadratic programming problem is solved in the parameter space
defined by these ranges.

Obtain a range structure for initialization

To obtain a range structure where you can specify range for each parameter afterwards,
use the generateExplicitRange command.

range = generateExplicitRange(mpcobj);
Specify Ranges for Controller States

MPC controller states include states from the plant model, disturbance model, and noise
model, in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

range.State.Min(:)
range.State.Max(:)

-10000;
10000;

Specify Ranges for Reference Signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate an explicit MPC controller must
be at least as large as the practical range.

[-1;-11];
[1;11];

range.Reference.Min
range.Reference.Max

Specify Ranges for Manipulated Variables

If manipulated variables are constrained, the ranges used to generate an explicit MPC
controller must be at least as large as these limits.

[MV(1).Min; MV(2).Min] - 1;
[MV(1).Max; MV(2).Max] + 1;

range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

Construct Explicit MPC Controller

Use generateExplicitMPC command to obtain the explicit MPC controller with the
parameter ranges previously specified.
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mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit)

Explicit MPC Controller

Controller sample time: 0.05 (seconds)
Polyhedral regions: 483

Number of parameters: 10

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.

Type 'mpcobjExplicit.Range' for the valid range of parameters.

Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

To join pairs of regions whose corresponding gains are the same and whose union is a
convex set, use the simplify command with the 'exact' method. This practice can
reduce the memory footprint of the explicit MPC controller without sacrificing
performance.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'exact');
display(mpcobjExplicitSimplified)

Explicit MPC Controller

Controller sample time: 0.05 (seconds)
Polyhedral regions: 471

Number of parameters: 10

Is solution simplified: Yes

State Estimation: Default Kalman gain

Type 'mpcobjExplicitSimplified.MPC' for the original implicit MPC design.
Type 'mpcobjExplicitSimplified.Range' for the valid range of parameters.
Type 'mpcobjExplicitSimplified.OptimizationOptions' for the options used in multi-parar
Type 'mpcobjExplicitSimplified.PiecewiseAffineSolution' for regions and gain in each s

The number of piecewise affine regions has been reduced.
Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.
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Obtain a plot parameter structure for initialization

To obtain a parameter structure where you can specify which 2-D section to plot, use the
generatePlotParameters function.

params = generatePlotParameters(mpcobjExplicitSimplified);
Specify parameters for a 2-D plot

In this example, you plot the pitch angle (the 4th state variable) vs. its reference (the 2nd
reference signal). All the other parameters must be fixed at values within their respective
ranges.

Fix other state variables.

params.State.Index
params.State.Value

[12356];
[0 000 O0];
Fix other reference signals.

params.Reference.Index
params.Reference.Value

Fix manipulated variables.

params.ManipulatedVariable.Index
params.ManipulatedVariable.Value

[12];
[0 0];

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicitSimplified,params);
axis([-10 10 -10 10])

grid

xlabel('Pitch angle (x 4)")

ylabel('Reference on pitch angle (r 2)")
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Reference on pitch angle {rp_}

2-D Plot of Explicit MPC Polyhedral Partition

.
=1

=]

[=2]

E-9

Ma

=

-2

-10 -8 -G -4 -2 1] 2 4 §] 8 10
Pitch angle (x 4}

Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Simulate closed-loop control of the linear plant model in Simulink. To do so, for the MPC
Controller block, set the Explicit MPC Controller property to
mpcobjExplicitSimplified.
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The closed-loop response is identical to the traditional MPC controller designed in
“Aircraft with Unstable Poles”.

References

[1] P. Kapasouris, M. Athans, and G. Stein, "Design of feedback control systems for
unstable plants with saturating actuators", Proc. IFAC Symp. on Nonlinear Control
System Design, Pergamon Press, pp.302--307, 1990

[2] A. Bemporad, A. Casavola, and E. Mosca, "Nonlinear control of constrained linear
systems via predictive reference management", IEEE® Trans. Automatic Control, vol.
AC-42, no. 3, pp. 340-349, 1997.



See Also

bdclose(mdl)

See Also

More About
. “Explicit MPC” on page 7-2
. “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8

. “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output” on
page 7-30
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Explicit MPC Control of DC Servomotor with Constraint
on Unmeasured Output

7-30

This example shows how to use Explicit MPC to control DC servomechanism under
voltage and shaft torque constraints.

Reference

[1] A. Bemporad and E. Mosca, "Fulfilling hard constraints in uncertain linear systems by
reference managing," Automatica, vol. 34, no. 4, pp. 451-461, 1998.

See also MPCMOTOR.
Define DC-Servo Motor Model

The linear open-loop dynamic model is defined in "plant". Variable "tau" is the maximum
admissible torque to be used as an output constraint.

[plant, tau] = mpcmotormodel;

Design MPC Controller

Specify input and output signal types for the MPC controller. The second output, torque,
is unmeasurable.

plant = setmpcsignals(plant, 'MV',1,'MO',1,'U0"',2);
MV Constraints

The manipulated variable is constrained between +/- 220 volts. Since the plant inputs and
outputs are of different orders of magnitude, you also use scale factors to facilitate MPC
tuning. Typical choices of scale factor are the upper/lower limit or the operating range.

MV = struct('Min',-220, 'Max',220, 'ScaleFactor',440);
OV Constraints

Torque constraints are only imposed during the first three prediction steps to limit the
complexity of the explicit MPC design.

0V = struct('Min',{Inf, [-tau;-tau;-tau;-Infl}, 'Max',{Inf, [tau;tau;tau;Inf]}, 'ScaleFa

Weights
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The control task is to get zero tracking offset for the angular position. Since you only have
one manipulated variable, the shaft torque is allowed to float within its constraint by
setting its weight to zero.

Weights = struct('MV',0, 'MVRate',0.1,'0V',[0.1 0]);
Construct MPC controller

Create an MPC controller with plant model, sample time and horizons.

Ts = 0.1; % Sampling time

p = 10; % Prediction horizon
m= 2; % Control horizon
mpcobj = mpc(plant,Ts,p,m,Weights,MV,0V);

Generate Explicit MPC Controller

Explicit MPC executes the equivalent explicit piecewise affine version of the MPC control
law defined by the traditional MPC. To generate an Explicit MPC from a traditional MPC,
you must specify the range for each controller state, reference signal, manipulated
variable and measured disturbance so that the multi-parametric quadratic programming
problem is solved in the parameter sets defined by these ranges.

Obtain a range structure for initialization

Use generateExplicitRange command to obtain a range structure where you can
specify the range for each parameter afterwards.

range = generateExplicitRange(mpcobj);
Specify ranges for controller states

MPC controller states include states from plant model, disturbance model and noise
model in that order. Setting the range of a state variable is sometimes difficult when the
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

-1000;
1000;

range.State.Min(:)
range.State.Max(:)

Specify ranges for reference signals

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate Explicit MPC must be at least as
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large as the practical range. Note that the range for torque reference is fixed at 0
because it has zero weight.

[-5;0];
[5;0];

range.Reference.Min
range.Reference.Max

Specify ranges for manipulated variables

If manipulated variables are constrained, the ranges used to generate Explicit MPC must
be at least as large as these limits.

MV.Min - 1;
MV.Max + 1;

range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

Construct the Explicit MPC controller

Use generateExplicitMPC command to obtain the Explicit MPC controller with the
parameter ranges previously specified.

mpcobjExplicit = generateExplicitMPC(mpcobj, range);
display(mpcobjExplicit);

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 75

Number of parameters: 6

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.

Type 'mpcobjExplicit.Range' for the valid range of parameters.

Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Plot Piecewise Affine Partition

You can review any 2-D section of the piecewise affine partition defined by the Explicit
MPC control law.

Obtain a plot parameter structure for initialization

Use generatePlotParameters command to obtain a parameter structure where you
can specify which 2-D section to plot afterwards.
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params = generatePlotParameters(mpcobjExplicit);
Specify parameters for a 2-D plot

In this example, you plot the 1th state variable vs. the 2nd state variable. All the other
parameters must be fixed at a value within its range.

Fix other state variables

[3 4];
[0 0];

params.State.Index
params.State.Value

Fix reference signals

[12];
[pi 0];

params.Reference.Index
params.Reference.Value

Fix manipulated variables

params.ManipulatedVariable.Index
params.ManipulatedVariable.Value

=
~-

Plot the 2-D section

Use plotSection command to plot the 2-D section defined previously.

plotSection(mpcobjExplicit, params);

axis([-.3 .3 -2 21);

grid

title('Section of partition [x3(t)=0, x4(t)=0, u(t-1)=0, r(t)=pil"')
xlabel('x1(t)"');

ylabel('x2(t)");
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Section of partition [x3(t)=0, x4(t)=0, u(t-1)=0, r{t}=pi]

x2(t)

0.3 -0.2 0.1 1] 0.1 0.2
x1(t)

Simulate Using SIM Command

Compare closed-loop simulation between traditional MPC (as referred as Implicit MPC)

and Explicit MPC

Tstop = 8; % seconds

Tf = round(Tstop/Ts); % simulation iterations

r = [pi 0]; % reference signal

[yl,t1,ul] sim(mpcobj,Tf,r); % simulation with traditional MPC

[y2,t2,u2] sim(mpcobjExplicit,Tf,r); % simulation with Explicit MPC
The simulation results are identical.

fprintf('SIM command: Difference between QP-based and Explicit MPC trajectories = %g\n
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SIM command: Difference between QP-based and Explicit MPC trajectories = 8.68909e-12
Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return

end

Simulate closed-loop control of the linear plant model in Simulink, using the Explicit MPC
Controller block. Controller "mpcobjExplicit" is specified in the block dialog.

mdl = 'empc motor';

open_system(mdl)
sim(mdl);
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The closed-loop response is identical to the traditional MPC controller designed in the
"mpcmotor" example.
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Control Using Sub-optimal Explicit MPC

To reduce the memory footprint, you can use simplify command to reduce the number
of piecewise affine solution regions. For example, you can remove regions whose
Chebychev radius is smaller than .08. However, the price you pay is that the controller
performance now becomes sub-optimal.

Use simplify command to generate Explicit MPC with sub-optimal solutions.

mpcobjExplicitSimplified = simplify(mpcobjExplicit, 'radius', 0.08);
disp(mpcobjExplicitSimplified);

explicitMPC with properties:

MPC: [1x1 mpc]
Range: [1x1 struct]
OptimizationOptions: [1x1 struct]
PiecewiseAffineSolution: [1x38 struct]
IsSimplified: 1

The number of piecewise affine regions has been reduced.

Compare closed-loop simulation between sub-optimal Explicit MPC and Explicit MPC.

[y3,t3,u3] = sim(mpcobjExplicitSimplified, Tf, r);

The simulation results are not the same.

fprintf('SIM command: Difference between exact and suboptimal MPC trajectories = %g\n'

SIM command: Difference between exact and suboptimal MPC trajectories = 439.399

Plot results.

figure;

subplot(3,1,1)
plot(tl,yl(:,1),t3,y3(:,1),'0");

grid

title('Angle (rad)"')

legend('Explicit', 'sub-optimal Explicit')
subplot(3,1,2)
plot(tl,yl(:,2),t3,y3(:,2),'0");

grid

title('Torque (Nm)")
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legend('Explicit', 'sub-optimal Explicit')
subplot(3,1,3)

plot(tl,ul,t3,u3,'0");

grid

title('Voltage (V)")

legend('Explicit', 'sub-optimal Explicit')

The simulation result with the sub-optimal Explicit MPC is slightly worse.
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bdclose(mdl)

See Also

More About

. “Explicit MPC” on page 7-2

. “Explicit MPC Control of a Single-Input-Single-Output Plant” on page 7-8
. “Explicit MPC Control of an Aircraft with Unstable Poles” on page 7-20
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Explicit MPC Control of an Inverted Pendulum on a Cart

This example uses an explicit model predictive controller (explicit MPC) to control an
inverted pendulum on a cart.

Product Requirement

This example requires Simulink® Control Design™ software to define the MPC structure
by linearizing a nonlinear Simulink model.

if ~mpcchecktoolboxinstalled('slcontrol')
disp('Simulink Control Design is required to run this example.')

return
end

Add example file folder to MATLAB® path.
addpath(fullfile(matlabroot, 'examples', 'mpc', 'main'));
Pendulum/Cart Assembly

The plant for this example is the following cart/pendulum assembly, where x is the cart
position and theta is the pendulum angle.
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Disturbance dF

Mass m .
pen

Length L g =9.81 m/s?
Mass m_
Damping K,

Input F

This system is controlled by exerting a variable force F on the cart. The controller needs
to keep the pendulum upright while moving the cart to a new position or when the
pendulum is nudged forward by an impulse disturbance dF applied at the upper end of
the inverted pendulum.

This plant is modeled in Simulink with commonly used blocks.

mdlPlant = 'mpc pendcartPlant’;
load system(mdlPlant)
open_system([mdlPlant '/Pendulum and Cart System'], 'force")
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Control Objectives

Assume the following initial conditions for the cart/pendulum assembly:

* The cart is stationary at x = 0.

* The inverted pendulum is stationary at the upright position theta = 0.

The control objectives are:

* Cart can be moved to a new position between -10 and 10 with a step setpoint change.

* When tracking such a setpoint change, the rise time should be less than 4 seconds (for
performance) and the overshoot should be less than 5 percent (for robustness).

* When an impulse disturbance of magnitude of 2 is applied to the pendulum, the cart
should return to its original position with a maximum displacement of 1. The
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pendulum should also return to the upright position with a peak angle displacement of
15 degrees (0.26 radian).

The upright position is an unstable equilibrium for the inverted pendulum, which makes
the control task more challenging.

Control Structure

For this example, use a single MPC controller with:

* One manipulated Variable: variable force F.
* Two measured outputs: Cart position x and pendulum angle theta.
* One unmeasured disturbance: Impulse disturbance dF.

mdWMPC = 'mpc_pendcartExplicitMPC';
open_system(mdlMPC)

Disturbance

=
Signal 1
dF %_dot

- x_dot

x

Y

dF ¥

¥

¥

theta
Explicit I F theta

f F
- » MPC m "
theta_dot
x Raf
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Animation

Copyright 19930-2015 The MathWorks, Inc.

Although cart velocity x_dot and pendulum angular velocity theta dot are available from
the plant model, to make the design case more realistic, they are excluded as MPC
measurements.
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While the cart position setpoint varies (step input), the pendulum angle setpoint is
constant (0 = upright position).

Linear Plant Model

Since the MPC controller requires a linear time-invariant (LTI) plant model for prediction,
linearize the Simulink plant model at the initial operating point.

Specify linearization input and output points

io(1l) = linio([mdlPlant '/dF'],1, 'openinput');

io(2) = linio([mdlPlant '/F'],1, 'openinput');

io(3) = linio([mdlPlant '/Pendulum and Cart System'],1, 'openoutput');
io(4) = linio([mdlPlant '/Pendulum and Cart System'],3, 'openoutput');

Create operating point specifications for the plant initial conditions.
opspec = operspec(mdlPlant);
The first state is cart position x, which has a known initial state of 0.

opspec.States(1l).Known = true;
opspec.States(1l).x = 0;

The third state is pendulum angle theta, which has a known initial state of 0.

opspec.States(3).Known = true;
opspec.States(3).x = 0;

Compute operating point using these specifications.

options = findopOptions('DisplayReport', false);
op = findop(mdlPlant,opspec,options);

Obtain the linear plant model at the specified operating point.

plant = linearize(mdlPlant,op,io);
plant.InputName = {'dF';'F'};
plant.OQutputName = {'x'; 'theta'};

Examine the poles of the linearized plant.

pole(plant)

ans =
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0
-11.9115
-3.2138
5.1253

The plant has an integrator and an unstable pole.
bdclose(mdlPlant)

Traditional (Implicit) MPC Design

The plant has two inputs, dF and F, and two outputs, x and theta. In this example, dF is
specified as an unmeasured disturbance used by the MPC controller for better
disturbance rejection. Set the plant signal types.

plant = setmpcsignals(plant,'ud',1, 'mv',2);

To control an unstable plant, the controller sample time cannot be too large (poor
disturbance rejection) or too small (excessive computation load). Similarly, the prediction
horizon cannot be too long (the plant unstable mode would dominate) or too short
(constraint violations would be unforeseen). Use the following parameters for this
example:

Ts = 0.01;

PredictionHorizon = 50;

ControlHorizon = 5;

mpcobj = mpc(plant,Ts,PredictionHorizon,ControlHorizon);

There is a limitation on how much force we can apply to the cart, which is specified as
hard constraints on manipulated variable F.

mpcobj .MV.Min
mpcobj .MV.Max

-200;
200;

It is good practice to scale plant inputs and outputs before designing weights. In this
case, since the range of the manipulated variable is greater than the range of the plant
outputs by two orders of magnitude, scale the MV input by 100.

mpcobj .MV.ScaleFactor = 100;

To improve controller robustness, increase the weight on the MV rate of change from 0.1
to 1.
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mpcobj .Weights.MVRate = 1;

To achieve balanced performance, adjust the weights on the plant outputs. The first
weight is associated with cart position x and the second weight is associated with angle
theta.

mpcobj .Weights.0V = [1.2 1];

To achieve more aggressive disturbance rejection, increase the state estimator gain by
multiplying the default disturbance model gains by a factor of 10.

Update the input disturbance model.

disturbance model = getindist(mpcobj);
setindist(mpcobj, 'model',disturbance model*10);

Update the output disturbance model.

disturbance model = getoutdist(mpcobj);
setoutdist(mpcobj, 'model’',disturbance model*10);

Explicit MPC Generation

A simple implicit MPC controller, without the need for constraint or weight changes at
run-time, can be converted into an explicit MPC controller with the same control
performance. The key benefit of using Explicit MPC is that it avoids real-time
optimization, and as a result, is suitable for industrial applications that demand fast
sample time. The tradeoff is that explicit MPC has a high memory footprint because
optimal solutions for all feasible regions are pre-computed offline and stored for run-time
access.

To generate an explicit MPC controller from an implicit MPC controller, define the ranges
for parameters such as plant states, references, and manipulated variables. These ranges
should cover the operating space for which the plant and controller are designed, to your
best knowledge.

range = generateExplicitRange(mpcobj);

range.State.Min(:) = -20; % largest range comes from cart position x
range.State.Max(:) = 20;

range.Reference.Min = -20; % largest range comes from cart position x
range.Reference.Max = 20;

range.ManipulatedVariable.Min = -200;

range.ManipulatedVariable.Max = 200;
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Generate an explicit MPC controller for the defined ranges.
mpcobjExplicit = generateExplicitMPC(mpcobj, range);

To use the explicit MPC controller in Simulink, specify it in the Explicit MPC Controller
block dialog in your Simulink model.

Closed-Loop Simulation
Validate the MPC design with a closed-loop simulation in Simulink.

open_system([mdlMPC '/Scope'])
sim(mdlMPC)
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In the nonlinear simulation, all the control objectives are successfully achieved.

Comparing with the results from “Control of an Inverted Pendulum on a Cart”, the
implicit and explicit MPC controllers deliver identical performance as expected.

Discussion

It is important to point out that the designed MPC controller has its limitations. For
example, if you increase the step setpoint change to 15, the pendulum fails to recover its
upright position during the transition.

To reach the longer distance within the same rise time, the controller applies more force
to the cart at the beginning. As a result, the pendulum is displaced from its upright
position by a larger angle such as 60 degrees. At such angles, the plant dynamics differ
significantly from the LTI predictive model obtained at theta = 0. As a result, errors in the
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prediction of plant behavior exceed what the built-in MPC robustness can handle, and the
controller fails to perform properly.

A simple workaround to avoid the pendulum falling is to restrict pendulum displacement
by adding soft output constraints to theta and reducing the ECR weight on constraint
softening.

mpcobj.0V(2).Min -pi/2;
mpcobj .0V (2).Max pi/2;
mpcobj .Weights.ECR = 100;

However, with these new controller settings, it is no longer possible to reach the longer
distance within the required rise time. In other words, controller performance is
sacrificed to avoid violation of soft output constraints.

To reach longer distances within the same rise time, the controller needs more accurate
models at different angle to improve prediction. Another example “Gain-Scheduled MPC
Control of an Inverted Pendulum on a Cart” shows how to use gain scheduling MPC to
achieve the longer distances.

Remove the example file folder from the MATLAB path, and close the Simulink model.

rmpath(fullfile(matlabroot, 'examples', 'mpc', ‘'main'));
bdclose(md1MPC)

See Also

More About

. “Explicit MPC” on page 7-2

. “Control of an Inverted Pendulum on a Cart” on page 1-137

. “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-66
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* “Gain-Scheduled MPC” on page 8-2
» “Schedule Controllers at Multiple Operating Points” on page 8-5
* “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor” on page 8-26

* “Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System”
on page 8-48

* “Gain-Scheduled MPC Control of an Inverted Pendulum on a Cart” on page 8-66
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Gain-Scheduled MPC

8-2

Gain-scheduled model predictive control switches between a predefined set of MPC
controllers, in a coordinated fashion, to control a nonlinear plant over a wide range of
operating conditions. Use this approach if the plant operating characteristics change in a
predictable way and the change is such that a single prediction model cannot provide
adequate controller performance. This approach is comparable to the use of gain
scheduling in conventional feedback control.

To improve efficiency, inactive controllers do not compute optimal control moves.
However, to provide bumpless transfer between controllers, the inactive controllers
continue to perform state estimation. Bumpless transfer prevents sudden changes in the
manipulated variables when the controller switching occurs.

You can design and simulate MPC controllers both in Simulink and at the command line.
The Multiple MPC Controllers and Multiple Explicit MPC Controllers blocks enable you to
switch between a defined set of MPC Controllers in Simulink. You can perform command-
line simulations using the mpcmoveMultiple command. However, mpcmoveMultiple
does not support explicit MPC controllers.

Design Workflow

To implement gain-scheduled MPC, first design a traditional model predictive controller
for each operating point, and then design a scheduling signal that switches controllers at
run time.

General Design Steps
* Define and tune a nominal MPC controller for the most likely (or average) operating

conditions. For more information, see “MPC Design”.

» Use simulations to determine an operating condition at which the nominal controller
loses robustness. For more information, see “Simulation”.

* Identify a measurement (or combination of measurements) that indicates when to
replace the nominal controller.

* Determine a plant prediction model for the new operating conditions. Its input and
output variables must be the same as in the nominal case.

* Define a new MPC controller based on the new prediction model. Use the nominal
controller settings as a starting point, and test and retune controller settings if
necessary.
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If two controllers are inadequate to provide robustness over the full operational range,
consider dividing the range into smaller regions and adding more controllers.
Alternatively, you can use an adaptive MPC controller, which has a smaller memory
footprint. For more information, see “Adaptive MPC Design”.

(optional) Consider creating an explicit MPC controller for each traditional MPC
controller. Explicit MPC controllers require fewer run-time computations than
traditional (implicit) model predictive controllers and are therefore useful for
applications that require small sample times. For more information, see “Explicit
MPC” on page 7-2.

In your Simulink model, configure either the Multiple MPC Controllers or Multiple
Explicit MPC Controllers block, and specify the switching criterion.

To verify robustness and bumpless switching, test the controllers over the full
operating range using closed-loop simulations.

Tips

In practice, it is recommended to allow a warm-up period during which the plant
operates under manual control while the controller initializes its state estimates. This
initialization typically requires 10-20 control intervals. A warm-up is especially
important for the Multiple MPC Controllers and Multiple Explicit MPC Controllers
blocks. Without an adequate warm-up period, switching between controllers can cause
sudden changes in the manipulated variables. Switching on the controllers when the
plant is operating far from any of the gain-scheduled operating points can also cause
sudden manipulated variable changes.

If you use custom state estimation, all your gain-scheduled MPC controllers must have
the same state dimension. This requirement places implicit restrictions on plant and
disturbance models.

See Also

Functions
mpcmoveMultiple

Blocks
Multiple Explicit MPC Controllers | Multiple MPC Controllers
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More About
. “Schedule Controllers at Multiple Operating Points” on page 8-5
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Schedule Controllers at Multiple Operating Points

If your plant is nonlinear, a controller designed to operate in a particular target region
may perform poorly in other regions. A common way to compensate is to create multiple
controllers, each designed for a particular combination of operating conditions. You can
then switch between the controllers in real time as conditions change. For more
information, see “Gain-Scheduled MPC” on page 8-2.

The following example shows how to coordinate multiple model predictive controllers for
this purpose.

Plant Model

The plant contains two masses, M1 and M2, connected to two springs. A spring with spring
constant k1 pulls mass M1 to the right, and a spring with spring constant k2 pulls mass
M2 to the left. The manipulated variable is a force pulling mass M1 to the left, shown as a
red arrow in the following figure.
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Both masses move freely until they collide. The collision is inelastic, and the masses stick
together until a change in the applied force separates them. Therefore, there are two

operating conditions for the system with different dynamics.

The control objective is to make the position of M1 track a reference signal, shown as a
blue triangle in the previous image. Only the position of M1 and a contact sensor are

available for feedback.

Define the model parameters.

M1 = 1; % masses

M2 = 5;

kl = 1; % spring constants

k2 = 0.1;

bl = 0.3; % friction coefficients
b2 = 0.8;
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10; % wall mount positions
-10;

yeql
yeq2

Create a state-space model for when the masses are not in contact; that is when mass M1
is moving freely.

Al = [0 1; -k1/M1 -bl/M11;

Bl = [0 0; -1/M1 kl*yeql/M1];

Cl =1[10];

D1 = [0 0];

sysl = ss(Al1,B1,C1,D1);

sysl = setmpcsignals(sysl, 'MV',1,'MD"',2);

Create a state-space model for when the masses are connected.

A2 = [0 1; -(kl+k2)/(M1+M2) -(bl+b2)/(M1+M2)];
B2 = [0 0; -1/(M1+M2) (kl*yeql+k2*yeq2)/(M1+M2)];
C2 = [1 0];

D2 = [0 O];

sys2 = ss(A2,B2,C2,D2);

sys2 = setmpcsignals(sys2,'MV',1,'MD',2);

For both models, the:

+ States are the position and velocity of M1.

* Inputs are the applied force, which is the manipulated variable (MV), and a spring
constant calibration signal, which is a measured disturbance (MD).

* Output is the position of M1.

Design MPC Controllers

Design one MPC controller for each of the plant models. Both controllers are identical
except for their internal prediction models.

Define the same sample time, Ts, prediction horizon, p, and control horizon, m, for both
controllers.

Ts = 0.2;
p = 20;
m=1;

Create default MPC controllers for each plant model.
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MPC1
MPC2

mpc(sysl,Ts,p,m);
mpc(sys2,Ts,p,m);

Define constraints for the manipulated variable. Since the applied force cannot change
direction, set the lower bound to zero. Also, set a maximum rate of change for the input
force. These constraints are the same for both controllers.

MPC1.MV
MPC2.MV

struct('Min',0, 'Max"',30, 'RateMin', -10, 'RateMax',10);
MPC1.MV;

Simulate Gain-Scheduled Controllers
Simulate the performance of the controllers using the MPC Controller block.

Open the Simulink model.

mdl = 'mpc_switching';
open_system(mdl)
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In the model, the Mass M1 subsystem simulates the motion of mass M1, both when
moving freely and when connected to M2. The Mass M2 subsystem simulates the motion
of mass M2 when it is moving freely. The mode selection and velocity reset subsystems
coordinate the collision and separation of the masses.
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The model contains switching logic that detects when the positions of M1 and M2 are the
same. The resulting switching signal connects to the switch inport of the Multiple MPC
Controllers block, and controls which MPC controller is active.

Specify the initial position for each mass.

ylinitial
y2initial

0;
10;

To specify the gain-scheduled controllers, double-click the Multiple MPC Controllers
block. In the Block Parameters dialog box, specify the controllers as a cell array of
controller names. Set the initial states for each controller to their respective nominal
value by specifying the statesas {'[], '[]1'}.
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i

Elack Parameters: Multiple MPC Controllers
Multiple MPC (mask) (link)
You can use the Multiple MPC Controllers block to design and simulate a
set of model predictive controllers. These controllers can be switched from

one to another in real time to control a nonlinear plant with a wide
operating range.

Parameters

Cell Array of MPC Controllers {'MPC1''MPC2'}

Cell Array of Initial Controller States  {'[1,T]"}

Block Options

General Online Features | Others |
Additional Inports

Measured disturbance (md)

[C] External manipulated variable (ext.mv)

Additional Outports

[C] Optimal cost (cost)

[C] optimal control sequence (mv.seq)

[C] optimization status (qgp.status)

[C] Estimated plant, disturbance and noise model states (est.state)
State Estimation

[C] use custom estimated states instead of measured outputs (x[k|k])

[ OK H Cancel H Help ] Apply
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Click OK.
Run the simulation.

sim(mdl)

02r

To view the simulation results, open the signals scope.

open_system([mdl '/signals'])

8-12
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Initially, MPC1 moves mass M1 to the reference setpoint. At about 13 seconds, M2 collides
with M1. The switching signal changes from 1 to 2, which switches control to MPC2.

The collision moves M1 away from its setpoint and MPC2 quickly returns the combined
masses to the reference point.

During the subsequent reference signal transitions, when the masses separate and collide
the Multiple MPC Controllers block switches between MPC1 and MPC2 accordingly. As a
result, the combined masses settle rapidly to the reference points.

Compare with Single MPC Controller

To demonstrate the benefit of using two MPC controllers for this application, simulate the
system using just MPC2.

Change MPC1 to match MPC2.

MPClsave = MPC1;
MPC1 = MPC2;

Run the simulation.

sim(mdl)
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When the masses are not connected, MPC2 applies excessive force since it expects a
larger mass. This aggressive control action produces oscillatory behavior. Once the
masses connect, the control performance improves, since the controller is designed for
this condition.

Alternatively, changing MPC2 to match MPC1 results in sluggish control actions and long
settling times when the masses are connected.

Set MPC1 back to its original configuration.
MPC1 = MPClsave;

Create Explicit MPC Controllers

To reduce online computational effort, you can create an explicit MPC controller for each
operating condition, and implement gain-scheduled explicit MPC control using the
Multiple Explicit MPC Controllers block. For more information on explicit MPC
controllers, see “Explicit MPC” on page 7-2.
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To create an explicit MPC controller, first define the operating ranges for the controller
states, input signals, and reference signals.

Create an explicit MPC range object using the corresponding traditional controller, MPC1.

range = generateExplicitRange(MPC1);

Specify the ranges for the controller states. Both MPC1 and MPC2 contain states for:

* The position and velocity of mass M1.
* An integrator from the default output disturbance model.

When possible, use your knowledge of the plant to define the state ranges. For example,
the first state corresponds to the position of M1, which has a range between -10 and 10.

Setting the range of a state variable can be difficult when the state does not correspond
to a physical parameter, such as for the output disturbance model state. In that case,
collect range information using simulations with typical reference and disturbance
signals. For this system, you can activate the optional est.state outport of the Multiple
MPC Controllers block, and view the estimated states using a scope. When simulating the
controller responses, use a reference signal that covers the expected operating range.

Compare

To Constant =250

/ switch [«
v
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Define the state ranges for the explicit MPC controllers based on the ranges of the
estimated states.

[-10;-8;-31;
[10;8;3];

range.State.Min(:)
range.State.Max(:)

Define the range for the reference signal. Select a reference range that is smaller than
the M1 position range.

range.Reference.Min
range.Reference.Max

-0,

8;

Specify the manipulated variable range using the defined MV constraints.

range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

0;
30;

Define the range for the measured disturbance signal. Since the measured disturbance is
constant, specify a small range around the constant value, 1.

range.MeasuredDisturbance.Min
range.MeasuredDisturbance.Max

Create an explicit MPC controller that corresponds to MPC1 using the specified range
object.

expMPC1l = generateExplicitMPC(MPC1, range);

Create an explicit MPC controller that corresponds to MPC2. Since MPC1 and MPC2
operate over the same state and input ranges, and have the same constraints, you can use
the same range object.

expMPC2 = generateExplicitMPC(MPC2, range);

In general, the explicit MPC ranges of different controllers may not match. For example,
the controllers may have different constraints or state ranges. In such cases, create a
separate explicit MPC range object for each controller.

Validate Explicit MPC Controllers

It is good practice to validate the performance of each explicit MPC controller before
implementing gain-scheduled explicit MPC. For example, to compare the performance of
MPC1 and expMPC1, simulate the closed-loop response of each controller using sim.
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5*ones(160,1); -5*ones(160,1)];
sim(MPC1,350,r,1);
sim(expMPC1,350,r,1);

r = [zeros(30,1);
[Yimp,Timp,Uimp]
[Yexp, Texp,Uexp]

Compare the plant output and manipulated variable sequences for the two controllers.

figure

subplot(2,1,1)

plot(Timp,Yimp, 'b-"',Texp,Yexp, 'r--")
grid on

xlabel('Time (s)')

ylabel('Output')

title('Explicit MPC Validation')
legend('Implicit MPC', "Explicit MPC')
subplot(2,1,2)

plot(Timp,Uimp, 'b-"',Texp,Uexp, 'r--")
grid on

ylabel('MV")

xlabel('Time (s)')
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Explicit MPC Validation
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The closed-loop responses and manipulated variable sequences of the implicit and explicit
controllers match. Similarly, you can validate the performance of expMPC2 against that of
MPC2.

If the responses of the implicit and explicit controllers do not match, adjust the explicit
MPC ranges, and create a new explicit MPC controller.

Simulate Gain-Scheduled Explicit MPC

To implement gain-scheduled explicit MPC control, replace the Multiple MPC Controllers
block with the Multiple Explicit MPC Controllers block.

expModel = 'mpc switching explicit';
open_system(expModel)



Schedule Controllers at Multiple Operating Points

| F dy it
¥ »

| mode

dy/dt2
I IC 1t al

I
Mass M1
i L iy 111t signals
¥2 i
it ——
mode at
a? — dy2idt
maode selection velooity reset

» mode y2
| I a2t -

dy2idt » YYTTTITINE !
il

8 0L
P 1T 1 a2
Mass M2 Animation

switch

Multiple i
- Explicit

MPC ref

& md 1—'1—|

Copyright 1990-2014 The MathWorks, Inc.

To specify the explicit MPC controllers, double-click the Multiple Explicit MPC Controllers
block. In the Block Parameters dialog box, specify the controllers as a cell array of
controller names. Set the initial states for each controller to their respective nominal
value by specifying the statesas {'[], '[]1'}.
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Block Parameters: Multiple Explicit MPC Controllers
Multiple Explicit MPC (mask) (link)
You can use the Multiple Explicit MPC Controllers block to design and
simulate a set of explicit model predictive controllers. These controllers can

be switched from one to another in real time to control a nonlinear plant
with a wide operating range.

Parameters

Cell Array of Explicit MPC Controllers {'expMPC1','expMPC2'"}

Cell Array of Initial Controller States  {'[1,T]"}

Block Options

General Others

Additional Inports
Measured disturbance (md)

[C] External manipulated variable (ext.mv)

Additional Outports

[C] status of piecewise affine function evaluation (status)

["] Region number of evaluated piecewise affine function (region)
[C] Estimated plant, disturbance and noise model states (est.state)

State Estimation

["] Use custom estimated states instead of measured outputs (x[k|k])

[ OK ” Cancel H Help ] Apply
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Click OK.

If you previously validated the your explicit MPC controllers, then substituting and
configuring the Multiple Explicit MPC Controllers block should produce the same results
as the Multiple MPC Controllers block.

Run the simulation.

sim(expModel)

0.8

0.6

0.2r

To view the simulation results, open the signals scope.

open_system([expModel '/signals'])

8-23



8 Gan Scheduling MPC Design

4 = [=] &3

File Tools View Simulation Help N

- 4P| - A& FH-

Applied Force

8-24




See Also

The gain-scheduled explicit MPC controllers provide the same performance as the gain-
scheduled implicit MPC controllers.

bdclose('all')

See Also
Multiple Explicit MPC Controllers | Multiple MPC Controllers

More About
. “Gain-Scheduled MPC” on page 8-2

. “Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System” on page
8-48
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This example shows how to use multiple MPC controllers to control a nonlinear
continuous stirred tank reactor (CSTR) as it transitions from low conversion rate to high
conversion rate.

Multiple MPC Controllers are designed at different operating conditions and then
implemented with the Multiple MPC Controller block in Simulink. At run time, a
scheduling signal is used to switch controller from one to another.

About the Continuous Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process

industry. A schematic of the CSTR system is:

u,(t): inlet feed stream temperature

u,(t): concentration of A in inlet feed stream

y,(t): reactor temperature y,(t): concentration of A in reactor

u.(t): jacket coolant temperature
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This is a jacketed non-adiabatic tank reactor described extensively in Seborg's book,
"Process Dynamics and Control", published by Wiley, 2004. The vessel is assumed to be
perfectly mixed, and a single first-order exothermic and irreversible reaction, A --> B,
takes place. The inlet stream of reagent A is fed to the tank at a constant volumetric rate.
The product stream exits continuously at the same volumetric rate and liquid density is
constant. Thus the volume of reacting liquid is constant.

The inputs of the CSTR model are:

uy = C'A; Concentration of A in inlet feed stream[kgmol /m?)
uz = T; Inlet feed stream temperature K|
g =T, Jacket coolant temperature| K|

and the outputs (y(t)), which are also the states of the model (x(t)), are:

g = x; = CA  Concentration of A in reactor tank[kgmol /m?)
=ag=1T Reactor temperature| K

The control objective is to maintain the concentration of reagent A, €' A at its desired
setpoint, which changes over time when reactor transitions from low conversion rate to

high conversion rate. The coolant temperature T is the manipulated variable used by the
MPC controller to track the reference. The inlet feed stream concentration and
temperature are assumed to be constant. The Simulink model mpc_cstr_plant
implements the nonlinear CSTR plant.

About Gain Scheduled Model Predictive Control

It is well known that the CSTR dynamics are strongly nonlinear with respect to reactor
temperature variations and can be open-loop unstable during the transition from one
operating condition to another. A single MPC controller designed at a particular operating
condition cannot give satisfactory control performance over a wide operating range.

To control the nonlinear CSTR plant with linear MPC control technique, you have a few
options:

» If alinear plant model cannot be obtained at run time, first you need to obtain several
linear plant models offline at different operating conditions that cover the typical
operating range. Next you can choose one of the two approaches to implement MPC
control strategy:

(1) Design several MPC controllers offline, one for each plant model. At run time, use
Multiple MPC Controller block that switches MPC controllers from one to another based
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on a desired scheduling strategy, as discussed in this example. Use this approach when
the plant models have different orders or time delays.

(2) Design one MPC controller offline at a nominal operating point. At run time, use
Adaptive MPC Controller block (updating predictive model at each control interval)
together with Linear Parameter Varying (LPV) System block (supplying linear plant model
with a scheduling strategy). See “Adaptive MPC Control of Nonlinear Chemical Reactor
Using Linear Parameter Varying System” for more details. Use this approach when all the
plant models have the same order and time delay.

* If alinear plant model can be obtained at run time, you should use Adaptive MPC
Controller block to achieve nonlinear control. There are two typical ways to obtain a
linear plant model online:

(1) Use successive linearization. See “Adaptive MPC Control of Nonlinear Chemical
Reactor Using Successive Linearization” for more details. Use this approach when a
nonlinear plant model is available and can be linearized at run time.

(2) Use online estimation to identify a linear model when loop is closed. See “Adaptive
MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation” for more
details. Use this approach when linear plant model cannot be obtained from either an LPV
system or successive linearization.

Obtain Linear Plant Model at Initial Operating Condition

To run this example, Simulink® and Simulink Control Design® are required.

if ~mpcchecktoolboxinstalled('simulink")
disp('Simulink(R) is required to run this example.')
return
end
if ~mpcchecktoolboxinstalled('slcontrol")
disp('Simulink Control Design(R) is required to run this example.')
return
end

First, a linear plant model is obtained at the initial operating condition, CAi is 10 kgmol/
m~” 3, Ti and Tc are 298.15 K. Functions from Simulink Control Design such as operspec,
findop, and linearize, are used to generate the linear state-space system from the
Simulink model.

Create operating point specification.



Gain-Scheduled MPC Control of Nonlinear Chemical Reactor

plant mdl = 'mpc cstr plant’;
op = operspec(plant mdl);

Feed concentration is known at the initial condition.

op.Inputs(l).u = 10;
op.Inputs(l).Known = true;

Feed temperature is known at the initial condition.

op.Inputs(2).u = 298.15;
op.Inputs(2).Known = true;

Coolant temperature is known at the initial condition.

op.Inputs(3).u = 298.15;
op.Inputs(3).Known = true;

Compute initial condition.

[op _point,op report] = findop(plant mdl,o0p);
% Obtain nominal values of x, y and u.

x0 = [op_report.States(1l).x; op_report.States(2).x];
y0 = [op_report.Outputs(l).y; op_report.OQutputs(2).yl;
ud = [op_report.Inputs(l).u; op_report.Inputs(2).u; op report.Inputs(3).ul;

Operating point search report:

Operating point search report for the Model mpc cstr plant.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:

(1.) mpc_cstr plant/CSTR/Integrator

X: 311 dx: 8.12e-11 (0)
(2.) mpc_cstr plant/CSTR/Integratorl

X: 8.57 dx: -6.87e-12 (0)
Inputs

(1.) mpc_cstr plant/CAi
u: 10
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(2.) mpc_cstr _plant/Ti

u: 298
(3.) mpc_cstr_plant/Tc
u: 298
Outputs:
(1.) mpc_cstr _plant/T
y: 311 [-Inf Inf]
(2.) mpc_cstr _plant/CA
y: 8.57 [-Inf Inf]

Obtain linear model at the initial condition.
plant = linearize(plant mdl,op point);
Verify that the linear model is open-loop stable at this condition.

eig(plant)

ans

(o)

.5223
.8952

(o)

Design MPC Controller for Initial Operating Condition
You design an MPC at the initial operating condition.
Ts = 0.5;

Specify signal types used in MPC. Assume both reactor temperature and concentration
are measurable.

plant.InputGroup.UnmeasuredDisturbances = [1 2];
plant.InputGroup.ManipulatedVariables = 3;
plant.OQutputGroup.Measured = [1 2];
plant.InputName = {'CAi','Ti','Tc'};
plant.QutputName = {'T','CA'};

Create MPC controller with default prediction and control horizons

mpcobj = mpc(plant,Ts);
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Set nominal values in the controller. Note that nominal values for unmeasured
disturbance must be zero.

mpcobj.Model.Nominal = struct('X',x0,'U',[0;0;u0(3)],'Y"',y0,'DX"',[0 0]);

Set scale factors because plant input and output signals have different orders of
magnitude.

Uscale [10;30;50];
Yscale [50;10];
mpcobj.DV(1l).ScaleFactor = Uscale(1l
mpcobj.DV(2).ScaleFactor = Uscale(2
mpcobj.MV.ScaleFactor = Uscale(3);
(1
(2

);
);

);
);

mpcobj.0V(1).ScaleFactor = Yscale
mpcobj.0V(2).ScaleFactor = Yscale

The goal will be to track a specified transition in the reactor concentration. The reactor
temperature will be measured and used in state estimation but the controller will not
attempt to regulate it directly. It will vary as needed to regulate the concentration. Thus,
set its MPC weight to zero.

mpcobj .Weights.0V = [0 1];

Plant inputs 1 and 2 are unmeasured disturbances. By default, the controller assumes
integrated white noise with unit magnitude at these inputs when configuring the state
estimator. Try increasing the state estimator signal-to-noise by a factor of 10 to improve
disturbance rejection performance.

Dist = ss(getindist(mpcobj));
Dist.B = eye(2)*10;
setindist(mpcobj, 'model',Dist);

All other MPC parameters are at their default values.

Test the Controller With a Step Disturbance in Feed Concentration

"mpc cstr single" contains a Simulink® model with CSTR and MPC Controller blocks in a
feedback configuration.

mpc mdl = 'mpc cstr single’;
open_system(mpc_mdl)
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Note that the MPC Controller block is configured to look ahead at (preview) setpoint
changes in the future; that is, anticipating the setpoint transition. This generally improves
setpoint tracking.

Define a constant setpoint for the output.

CSTR Setpoints.time = [0; 60];
CSTR Setpoints.signals.values = [y0 yO]"';

Test the response to a 5% increase in feed concentration.

set param([mpc_mdl '/Feed Concentration'], 'Value','10.5");
Set plot scales and simulate the response.

open_system([mpc_mdl '/Measurements'])

open_system([mpc_mdl '/Coolant Temperature'])
set param([mpc_mdl '/Measurements'],'Ymin', '305~8', 'Ymax', '320~9")
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set param([mpc _mdl '/Coolant Temperature'],'Ymin', '295"', 'Ymax', '305")
sim(mpc_mdl,10);

[ o || = | ER

File Tools View Simulation Help o

G- 4O ® - A& E- &4
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The closed-loop response is satisfactory.
Simulate Designed MPC Controller Using Full Transition

First, define the desired setpoint transition. After a 10-minute warm-up period, ramp the
concentration setpoint downward at a rate of 0.25 per minute until it reaches 2.0 kmol/
m”™3.

CSTR Setpoints.time = [0 10 11:39]°';
CSTR Setpoints.signals.values = [y0(1)*ones(31,1),[y0(2);y0(2);(y0(2):-0.25:2)";2;2]11;

Remove the 5% increase in feed concentration used previously.
set param([mpc mdl '/Feed Concentration'], 'Value','10")
Set plot scales and simulate the response.

set param([mpc mdl '/Measurements'],'Ymin', '300~0', 'Ymax', '400~10")
set param([mpc mdl '/Coolant Temperature'],'Ymin',b '240', 'Ymax', '360")
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Temperature, K

Ready T=10.000
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lant Temperature, K

Feady T=10.000

Simulate model.

sim(mpc_mdl,60)
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